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Abstract: When studying hand kinematics, it is key to differentiate between free motion and manipu-
lation. This differentiation can be achieved using pressure sensors or through visual analysis in the
absence of sensors. Certain data gloves, such as the CyberGlove II, allow recording hand kinematics
with good accuracy when properly calibrated. Other gloves, such as the Virtual Motion Glove 30
(VMG30), are also equipped with pressure sensors to detect object contact. The aim of this study is to
perform a technical validation to evaluate the feasibility of using virtual reality gloves with pressure
sensors such as the VMG30 for hand kinematics characterization during product manipulation,
testing its accuracy for motion recording when compared with CyberGlove as well as its ability to
differentiate between free motion and manipulation using its pressure sensors in comparison to
visual analysis. Firstly, both data gloves were calibrated using a specific protocol developed by the
research group. Then, the active ranges of motion of 16 hand joints angles were recorded in three
participants using both gloves and compared using repeated measures ANOVAs. The detection
capability of pressure sensors was compared to visual analysis in two participants while performing
six tasks involving product manipulation. The results revealed that kinematic data recordings from
the VMG30 were less accurate than those from the CyberGlove. Furthermore, the pressure sensors
did not provide additional precision with respect to the visual analysis technique. In fact, several
pressure sensors were rarely activated, and the distribution of pressure sensors within the glove was
questioned. Current available gloves such as the VMG30 would require design improvements to fit
the requirements for kinematics characterization during product manipulation. The pressure sensors
should have higher sensitivity, the pressure sensor’s location should comprise the palm, glove fit
should be improved, and its overall stiffness should be reduced.

Keywords: hand; data glove; hand kinematics; pressure sensor; hand posture; grasp; manipulation;
contact detection

1. Introduction

Electromechanical data gloves are among the most commonly used systems for record-
ing hand kinematics. These gloves are equipped with strain gauges, which are placed over
the joints under study. The signal provided by each gauge, measured in mV, varies depend-
ing on the degree of flexion. Electromechanical data gloves are the best choice for recordings
involving manipulation, as they do not present problems such as the occlusions that can
occur in optical systems or data interferences caused by the proximity of ferromagnetic
objects, unlike electromagnetic systems. Furthermore, their setup is significantly easier
compared to other systems. Optical systems with markers require initial calibration for
each session and marker location, and electromagnetic systems such as Polhemus Fastrak
or Polhemus Viper require sensor location in specific hand segments. Data gloves only
require an initial calibration process when acquired [1]. CyberGlove (CyberGlove Systems,
San Jose, CA, USA) is one of the most used data gloves in biomechanics to record hand
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kinematics [2–7]. It has the capability to record either 18 or 22 degrees of freedom (DoFs),
depending on the glove model. Its main body is made of elastic fabric, with a thicker
section on the back of the hand and a thinner section on the palm contributing to achieve
a better fit. To prevent interfering in manipulation, all the wiring and strain gauges are
positioned on the back of the hand, and each gauge’s position is fixed with seams. This
glove has a thin and well distributed wiring facilitated by the slim design of the strain
gauge sensors.

When analyzing human hand kinematics during activities involving product use, it
is key to differentiate between reaching, manipulation, and release phases. However, in
recordings using the CyberGlove, a visual analysis is required to distinguish these different
phases. This visual analysis involves recording the time stamp of specific events using the
data acquisition software. Time stamps allow the segmentation of recordings in several
parts at convenience (e.g., in reach, grasp and release phases) or the identification of specific
events (e.g., the performance of a specific grasp). Nevertheless, acquiring time stamps
though visual analysis requires a person observing all the performed tasks, which also
introduces an error associated with their reaction time. An alternative to this visual analysis
could be automating the procedure by incorporating pressure sensors to all the products
(which may be expensive and time-consuming to install) or using a glove that includes
pressure sensors.

There are various commercially available data gloves that allow hand posture record-
ing in addition to CyberGlove, such as Rokoko (Rokoko, København, Denmark), Xsens
Manus Prime II (Xsens Technologies, Enschede, The Netherlands), or MoCap Pro Gloves
(Stretchsense, Auckland, New Zealand), among others. Nevertheless, as observed in recent
review studies investigating available commercial data gloves [8] and robotic gloves for
remote control [9], there are few commercial gloves that record hand posture and are
also equipped with pressure sensors. This low availability of commercial kinematic data
gloves with pressure sensors has boosted the development of custom gloves by research
groups. Table 1 presents a summary of kinematic data gloves with pressure sensors, both
commercially available and custom-made, detailing the number of kinematic DoFs, number
of pressure sensors, and commercial availability.

Table 1. Kinematic data gloves with pressure sensors, along with their sensor characteristics and
commercial availability. Joints: IP1 for thumb interphalangeal joint, PIP for proximal interphalangeal
joints of fingers, MCP for metacarpophalangeal joints, CMC1 for carpometacarpal joint of thumb,
CMC5 for palmar arch resulting from flexion/extension of carpometacarpal joints of ring and little
fingers. Nomenclature: _F for flexion, _A for abduction; 1 to 5, digits from thumb to little.

Glove Model Manufacturer/
Reference Kinematic DoFs Pressure Sensors Commercially

Available

CaptoGlove CaptoGlove LLC,
Shalimar, FL, USA 10 (IP1_F, MCP1_F, PIP2-5_F, DIP2-5) 1 (thumb fingertip) Yes

VMG30 Virtual Motion Labs,
Dallas, TX, USA

16 (CMC1_F, CMC1_A, IP1_F, PIP2-5_F,
MCP1-5_F, MCP2-4_A, CMC5_F) 5 (fingertips) Yes

VMG35 Virtual Motion Labs 16 (CMC1_F, CMC1_A, IP1_F, PIP2-5_F,
MCP1-5_F, MCP2-4_A, CMC5_F) 5 (fingertips) Yes

SenGlove [10] 15 (CMC1_F, CMC1_A, IP1_F, PIP2-5_F,
MCP1-5_F, MCP2-4_A, CMC5_F) 5 (fingertips) No

Smart Glove [11] 5 (IP1_F, PIP2-5_F) 5 (fingertips) No

Smart Glove [12] 1 (IP1_F) 1 (thumb fingertip) No

Smart Glove [13] 5 (IP1_F, PIP2-5_F) 1 (palm) No

Smart Glove [14]
20 (CMC1_F, CMC1_A, IP1_F,
PIP2-5_F, DIP2-5_F, MCP1-5_F,

MCP2-4_A, CMC5_F)

10 (4 on fingertips, 6 on index
and little phalanxes and

metacarpals, none on thumb)
No
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One of the commercially available gloves listed in Table 1 that presented the best
characteristics regarding the number of DoFs for kinematics recording and the number
of pressure sensors was VMG30, which was produced by Virtual Motion Labs. For this
reason, a VMG30 glove (Figure 1) was acquired by our research group but customized
with five extra pressure sensors on the palm and the proximal phalanx of the middle finger.
The customization of the glove and the location of the five extra sensors was motivated
by the results obtained in previous studies [15], where the study of hand contact pressure
during 21 activities of daily living revealed high implication of specific palm spots. In fact,
one of the main purposes of customizing the VMG30 glove was initially analyzing hand
kinematics and pressure distribution in a combined way.
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the middle proximal phalanx. Additional sensors s6 to s10 marked in red.

Figure 1 shows the location of all the sensors, with the additional ones (s6 to s10)
marked in red. The main body of this glove is composed of elastic fabric, but the fit is not
as optimal as that of the CyberGlove due to the presence of bulky embedded wiring and
the glove tailoring (see Figure 2). The glove is fixed to the wrist with a Velcro strap, and the
fingertips are covered. In this glove, the wiring of the gauges is positioned on the backside
of the hand, while the pressure sensors and their wiring are located in the palm and fingers.

The aim of this communication is to evaluate the feasibility of using virtual reality
gloves with pressure sensors, such as the VMG30, for hand kinematics characterization
during product manipulation, testing its accuracy for motion recording when compared
with CyberGlove as well as its ability to differentiate between free motion and manipulation
using its pressure sensors in comparison to visual analysis. The main advantages of
validating the VMG30 glove would be: (1) automatic distinction between free motion and
manipulation without the human error associated with visual analysis, (2) the possibility of
using a more affordable commercially available data glove, and (3) the option of recording
pressure applied to specific hand spots during grasps.
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2. Materials and Methods

Experiments were performed in two different phases that consisted of testing the kine-
matic accuracy of VMG30 recordings (Phase I) and studying VMG30 detection sensitivity
when contacting objects (Phase II) while performing a set of tasks. VMG30 and CyberGlove
II (both right gloves with 16 DoFs and 18 DoFs, respectively) were used to acquire data
during the experiment.

Both gloves recorded exactly the same 16 DoFs, according to the manufacturers, but
CyberGlove also recorded flexion and deviation of the wrist. For this reason, this 16 DoFs
present in both gloves were calibrated using the same validated across-subject calibration
protocol [1] developed by our research group. This calibration protocol only has to be
performed when acquiring the glove, contrarily to the calibration protocol recommended by
the manufacturers, which has to be performed for each participant recorded. This protocol
consisted of 44 recordings: static postures controlled with wood accessories (to obtain
gauge gains) and controlled movements (to apply kinematic cross coupling corrections).
Both gloves were calibrated by recruiting six participants with hand sizes between 160 mm
and 200 mm, selected to achieve a sample representative of the average adult hand length.
Participants were not the same for both gloves; therefore, a total of 12 participants took
part in the calibration experiments, with a mean hand length of 177.2 (±12.3) mm for
CyberGlove trials and 179.8 (±15.3) mm for VMG30 trials. The calibration procedure was
performed three times for each participant, and the mean gains and coefficients from the
calibration were defined as the mean values obtained across all the participants and trials
for each glove.

All the experiments were approved by the Research Ethics Committee with Human
Beings (formerly Deontology Committee) of Universitat Jaume I (Spain), reference number
CD/31/2019. All the participants were previously informed about the characteristics of the
experiment and gave their written consent to participate.
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2.1. Phase I

Three participants with different hand sizes and ages (Participant 1: 174 mm, 49 years;
Participant 2: 196 mm, 48 years; Participant 3: 176 mm, 44 years) volunteered to participate
in Phase I. Since the aim of Phase I was to compare both glove kinematic recordings in
extreme postures but not extract normative kinematic data, a larger sample of participants
was considered unnecessary. In this phase, in order to assess the kinematic accuracy of
VMG30, the active ranges of motion (AROMs) of 16 hand joints angles were recorded with
both gloves, recording a total of 27 AROMs per participant, corresponding to maximum and
minimum values of the 16 hand joint angles (except carpometacarpal joint flexion/extension
and finger abductions/adductions, where only maximum flexion and maximum abduction
values were considered, see Figure 1 and Table 2). To do so, participants were firstly
asked to perform a reference posture with their flat hand lying on a table, with the fingers
and thumb together. Joint angles for a given posture were computed as rotated angles
from those of this reference posture. Then, participants were asked to perform ten static
postures that forced participants to achieve the active extreme postures of groups of joints,
therefore allowing the recording of their AROMs (Figure 3 and Table 2). After the AROMs
recording, joint angles were computed using the calibration coefficients obtained for each
glove, according to a previous study [1], and using a custom angle calculation code [16].
Then, the joint angles obtained from both gloves were filtered using a 2nd order two-
way low pass Butterworth filter, with a cut-off frequency of 5 Hz. The AROM for each
participant and joint was computed from these filtered angles as the maximum values
obtained for each DoF across all recorded postures. Then, AROMs obtained for each joint
and participant when using the VMG30 and CyberGlove were compared by performing
27 repeated measures ANOVAs (Sig. ≤ 0.01), one per recorded AROM.

Table 2. Active range of motion assessed in each recording presented in Figure 3. Joints: IP1 for
thumb interphalangeal joint, PIP for proximal interphalangeal joints of fingers, MCP for metacar-
pophalangeal joints, CMC1 for carpometacarpal joint of thumb, CMC5 for palmar arch resulting from
flexion/extension of carpometacarpal joints of ring and little fingers. Nomenclature: _F for flexion,
_E for extension, _A for abduction; 1 to 5, digits from thumb to little.

Posture Active Range of Motion Assessed

A Max. thumb CMC flexion (CMC1_F)

B Max. thumb CMC extension (CMC1_E)

C Max. thumb CMC abduction (CMC1_A)

D Max. thumb interphalangeal joint (IP1_F) and metacarpophalangeal joint
flexion (MCP1_F)

D Max. proximal interphalangeal joint flexion of index to little fingers (PIP2_F-PIP5_F)

E Max. metacarpophalangeal joint flexion of index to little fingers (MCP2_F-MCP5_F)

F Max. metacarpophalangeal joint and proximal interphalangeal joint extension of
index to little fingers (PIP2_E-PIP5_E) (MCP2_E-MCP5_E)

G1 Max. abduction between index and middle fingers (MCP2-3A)

G2 Max. abduction between middle and ring fingers (MCP3-4_A)

G3 Max. abduction between ring and little fingers (MCP4-5_A)

H Max. flexion of carpometacarpal joint (CMC5_F)
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2.2. Phase II

Participants 1 and 2 from Phase I volunteered to participate in Phase II. Since the
aim of Phase II was solely to study sensor detection, a larger sample of participants was
considered unnecessary. Instead, participants with different hand lengths (174 mm and
196 mm) were selected, as hand length could potentially impact pressure sensor activation.
These hand sizes represented the 41st percentile for the US women adult population and
the 53rd percentile for the US male adult population, according to normative data from
PeopleSize 2008 Professional v1.10 software (OpenErgonomics Ltd., Wroxham, UK). In
this phase, in order to assess the manipulation detection capabilities, six activities (A1 to
A6, Figure 4) representative of several grasp types and involving different objects were
performed by two participants while wearing the VMG30. Some tasks (A1, A2, A5 and A6)
were inspired by the Sollerman Hand Function Test [17], a standardized hand function test.
Table 3 details all the tasks performed.
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Table 3. Activities performed in the experiment, grasp type required and description.

Task Grasp Description

A1 Oblique/Cylindrical Grab the door handle, turning it and releasing it.

A2 Pulp pinch/Lateral pinch Taking the key from the table, introducing it into the lock, turning it and
releasing it, leaving the key inside the lock.

A3 Cylindrical Taking a bottle of water from the table, moving it between two points drawn in
the table and releasing it.

A4 Five-finger pinch/cylindrical Taking a glass of water from the table, holding it for few seconds and leaving it
again on the table.

A5 Tripod pinch Taking a pen from the table, writing the word “BIOMECÁNICA” in a sheet of
paper and leaving it again on the table.

A6 Intermediate Taking a knife and a fork from the table, cutting play dough (simulating a
sausage) and leaving them again on the table.

The person in charge of the experiments recorded the time stamp of the instants
where grasp and release of the objects occurred in each activity (using the data acquisition
software) as part of the visual analysis. After this, time stamps collected in visual analyses
were compared to those from the activation of any of the pressure sensors. Pressure
sensors raw data signal varied from 100 to 0, with a precision of 0.1, with 100 the value for
non-contact. Therefore, sensor activation was considered when the raw data value was
below 100.

3. Results and Discussion

Figure 5 presents a box and whiskers plot with the AROMs (in degrees) measured in
Phase I of the experiment. The 27 performed repeated measures ANOVAs (one per recorded
AROM) revealed statistically significant differences (Sig. ≤ 0.01) between gloves in 10 out
of 27 AROMs. Table 4 details the AROMs and the mean values for each data glove and
values reported in the literature [18] for each specific AROMs in order to compare them.
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Table 4. Mean values of AROMs, as well as reported values in literature [18]. Statistically significant
differences (Sig. ≤ 0.01) after the repeated measures ANOVAs between the values obtained using
CyberGlove and VMG30 are shaded in grey.

JOINT CyberGlove AROM VMG30
AROM

Values Reported in
Literature [18]

IP1_F 82.88◦ 115.80◦ 102.1◦

IP1_E −32.54◦ 8.01◦ −12.4◦

MCP1_F 28.16◦ 47.65◦ 26.1◦

MCP1_E −24,13◦ −19.39◦ −21.0◦

CMC1_F 30.14◦ 19.34◦ 42.10◦

CMC1_E −42.66◦ −6.41◦ −26.10◦

PIP2_F 112.71◦ 88.52◦ 108.80◦

PIP2_E −1.69◦ −0.02◦ −3.80◦

MCP2_F 75.26◦ 127.89◦ 70.60◦

MCP2_E −19.53◦ −9.26◦ −25.30◦

PIP3_F 98.45◦ 86.32◦ 96.60◦

PIP3_E −6.32◦ 0.69◦ −6.70◦

MCP3_F 81.72◦ 103.88◦ 73.60◦

MCP3_E −32.61◦ 0.10◦ −23.10◦

PIP4_F 105.28◦ 105.84◦ 102.80◦

PIP4_E −8.08◦ −1.48◦ −9.90◦

MCP4_F 75.11◦ 223.05◦ 68.40◦

MCP4_E −35.76◦ −2.14◦ −21.90◦

PIP5_F 102.62◦ 99.58◦ 89.90◦

PIP5_E −7.16◦ −2.66◦ −7.80◦

MCP5_F 69.38◦ 166.25◦ 68.40◦

MCP5_E −38.59◦ −31.93◦ −21.90◦

CMC5_F 34.95◦ 12.93◦ 29.60◦

CMC1_A 20.05◦ 23.91◦ 19.70◦

MCP2-3_A 35.50◦ 34.71◦ 35.20◦

MCP3-4_A 26.99◦ 19.48◦ 25.70◦

MCP4-5_A 31.13◦ −51.17◦ 28.4◦

The statistically significant differences obtained are high, except in MCP4_A, where
the difference is only 7.51◦, which is close to the glove sensitivity [1]. Most of the obtained
AROM values using the VMG30 are far from the healthy hand AROMs, as observed in
Table 4, and are present mainly in MCP flexion and extension. These differences may
be attributable to the coefficients obtained from the calibration process in these joints,
which may not be appropriate. We experienced several problems when placing the initial
calibration accessories on the hand dorsum because of the wiring of the glove, which
is bulky and not uniformly distributed, which might have affected the performance of
the entire calibration. Figure 6 shows some accessories used to calibrate the data gloves,
according to a previously validated protocol [1].

Figure 7 shows the differences between automatic detection (activation/deactivation
of sensors) and visual analysis. Positive values mean delay of sensors regarding visual
analysis, while negative values mean anticipation of sensors. The figure only provides
difference values for the pressure sensors that were first activated in each task (to detect
grasp) and the sensor that was last deactivated (to detect release). Sensors activated in
between, and therefore not important to detect grasp or release, are shaded in grey. Sensors
not activated during the task are not shaded (white cells). Differences lower than 0.5 s
(absolute value) are shaded in green. Differences higher than 0.5 s (absolute value) are
shaded in red.
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protocol [1]. The same accessory calibrating index MCP flexion and PIP flexion for CyberGlove (left)
and VMG30 (right).

Differences in visual analysis were higher than 1 s on three occasions: when opening
a door (A1), grasping a pen (A5), and releasing a knife (A6), due to delay/anticipation
(A5 and A6) or activation without any contact (A1). Differences were higher than 0.5 s on
eight occasions. These differences are high, taking into account that the obtained response
time for visual stimuli in the literature varies between 200 ms and 300 ms [19,20], and
considering that in these experiments the observer is previewing the full task and can
anticipate events, therefore reducing its reaction time.

Furthermore, some sensors were frequently activated (s1, s2, s3), while others were
rarely or not activated at all (s4, s10) (Figure 7). The only tasks where grasp and release
were correctly detected in both participants were using a key (A2) and taking a glass (A4).

The sensor most used to detect grasp was s1 (located at thumb fingertip) in both partici-
pants. The most used to detect release was also s1 for participant 1 (hand length = 174 mm),
but it was s2 (located at index fingertip) for participant 2 (hand length = 196 mm). It may
be attributable to a glove bad fit, which may not allow correctly locating fingertips below
the pressure sensor location. It can also be observed that sensors s6 (thenar area of palm),
s7 (index and middle interdigital area of palm), s8 (middle finger proximal phalanx), and
s9 (ring and little interdigital area of palm) were mainly activated only in participants with
larger hands. These results allow drawing important conclusions regarding the sensors’
location within the glove. On the one hand, they highlight the importance of thumb, index,
and middle fingertips pressure sensors to distinguish free motion from manipulation. On
the other hand, they reveal that the additional sensors s8 to s9 located in the palm also
provide key information, except S10. Therefore, palm sensors should not be underestimated
when designing data gloves with pressure sensors. In fact, palm is the part with the first
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and last contact with the objects when performing power grasps. This can be observed in
sensor activation in tasks A1, A3, and A4 (all requiring power grasps), where additional
palm sensors detected grasp or release. These results are consistent with previous studies
analyzing hand pressure distribution in activities of daily living [15]. The only important
difference regarding the results in the literature was the inactivity observed for pressure
sensor s10. This palm spot was observed to present a higher activation of pressure sensors
in [15] but this may be attributable to the pressure sensor size, as the used in previous
studies was almost thrice the size of VMG30 sensors. The second spot observed to have
higher activation in the aforementioned study was distal phalanx of index finger, which is
consistent with the results here obtained using VMG30.
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Figure 7. Difference (in seconds) between automatic detection (activation/deactivation of pressure
sensors (s1 to s10)) and visual analysis. Pressure sensors (s1–s10) labeled as described in Figure 1,
tasks (A1–A6) labeled as detailed in Figure 4 and Table 3. Only difference values provided for first
activation of pressure sensors in each task (to detect grasp) and last sensor deactivation (to detect
release). Sensors activated in between are shaded in grey. Sensors not activated are not shaded (white
cells). Differences lower than 0.5 s (absolute value) are shaded in green. Differences higher than 0.5 s
(absolute value) are shaded in red.

The sensor that presented the most differences in contact detection was s2 (located at
index fingertip), implying an anticipation of deactivation in release detection in tasks A5
and A6, both implying performing grasp types where the index finger was key (tripod pinch
and intermediate, respectively). To better illustrate the results, Figure 8 presents a fusion of
raw kinematic data, raw pressure sensors data, and visual analysis data while participant 1
was performing task A6, which was the one that presented the most differences between
pressure sensors detection and visual analysis. It can be observed that s1 deactivation
occurs long before the stabilization of the kinematic signal.
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Moreover, it can be observed that the most differences in reaching mainly implied a
delay in sensors detection (positive values), while in release they implied an anticipation in
their deactivation (negative values). This led us to suspect that pressure sensors sensitivity
is not enough to automatically differentiate product manipulation from release in ADLs.

The contact detection clearly failed, and it can be attributable to different factors such
as sensor sensitivity or bad fit of glove in small hands and the selected activities/products.
In fact, participants reported some difficulties with the completion of some activities due
the thickness and stiffness of the VMG30.

4. Conclusions

A data glove with pressure sensors would allow automatic differentiation between
free motion and manipulation, avoiding human reaction-time errors. Nevertheless, owing
to the results obtained in this experiment, currently available gloves such as the VMG30
would require design improvements to fit the requirements for kinematics characterization
during product manipulation.

Firstly, pressure sensors included in these types of data gloves should have higher
sensitivity for more accurate automatic detection of manipulation. This conclusion can
be drawn after observing that the sensors did not offer additional precision regarding the
visual analysis technique (which also implies human error). Moreover, the pressure sensor
distribution within the glove should consider the palm, as this part is the first and last to be
in contact with objects when performing power grasps, such as cylindrical or oblique, as
observed in pressure sensor activation.

Another important weakness of the glove is the wiring on the dorsum of the hand,
which should be modified in order to reduce glove stiffness and bulkiness. This conclusion
is motivated by the concerns raised by participants during the experiments and the con-
viction that the bulkiness reduction would favor the placement of accessories during the
initial calibration procedure if necessary. Nevertheless, it could be solved by developing a
calibration protocol to control posture using an optical motion tracking system instead of
wooden accessories. Apart from favoring glove calibration, less bulky wiring and reduced
stiffness would contribute to more realistic hand motion. Bulkiness reduction could be
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accomplished by using a lighter wiring technology, such as textile circuit boards. Another
alternative would be to reduce the number of pressure sensors on the glove.

Moreover, it was observed that sensor detection varied depending on hand size. It
can be attributable to the small area covered by sensors (Ø = 20 mm) combined with a bad
fit of the glove, which contributes to locating pressure sensors in areas of the hand where
they are not intended to be. The covered area of pressure sensors could be extended by
using other sensor technologies, such as textile pressure sensors, that cover larger areas.
This improvement should be accompanied by an improved glove fit. Correct sizing is a key
factor determining data accuracy, as studied in previous studies in the literature [21], and
the importance of manufacturing different glove sizes is evident.

In general, improving glove fit and reducing glove stiffness would also have an effect
on manipulation dexterity, as observed in previous studies [22]. A holistic analysis of glove
usability, considering aspects such as overall flexibility, loss of manipulation dexterity, or
glove weight, among others, needs to be addressed.

With the current characteristics of each type of glove and taking all the outcomes into
account, a glove without pressure sensors, such as the CyberGlove, is still the best choice
for experiments requiring product manipulation. Nevertheless, in experiments requiring
precision in phase distinction, the best choice may be sensor products in order to avoid
human error in detection and sensor error associated with a bad glove fit. In the same way,
CyberGlove could also be improved by lightening its wiring and offering several glove
sizes, especially in their versions measuring 22 DoFs, which include sensors to record distal
interphalangeal joint kinematics and do not fit small/medium hand sizes [21].

The main limitation of this study is the low sample size in Phase I and Phase II, as they
were intended to be a technical validation prior to the main research experiments using
data gloves. Another limitation may be the human error associated with the visual analysis
and detection technique.
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