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Abstract: The construction industry has a significant environmental impact and concrete production
is responsible for a large part of CO2 emissions and energy consumption. This study focused on
the reutilisation of a specific type of tiles ceramic waste (TCW), composed only of stoneware and
porcelain stoneware tiles, hereafter referred to as ceramic stoneware (CS), as recycled aggregate
in concrete. Natural limestone and CS aggregates (sand and gravel) were characterised (particle
size distribution, water absorption, resistance to wear, density and X-ray diffraction analyses) and
recycled aggregate concrete (RAC) was prepared by replacing 20, 50 and 100 vol.% of sand and
gravel, separately. Concrete workability generally improved with CW addition, especially when
replacing natural gravel. Although the compressive strengths of the concrete specimens prepared
with recycled sand were slightly lower than those of the reference specimens, similar or better results
were recorded with the recycled CS gravel. In consonance, the RAC developed with recycled gravel
obtained lower water penetration depths than the reference concrete. No significant variation in
tensile strength was observed when varying CS content (values within the 2.33–2.65 MPa range).
The study contributes to sustainable construction practices and circular economy by promoting the
valorisation and reutilisation of industrial waste and reducing the consumption of natural resources.

Keywords: circular economy; recycled aggregate concrete; ceramic waste aggregate; workability;
mechanical properties

1. Introduction

More than 35% of the CO2 emissions and 40% of the energy consumed worldwide
are associated with the construction industry [1], and concrete is the most widely used
construction material [2]. It is estimated that 30,000 million tonnes of concrete are annually
produced, which corresponds to 3% of the global energy demand and 8% of greenhouse
gas (GHG) emissions [3]. Approximately 60–75% of concrete is composed of aggregates,
which are usually natural and non-renewable materials [4]. According to Struble and
Godfrey [5], replacing natural aggregates does not imply a significant reduction in the
energy demand because, of the 0.893 MJ required to prepare 1 kg of conventional concrete
(30 MPa after 28 curing days and 0.48 w/c ratio), only 0.056 MJ are attributed to aggregates
(6.3%). Similarly, Samadi et al. [6] did not observe a significant reduction in GHG emissions
when replacing up to 100% of natural sand with tiles ceramic waste (TCW) in mortars. This
was also explained by the low energy required to crush aggregates (0.003 and 0.009 tonnes
of CO2 emitted per ton of ceramic waste (CW) and natural sand, respectively). However,
apart from the involved energy, reusing industrial by-products in concrete minimises
the consumption of natural resources and landfilling waste [7]. Furthermore, transport
emissions may also be reduced if waste is close to the concrete production plant. In this
regard, according to the Spanish Ceramic Tile Manufacturers’ Association (ASCER), 94%
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of ceramic tiles and intermediate products (special pieces, ceramic powder produced by
atomisation, etc.) made in Spain in 2021 were produced in the province of Castellón (eastern
Spain). The fact that 80% of the 137 registered Spanish companies were located in this area,
where this study was conducted, makes reusing TCW in recycled aggregate concrete (RAC)
a very interesting valorisation alternative.

Ceramic tiles production has significantly increased in recent years from the 8581 mil-
lion m2 globally manufactured in 2009 to the 16,093 million m2 produced in 2020 [8]. In
2020, Spain was the largest ceramic tiles producer in the European Union, the second
exporting country in the world (415 million m2 exported, 81.4% of its national production),
and the fifth manufacturing country worldwide. Although reusing TCW could significantly
contribute to circular economy, reducing the consumption of natural resources and the
visual impact when landfilled, according to the European Environment Agency (EEA) [9],
most CW is simply landfilled or used in low-value applications, such as road sub-bases.
Additionally, according to Article 30.8 of the Spanish Structural Code [10], only recycled
aggregates from concrete can be used in structural concrete, replacing up to maximum
20 wt.% of natural coarse aggregates. Thus, the current regulation does not allow the
replacement of natural sand with recycled aggregates in structural concrete. However,
several studies on TCW use in RAC [11–14] reported similar or even better mechanical
properties with contents significantly above this limit. In most of these studies, workability
was reduced with increasing CW contents [12–14], which is attributed to higher water
absorption (WA) of CW recycled aggregates.

The TCW used in the present study was an industrial by-product provided by a com-
pany located in Onda, the Castellón province of eastern Spain. It was composed of only
stoneware and porcelain stoneware ceramic tiles (hereafter referred to as CS) and did not
contain other types of construction waste, such as gypsum, concrete or cement. In previous
studies, Mas et al. [15] and Pitarch et al. [16] explored the pozzolanic activity of this specific
type of TCW, and observed that its chemical composition ((SiO2 + Al2O3 + Fe2O3) > 70%)
and amorphous content (60%) conferred it some pozzolanic activity, which became signifi-
cant after longer curing periods. When finally divided, this CW partially reacted with the
portlandite released during the hydration of Portland cement to generate compounds with
cementitious properties. Therefore, when used as recycled aggregate, this pozzolanicity is
expected to improve the interfacial transition zone between recycled CS aggregates and the
binding matrix, enhancing the properties of RAC [17–19].

In short, the large volumes of TCW that arise from the current linear economic model
are generally landfilled, and the structural code only considers the possibility of reusing
small amounts (max. 20 wt.% of natural gravel and no sand) of concrete waste as recycled
aggregate in structural concrete. Although previous studies have successfully proven that
TCW can be used to partially replace natural aggregates in concrete, there is a wide variety
of ceramic tiles, whose properties (WA, hardness, chemical and mineralogical composition,
etc.) markedly depend on their manufacturing process. As the properties of RAC very
much depend on the characteristics of the employed CW, this research aimed to explore the
use of CS, an industrial by-product only composed of stoneware and porcelain stoneware
tiles, as recycled aggregate in concrete. This TCW is homogeneous, free of impurities,
with low water absorption and high mechanical strength and hardness. Therefore, it is
expected to provide a good performance when used as recycled aggregate in concrete. The
provided information may significantly contribute to a circular economy by promoting the
reutilisation and valorisation of industrial CW generated in large quantities.

2. Materials and Methods

This research work was divided into three main stages: aggregates characterisation;
concrete design and samples preparation; and developed concrete characterisation.
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2.1. Aggregates Characterisation

The natural calcareous and recycled CS aggregates were characterised by particle size
distribution (UNE 933-1:2012, [20]), WA (WA, UNE 1097-6:2014, [21]), resistance to wear,
density (UNE 1097-6:2014, [21]) and X-ray diffraction (XRD) analyses. Wear resistance
tests were conducted in a Micro-Deval testing machine by adapting the processes from
standards UNE 1097-1:2011 for coarse aggregates (500 g of material; 5 kg of stainless
steel balls; 2.5 kg of water and 12,000 revolutions at 100 ± 5 rpm) and UNE 146404:2018
for fine aggregates (500 g material; 2.5 kg of stainless steel balls; 2.5 kg of water and
1500 revolutions at 100 ± 5 rpm). To determine the mineralogical composition by XRD, the
particle size of aggregates was reduced by crushing and milling, as described in [16], up to
a mean diameter of approximately 20 microns. XRD tests were performed within the 5–70
2θ degrees range, with Cu Kα radiation at 20 mA and 40 kV in a Brucker AXS D4 Endeavor
diffractometer.

Figure 1 shows the aggregates used in the present study: natural fine (NFA), natural
coarse (NCA), ceramic stoneware fine (CSFA), and ceramic stoneware coarse (CSCA)
aggregates. The particle size of gravel ranged from 4 to 12 mm, and sand particles were
smaller than 4 mm.
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Figure 1. Aggregates used in the study: (a) natural limestone; (b) recycled CS.

Table 1 summarises the physico-mechanical properties of the natural and recycled
aggregates. The recycled CS particles were lighter than the natural ones, and sand was
slightly denser than gravel. These differences were considered when designing the concrete
mixes, and the substitution percentages were established as volume (vol.%) rather than as
weight. The WA of sand was greater than that of gravel, which was attributed to the smaller
particle size, which implies a bigger specific surface area. The CS absorption results fell
in line with those previously reported by Medina et al. [22] for different types of ceramic
tiles used as recycled aggregates in concrete, whose WA values ranged from 1.4 to 11.6%
and 2.0 to 17.2% for coarse and fine aggregates, respectively. The authors in [20] attributed
this broad amplitude to variations in tile production processes. The results recorded for
CS particles are also similar to those reported by Silva et al. [23], who found a strong
influence of both sintering temperature and tile thickness on the bulk density and WA of
ceramic tiles. The authors in [23] reported the highest WA values (over 3%) when sintering
at 1180 ◦C, while the absorption of the tiles sintered at 1200 ◦C and 1220 ◦C was lower
than 0.5%. The results of the present study corroborate that the used CW was a mixture
of ceramic tiles with low or medium-low WA (as defined in ISO 13006 [24] and UNE-EN
14411 [25] specifications), which, according to the Ceramic Tiles Guide of the Generalitat
Valenciana [26], generally corresponds to stoneware and porcelain stoneware tiles.

The CS aggregates exhibited significantly greater wear resistance than the natural
limestone particles, which was evidenced by the lesser loss of mass recorded after the
Micro-Deval tests (3.76% and 17.20% for the coarse and fine CS versus 24.05% and 28.75%
for natural gravel and sand, respectively). Figure 2 shows the particle size distribution of
the natural and recycled aggregates. The CS and calcareous gravel had similar particle
sizes, and the recycled gravel was slightly coarser than the natural one. On the contrary,
the recycled sand was significantly coarser and less uniform than natural sand. This falls in
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line with the wear resistance results reported in Table 1, since the greater hardness of the
CS particles compared to the natural ones implies using larger amounts of energy to reach
a similar particle size, and this is counterproductive from environmental and economic
perspectives.

Table 1. Physico-mechanical properties of aggregates.

Coarse Aggregates (4/12) Fine Aggregates (0/4)

Natural (NCA) Recycled (CSCA) Natural (NFA) Recycled (CSFA)

Particle apparent density (kg/m3) 2771.2 2373.7 2843.0 2423.3
Water absorption, WA (wt.%) 1.60 1.76 3.43 2.49
Wear resistance (wt.%) 24.05 3.76 28.75 17.20
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The X-ray diffractograms of the CS and natural limestone particles are plotted in
Figure 3. For a given material, the same phases were identified in gravel and sand. Cal-
cite (C, CaCO3, PDFcard 83-578) and dolomite (D, CaMg(CO3)2, PDFcard 75-1760) were
the crystalline phases identified in the natural aggregates, while quartz (Q, SiO2, PDF-
card 46-1045), the sodium feldspar albite (A, NaAlSi3O8, PDFcard 9-466) and mullite (M,
Al6Si2O13, PDFcard 79-1455) were distinguished in the CS particles. The CS diffractogram
deviates from the baseline from 15 to 30 2θ degrees, which denotes the presence of amor-
phous compounds. This falls in line with the previous research by Zanelli et al. [27],
who observed the formation of amorphous phases in stoneware tiles from approximately
1050 ◦C. Microstructural studies in porcelain stoneware tiles have also observed crystalline
phases embedded in substantial amounts of amorphous phases [28].
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2.2. Concrete Design and Sample Preparation

The components and proportions of the different developed concrete mixes are sum-
marised in Table 2. A constant effective water-to-cement ratio of 0.44 was used in all the
mixes. This value is often used to guarantee the strength and durability of concrete in
common applications. The total amount of water was corrected for each mixture, depend-
ing on the WA of aggregates (Table 1) and their moisture content (relative humidity, RH:
1.9%, 0.4%, 1.3% and 0.2% for the NFA, NCA, CSFA and CSCA aggregates, respectively).
Aggregates were pre-soaked with a partial amount of the corresponding water to achieve
their saturation and to avoid the absorption of the water required to hydrate Portland
cement. Given the density differences between the natural and recycled particles (Table 1),
the substitution percentages were established as volume (vol.%) rather than as weight (the
same volume of particles). The designation of the RAC samples was established according
to the type of aggregate used and its substitution percentage. Thus, CSFA20 refers to a RAC
in which 20 vol.% of natural sand was replaced with the same volume of recycled CSFA.
A reference mix (Ref.), containing only natural calcareous aggregates, was also prepared
for comparison purposes. A constant amount of a polycarboxylate-based superplasticiser
(MC-Powerflow 3200 from MC-Bauchemie) was used in all the prepared mixes to enhance
their workability. The CEM II/B-L 32.5N cement employed in the study was supplied
by Élite Cementos S.L., a company located in Castellón (Spain). Its lower clinker content
compared to CEM I, as defined in Standard UNE-EN 197-1 [29], increases the sustainability
of the developed concrete.

Concrete samples were prepared in a pan concrete mixer. Forty-two cubes of 100 mm
side (6 per mix) were developed for compressive strength tests (three tests per curing age,
7 and 28 days), and the same amount of cylindrical specimens (100 mm diameter and
300 mm height) was produced to evaluate tensile strength evolution and resistance to water
penetration (three samples per test, cured for 28 days). After casting concrete into the
corresponding moulds, they were covered with plastic sheets for 24 h to prevent water
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evaporation. Then, samples were demoulded and placed inside a curing chamber with
controlled temperature and humidity (20 ◦C and 100% RH) until the testing age.

Table 2. Concrete mix proportions.

ID Cement
(kg)

Fine Aggregates Coarse Aggregates Water Super-
Plasticiser

(kg)
NFA (kg)
Natural

CSFA (kg)
Recycled

NCA (kg)
Natural

CSCA (kg)
Recycled

Effective
Water (L)

Ratio
w/c

Total
Water (L)

Ref.

425

651 - 1082 -

185 0.44

207.7

2.89

CSFA20 520.8 110.9 1082 - 207.1
CSFA50 325.5 277.3 1082 - 206.2
CSFA100 - 554.6 1082 - 204.6
CSCA20 651 - 565.6 184.3 208.1
CSCA50 651 - 541.0 460.9 208.6
CSCA100 651 - - 921.7 209.5

2.3. Fresh and Hardened Concrete Characterisation

The workability of the different developed mixes was assessed by the Abrams cone test
according to UNE-EN 12350-2 [30] (Figure 4a,b). To determine the evolution of consistency,
this test was conducted 10 and 30 min after the mixing process began.
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Figure 4. Abrams cone slump test: (a) before lifting the mould; (b) consistency measurement.

Compressive strength was determined in the samples cured for 7 and 28 days accord-
ing to UNE-EN 12390-3 [31] in a hydraulic press with a maximum capacity of 1500 kN
at 6 KN/s until failure. The same equipment was used to evaluate the tensile strength
of concrete by means of indirect splitting tensile tests (Figure 5), which were performed
according to UNE-EN 12390-6 [32] on cylindrical specimens cured for 28 days (100 mm
diameter and 300 mm height). For every test, three specimens were evaluated per concrete
mix and curing age, and the mean compressive and tensile strength values, together with
the corresponding standard deviations, were calculated.

Water penetration tests were run to assess the durability of concrete mixes. They were
conducted according to UNE-EN 12390-8 [33] by applying pressurised water at 500 kPa for
72 h to the lower surface of the hardened concrete (Figure 6a). Samples were then divided
into two halves by indirect tensile stress, and the maximum and mean water penetration
depths were measured (Figure 6b) following the procedure described in Annexe A of
the standard.
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3. Results and Discussion
3.1. Fresh Concrete Workability

The workability of the different developed concrete mixtures, as determined by the
Abrams cone test, is presented in Figure 7. The slump values obtained immediately after
mixing concrete (10 min) varied between 9 and 23 cm and, after 30 min varied between
7 and 17 cm, which denotes loss of workability with time. The slump values determined
immediately after mixing concrete (10 min) generally diminished with increasing recycled
sand (CSFA) contents and progressively rose with increasing amounts of recycled gravel
(CSCA, improved workability). This variation was attributed to the shape differences
between the natural and recycled aggregates (rounder particles improve workability) and
to the corrections of the total amount of water in the system (smaller in CSFA and larger
in the CSCA concretes, Table 2), made to compensate for both WA and RH to maintain a
constant w/c effective ratio. The humidity of the used aggregates affects workability, even
if water is corrected to maintain a constant effective water content. In addition, the WA
tests of sand have inherent difficulties to determine the amount of water required to have
saturated aggregates with a dry surface. In any case, all the obtained values are feasible for
construction applications.
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It is remarkable that after 30 min, the workability of RACs was always better than
that of the Ref. concrete (7 cm, soft consistency, as defined by the Spanish Structural
code [10]). Although the slump recorded with increasing amounts of recycled sand was
almost constant (close to 10 cm, fluid consistency), workability progressively improved
with increasing amounts of the CS recycled gravel (up to 23 cm with 100 vol.% CSCA,
liquid consistency). The improved workability of the RAC is attributed to the lower water
absorption of the recycled sand compared with the NFA (Table 1), which implies lower
loss of humidity over time. Most of the studies that have used CW as recycled aggregates
in concrete have evaluated workability immediately after mixing, and generally report
loss of workability with increasing CW contents [12–14], which was attributed to the
higher WA values than the natural particles. More specifically, Rashid et al. [13], who
replaced up to 30% natural gravel with TCW recycled aggregates (17.39% WA), observed a
progressive reduction in the slump values with increasing amounts of CW. Similar findings
have been reported by Goyal et al. [12] in RAC developed by replacing up to 25% of
natural gravel with TCW aggregates (2.7% WA) because, to maintain constant workability,
larger amounts of superplasticisers were required with rising CW contents. Sivakumar
et al. [14] applied a constant w/c ratio of 0.55 in their study and replaced up to 50% natural
sand and gravel (two series separately and one series simultaneously) with TCW fine and
coarse aggregates (0.86% and 2.35% WA, respectively). Workability reduced in all the
developed RACs, especially in those containing recycled sand, which was attributed to the
porosity and WA of CW. The differences between the evolution of workability recorded
with the CS aggregates used herein and results previously reported in the literature are
attributed mainly to the relatively low WA values of the CS recycled particles, the correction
of the total water applied, and the presaturation of aggregates before being mixed with
Portland cement.

3.2. Compressive and Tensile Strength of the hardened Concrete

The compressive strength evolution with the curing age of the concrete samples
developed with different amounts of recycled sand and gravel is summarised in Figure 8
(mean and standard deviation values). After seven curing days, compressive strength
ranged between 24.7 and 32.2 MPa, and these values increased to 33.4–39.1 MPa after
28 curing days. The strength of the RACs prepared with the recycled CS sand was slightly
lower than that presented by the reference concrete, and scarcely varied with the CSFA
content, no matter what the curing age was. This slight strength reduction was attributed
to loss of workability (Figure 7), together with the coarser and discontinuous particle
distribution of CSFA (Figure 2). The high concentration of CSFA particles within the
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1–5 mm range is expected to increase porosity because the voids left by larger particles
cannot be progressively filled by smaller ones. On the contrary, the compressive strength
results obtained by replacing natural gravel with CSCA progressively improved, and
were similar to those presented by the reference concrete, or even better with complete
substitution (CSCA100). As both natural and recycled gravels exhibited similar particle
size distributions (Figure 2) and WA values (Table 1), enhanced strength was attributed not
only to the greater hardness of the CSCA particles, but also to the improved workability
with increasing substitution percentages.
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The tensile strengths (fct) of the developed concrete samples ranged between 2.33 and
2.65 MPa (Figure 9). No significant variation was observed between the tensile strength of
the reference concrete and those developed with the CS recycled aggregates, and differences
were attributed mainly to the heterogeneous nature of concrete and the inherent dispersion
of the results. Some surfaces of the CS aggregates were coated with glaze, which is
distinguishable by a change in colour. Although this raised concerns about their adherence
to the cement matrix, the obtained positive tensile strength results suggest that those
surfaces did not degrade the adherence between aggregates and the binding matrix.
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The obtained strength results fall in line with the previous research works reported
in the literature on using TCW as a recycled aggregate in concrete. Discrepancies are
mainly attributed to the different characteristics of the employed CW, and also to variations
when designing or mixing concrete [11–14]. Authors such as Bommisetty et al. [11] and
Goyal et al. [12] replaced up to 25% natural gravel with TCW, and reported slightly better
mechanical properties than the reference concrete for a given curing period. These authors
reported optimum results with substitution percentages of 20% (35.55 MPa after 28 curing
days) [11] and 15% (50 MPa after 28 curing days) [12]. Sivakumar et al. [14] replaced up
to 50% of natural aggregates (coarse and fine) with TCW. Unlike our study, they did not
observe any improvement in mechanical properties when using recycled TCW gravel,
but reported better compressive strength values than the reference concrete in the mixes
developed with 30% recycled sand and those prepared by replacing 20% natural aggregates
with a combination of coarse and fine CW particles. In the study by Rashid et al. [13],
the strength of the samples containing 20% and 30% TCW, cured for 28 days, improved
by 20% compared to the reference concrete. The authors attributed this improvement to
an enhancement in the interfacial transition zone between the recycled particles and the
binding paste, and to a partial pozzolanic reaction of the TCW used in their study. This
effect may also positively influence the long-term strength of the RAC concretes developed
in the present study because, according to previous findings of Mas et al. [15] and Pitarch
et al. [16], this particular type of TCW exhibits pozzolanic activity.

3.3. Water Penetration of the Hardened Concrete

The water penetration results are plotted in Figure 10. In line with compressive
strength evolution, the maximum penetration depths generally rose when replacing natural
sand with CSFA and were significantly reduced when using CSCA. All the concrete samples
except CSFA100 could be used in any exposure class established in Table 27.1.a of the Span-
ish Structural Code because, according to the specifications established in Table 57.5.7 [10],
maximum penetration depths were generally lower than 30 mm (no individual values
over 40 mm) and medium penetration depths were generally lower than 20 mm (no indi-
vidual value over 27 mm). CSFA100 could be used in any environment except the most
aggressive ones, such as tidal zones (XS3) and soils with marked chemical aggressiveness
(XA3). As previously explained (Section 3.1), the greater penetration depths recorded in
the CSFA100 concrete were attributed to the larger size of these recycled particles and their
lesser continuous particle size distribution (Figure 2) compared to natural sand.
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3.4. Visual Appearance of Aggregates Distribution

To assess the uniformity of aggregate distribution in the matrix and to identify any
potential segregation of the CS aggregates, the fracture surface of the cylindrical specimens
used for tensile strength testing was visually monitored and analysed by photographs. As
observed in Figure 11a, which shows a section of the CSCA100 mix, no segregation occurred.
The same appearance was observed in all the analysed specimens, which indicates that,
despite density differences, all the developed RACs were satisfactorily homogeneous. A
close-up detail of the CS coarse aggregates on the fracture surface appears in Figure 11b.
Glaze coating may be observed in black or white, which indicates that several fractures
originated in the interfacial transition zone between the glaze coating and the cementitious
paste. Since fracture between aggregates and the cementitious matrix is the usual mode of
failure in normal strength concrete and tensile strength values did not significantly vary in
RAC (Figure 9), it can be concluded that the glaze coating had no negative effect.
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4. Conclusions

In this study, CS waste was used to replace natural calcareous aggregates in structural
concrete. Based on the obtained results, the following conclusions are drawn:

– The particle size distribution of the CS and natural gravel were similar. The greater
hardness of the recycled CS aggregates led to a larger particle size and a more discon-
tinuous distribution in the CS sand compared to natural sand.

– Workability generally improved in RACs, especially in those prepared by replacing
natural gravel with CSCA.

– Strength results were comparable to those presented by conventional concrete. Com-
pressive strength of CSFA concretes slightly reduced and was maintained or improved
in those prepared with CSCA. The minor variations in the tensile strength values,
no matter what the type (CSFA, CSCA) or CW content, were attributed to concrete
heterogeneity.

– The water penetration depths of RACs generally reduced and, although they increased
in the CSFA100 sample, this concrete could be used in any exposure class except the
most aggressive environments.

– The workability, strength and water penetration of the CSFA concrete could be im-
proved by further crushing these aggregates and correcting particle size distribution.
However, the additional required energy would reduce sustainability.
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– Future studies that simultaneously replace natural sand and gravel with the CS
recycled particles would further improve the sustainability of the developed RACs.

This research proves that RACs with similar properties to traditional natural aggre-
gates concrete can be developed by reusing CS recycled aggregates, especially if natural
gravel is replaced. This valorisation route offers environmental benefits and contributes to
a circular economy because it allows to reuse significant waste material and to reduce the
amount of landfilled waste and the consumption of natural resources.
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