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Abstract

In this thesis some plate-membrane type transmission problems are studied.
See system (1.1)-(1.9). Three dampings are considered on the structure: ther-
mal and structural for the plate, and global viscoelastic of Kelvin–Voigt type
on the membrane. Sometimes some damping is removed from the structure.
The plate may or may not have an inertial term. In the presence and/or
absence of any of the elements mentioned above, we establish existence and
uniqueness of solution of the system, which depends continuously on the ini-
tial data. We also obtain results of regularity, stability and analyticity. We
use the semigroup approach to show the well-posedness our system. Follow-
ing an idea of proof of regularity developed by Avalos and Lasiecka, we prove
that if the inertial term is present or absent then the boundary and transmis-
sion conditions hold in the strong sense of the trace when the initial data are
smooth enough. Then, using a general criteria of Arendt–Batty, we show the
strong stability of our system when the membrane is damped and the plate
is with or without rotational inertia. Employing a spectral approach, we in-
directly prove exponential stability when the plate has rotational inertia and
the structure is totally damped. This asymptotic behavior of the solutions
is lost when we remove the viscoelastic component of the membrane. Under
this situation, we impose a geometrical condition on the membrane boundary
and obtain that the solutions decay polynomially with a rate of t−1/25 when
the plate has rotational inertia and structural damping. Finally, using a well-
known Liu–Zheng criterion we prove by contradiction the analyticity of the
system when the membrane has Kelvin–Voigt damping and the thermoelastic
plate is considered without inertial term and without structural damping.

Keywords: Analyticity, exponential stability, lack of exponential stability,
polynomial stability, regularity, strong stability, transmission problem, well-
posedness.
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Chapter 1

Introduction

In recent years, many researchers have investigated transmission problems due
to their applications in engineering, such as: aircrafts, satellite antennas and
road traffic (see [63] and the references therein). The physical phenomenon
consisting of the interaction between an acoustic medium and the vibrations
of an elastic structure can be described with transmission equations (see [64]).
There are also other interactive physical processes modeled through coupled
partial differential equations, for example, composite laminates in smart ma-
terials and structures, and fluid-structure interactions (see [126]).

In this work, a plate-membrane type system within the L2 theory is stud-
ied. In addition to proving the existence and uniqueness of the solution to the
transmission problem, in certain appropriate spaces, its asymptotic behavior
will be analyzed and subsequently the analyticity of a semigroup associated
with the problem will be proved. The results depend on the dampings that are
placed on the structure. The plate may or may not have thermal or structural
damping, and the membrane may or may not have Kelvin–Voigt damping.
The geometric description of the structure to be worked on is shown below.

1.1 Description of the problem

Let Ω and Ω2 be bounded domains in R2 with boundaries Γ := ∂Ω and
I := ∂Ω2, both of class C4, such that Ω2 ⊂ Ω. We set Ω1 := ΩrΩ2. The unit
normal vector pointing towards the exterior of Ω1, both on Γ and on I, is
denoted by ν (see Fig. 1.1). Note that unit outward normal vector to Ω2 along
the interface I is −ν. We will assume that Ω1 and Ω2 are occupied by the

1



Chapter 1. Introduction

Ω1
Ω2

ν

ν

I

Γ

Fig. 1.1. The set Ω = Ω1 ∪ I ∪ Ω2.

middle surface of the thermoelastic plate and by the membrane, respectively.
In this case, u = u(t, x) and v = v(t, x) denote the vertical deflections of
the plate and the membrane, respectively. The temperature difference of the
plate is denoted by θ = θ(t, x). We consider the following problem

ρ1utt − γ∆utt + β1∆2u−m1∆ut + α∆θ = 0 in R+ × Ω1, (1.1)

ρ0θt + σθ − β∆θ − α∆ut = 0 in R+ × Ω1, (1.2)

ρ2vtt − β2∆v −m2∆vt = 0 in R+ × Ω2. (1.3)

The parameters γ,m1, σ and m2 are all non-negative, and the rest of the
constants ρ1, β1, α, ρ0, β, ρ2 and β2 are positive. When γ > 0 it is because
the rotational inertia of the plate filaments is considered and whose value
is proportional to the square of the plate thickness, in this case (1.1) with
m1 = α = 0 is known as the Kirchhoff plate equation (see (1) in [81, p.
2]). The case γ = 0 corresponds to a thin plate, and when m1 = α = 0
the equation (1.1) is called Euler–Bernoulli plate equation. The parameters
m1 > 0 and m2 > 0 make the plate and the membrane have structural
and Kelvin–Voigt damping, respectively. The constant σ depends on the
thickness of the plate and the ratio of the external thermal conductivity
to the thermal conductivity of the plate, in the case of being positive (see
[79]). The coupling parameter α is called coefficient of thermal expansion
(see [9]), β is the thermal conductivity (see [39]) and ρ0 has the meaning of
heat/thermal capacity (see [35, p. 244]). The constants β1, β2, ρ1 and ρ2 are
the plate flexural rigidity, the in-plane stress, the plate mass/area and the
membrane mass/area, respectively (see [129]). We will assume that the plate
is embedded and attached to the membrane, this is interpreted by

u = ∂νu = 0 on R+ × Γ and u = v on R+ × I. (1.4)

2



1.2. Physical aspects of thermoelastic plate-membrane model

We will assume that the temperature satisfies Newton’s cooling law (see
(2.5.7) in [95, p. 43]) with coefficient κ > 0 along ∂Ω1, this is,

∂νθ + κθ = 0 on R+ × ∂Ω1. (1.5)

Besides the condition on the interface I in (1.4), we consider the following
boundary and transmission conditions

β1B1u+ αθ = 0 on R+ × I, (1.6)

γ∂νutt − β1B2u+m1∂νut − α∂νθ − β2∂νv −m2∂νvt = 0 on R+ × I, (1.7)

where

B1u := ∆u+ (1− µ)B1u and B2u := ∂ν∆u+ (1− µ)∂τB2u

are the boundary operators introduced in [79, p. 119], τ := (−ν2, ν1)> is
the unit tangent vector along ∂Ω1 with ν1 and ν2 being the first and second
components of ν, and µ is the Poisson ratio whose value belongs to the interval
(0, 1/2), which comes from certain physical considerations on the plate. The
operators B1 and B2 are defined by the relations

B1u := 2ν1ν2ux1x2 − ν2
1ux2x2 − ν2

2ux1x1 ,

B2u := ν1ν2(ux2x2 − ux1x1) + (ν2
1 − ν2

2)ux1x2 ,

which appear in [79, p. 2]. The initial conditions for the system are given by

u(0) = u0, ut(0) = u1, θ(0) = θ0 in Ω1, (1.8)

v(0) = v0, vt(0) = v1 in Ω2. (1.9)

In this thesis it is guaranteed that the system (1.1)-(1.9) has a unique
solution that can be weak or strong, this will depend on the choice of the
initial data. Moreover, here there are results concerning regularity, strong
stability, exponential stability, non-exponential stability, polynomial stability
and analyticity, which depend on the presence or absence of the parameters
γ, m1 and m2.

1.2 Physical aspects of thermoelastic plate-

membrane model

Some paragraphs should be written regarding the derivation of the equations
that govern the model.
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Chapter 1. Introduction

Let us consider a thin plate which in equilibrium occupies the set Ω1 ×
[−h/2, h/2], where h > 0 is the plate’s thickness. Following the ideas given
in [79] and [81], let

U(x1, x2, x3, t) :=
(
U1(x1, x2, x3, t), U2(x1, x2, x3, t), U3(x1, x2, x3, t)

)
be the displacement vector at time t of the particle which when the plate
is in equilibrium occupies position (x1, x2, x3). Similarly, let u(x1, x2, t) :=(
u1(x1, x2, t), u2(x1, x2, t), u3(x1, x2, t)

)
be the displacement vector at time

t of the particle which when the plate is in equilibrium occupies position
(x1, x2, 0). Both U and u are supposed smooth enough for the present dis-
cussion. The strain energy in the plate is given by

PP :=
1

2

∫ h/2

−h/2

∫
Ω1

3∑
i,j=1

εijσij dx
′ dx3, (1.10)

where εij and σij are, respectively, the components of the strain and stress
tensors and x′ := (x1, x2). The components εij depend on U and hence on
(x1, x2, x3, t). In the linear theory, the components of the stress tensor are
linear combinations of the components of the strain tensor and the thermal
strain (when the plate is subject to a temperature distribution). On the other
hand, the kinetic energy of the plate is given by

K P :=
1

2

∫ h/2

−h/2

∫
Ω1

ρ1

3∑
i=1

(∂tUi)
2 dx′ dx3, (1.11)

where ρ1 is the density (mass per unit volume) of the plate.

If the plate is subject to a temperature distribution τ(x1, x2, x3, t), mea-
sured with respect to a reference temperature distribution τ0, at which the
thermal stresses and strains in the plate are zero, and assuming that the plate
is homogeneous, elastically and thermally isotropic (see [79]), we have that
the stress-strain relations are given by

σij =
E

1 + µ

(
εij +

µ

1− 2µ
δij

3∑
k=1

εkk

)
− E

1− 2µ
ετδij, i, j = 1, 2, 3. (1.12)

Here, the constants E and µ are, respectively, the Young’s modulus and the
Poisson’s ratio (0 < µ < 1/2), and δij is the well-known Kronecker delta
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1.2. Physical aspects of thermoelastic plate-membrane model

notation. The symbol ετ denotes the thermal strain which satisfies ετ = 0
when τ = 0.

For the thin plates theory it is assumed that σ33 = 0. This implies in
(1.12) that

0 =
E

1 + µ

(
ε33 +

µ

1− 2µ

3∑
k=1

εkk

)
− E

1− 2µ
ετ

and therefore

ε33 = − µ

1− µ
(ε11 + ε22) +

1 + µ

1− µ
ετ .

Then, we have

σ11 =
E

1− µ2

[
ε11 + µε22 − (1 + µ)ετ

]
, (1.13)

σ22 =
E

1− µ2

[
µε11 + ε22 − (1 + µ)ετ

]
, (1.14)

and

σij =
E

1 + µ
εij (i 6= j, i, j = 1, 2, 3). (1.15)

In the Kirchhoff model for a thin plate it is assumed that the components of
the strain tensor are given by

εij =
1

2

(∂Ui
∂xj

+
∂Uj
∂xi

)
(i, j = 1, 2, 3).

In addition transverse shear effects are neglected. Thus, σi3 = σ3i = 0 and
εi3 = ε3i = 0 for i = 1, 2. It follows that

0 = ε13 = ε31 =
1

2

(∂U1

∂x3

+
∂U3

∂x1

)
and therefore

∂U1

∂x3

= −∂U3

∂x1

. (1.16)

Now,

U3(x1, x2, z, t) = U3(x1, x2, 0, t) +

∫ 1

0

∂

∂s
U3(x1, x2, sz, t) ds

= u3(x1, x2, t) + z

∫ 1

0

(∂3U3)(x1, x2, sz, t) ds. (1.17)

5



Chapter 1. Introduction

From (1.16) and (1.17), we have

U1(x1, x2, x3, t) = U1(x1, x2, 0, t)−
∫ x3

0

∂1U3(x1, x2, z, t) dz

= u1(x1, x2, t)− x3
∂u3

∂x1

(x1, x2, t)−
∫ x3

0

z

∫ 1

0

(∂1∂3U3)(x1, x2, sz, t) ds dz.

After linearization (with respect to x3), we obtain

U1(x1, x2, x3, t) = u1(x1, x2, t)− x3
∂u3

∂x1

(x1, x2, t). (1.18)

In the same way it holds

U2(x1, x2, x3, t) = u2(x1, x2, t)− x3
∂u3

∂x2

(x1, x2, t) (1.19)

and
U3(x1, x2, x3, t) = u3(x1, x2, t). (1.20)

Now we can write the components εij, i, j = 1, 2, in terms of the ui, i = 1, 2, 3.
In fact:

ε12 = ε21 =
1

2

(∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2

)
, (1.21)

ε11 =
∂u1

∂x1

− x3
∂2u3

∂x2
1

, (1.22)

and

ε22 =
∂u2

∂x2

− x3
∂2u3

∂x2
2

. (1.23)

From (1.13)-(1.15) and (1.21)-(1.23), it follows that

σ11 =
E

1− µ2

[∂u1

∂x1

− x3
∂2u3

∂x2
1

+ µ
∂u2

∂x2

− µx3
∂2u3

∂x2
2

− (1 + µ)ετ

]
, (1.24)

σ22 =
E

1− µ2

[
µ
∂u1

∂x1

− µx3
∂2u3

∂x2
1

+
∂u2

∂x2

− x3
∂2u3

∂x2
2

− (1 + µ)ετ

]
, (1.25)

and

σ12 = σ21 =
E

2(1 + µ)

(∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2

)
. (1.26)
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1.2. Physical aspects of thermoelastic plate-membrane model

We recall (1.10) for the strain energy in the plate. For the case of a thin plate
in the Kirchhoff model, it reduces to

PP =
1

2

∫ h/2

−h/2

∫
Ω1

(
ε11σ11 + 2ε12σ12 + ε22σ22

)
dx′ dx3.

Using (1.21)-(1.26), after integration with respect to x3, it can be found that
PP splits into two terms PP

b and PP
s , which uncouple the components u1,

u2, representing in-plane stretching, and the component u3 related to bending
(see [79]). The term PP

s depends on u1, u2 and ετ , and it is the part of the
strain energy due to the in-plane stretching. On the other side, PP

b depend
only on u3 and ετ , and it is the part of the strain energy due to bending. In
this work we consider only the equations of motion for u3. Exactly PP

b is
given by

PP
b :=

Eh3

24(1− µ2)

∫
Ω1

[(∂2u3

∂x2
1

)2

+
(∂2u3

∂x2
2

)2

+ 2(1− µ)
( ∂2u3

∂x1∂x2

)2

+ 2µ
∂2u3

∂x2
1

∂2u3

∂x2
2

+
12(1 + µ)

h3
(∆u3)

∫ h/2

−h/2
x3ετ dx3

]
dx′,

where ∆ denotes the Laplacian with respect to the two variables x1 and
x2. Using the expression for the modulus of flexural rigidity of the plate
D := Eh3/12(1 − µ2), setting u := u3 and changing the notations for the
derivatives to ∂i := ∂/∂xi, we can write

PP
b =

D

2

∫
Ω1

[(
∂2

1u
)2

+
(
∂2

2u
)2

+ 2(1− µ)
(
∂1∂2u

)2

+ 2µ(∂2
1u)(∂2

2u) + (1 + µ)θ∆u
]
dx′,

where

θ := θ(x1, x2, t) :=
12

h3

∫ h/2

−h/2
x3ετ dx3.

Now, substitution of (1.18), (1.19) and (1.20) in (1.11) and integration with
respect to x3 gives

K P =
h

2

∫
Ω1

ρ1

[(
∂tu1

)2
+
(
∂tu2

)2
+
(
∂tu3

)2
+
h2

12

∣∣∇(∂tu3)
∣∣2] dx′,

7



Chapter 1. Introduction

where ∇ is the gradient with respect to the variables x1 and x2. We see
that the components u1, u2 and u3 are uncoupled in this expression for K P.
Again, we are only interested in the part of the kinetic energy due to bending,
which is denoted by K P

b and it is given by

K P
b :=

h

2

∫
Ω1

ρ1

[(
∂tu
)2

+
h2

12

∣∣∇(∂tu)
∣∣2] dx′,

where u := u3 again.

Suppose now that Ω2 is occupied by an elastic membrane for which its
vertical deflection is denoted by v = v(x1, x2). The strain energy of the
membrane is given by

PM :=
C

2

∫
Ω2

|∇v|2 dx′,

where C depends on the material and the initial tension in the membrane.
On the other side, the kinetic energy for the membrane is given by

K M :=
1

2

∫
Ω2

ρ2

(
∂tv
)2
dx′,

where ρ2 is the surface density of the membrane.

We assume that the structure is clamped on Γ, that is u = ∂νu = 0 on
Γ × [0, T ) for 0 < T ≤ ∞, where ν is the outward unit normal vector to
the boundary of Ω1. Furthermore, we assume that u = v on I × [0, T ). The
meaning of this condition is that the structure does not break. We recall that
small deflections are being considered.

In order to obtain an initial boundary value problem which models the
coupled structure plate-membrane we have to set to zero the first variation
in the time interval [0, T ) of the Lagrangian

Lb(u, v) :=

∫ T

0

[
K P
b (t) + K M(t) + Wb(t)−PP

b (t)−PM(t)
]
dt (1.27)

with respect to (u, v) in the space of kinematically admissible displacements,
that is

δLb(u, v) :=
∂

∂λ
Lb(u+ λũ, v + λṽ)

∣∣∣
λ=0

= 0, (1.28)

8



1.3. Literature

with ũ
∣∣
Γ

= ∂ν ũ
∣∣
Γ

= 0 and ũ
∣∣
I

= ṽ
∣∣
I
. Here ũ and ṽ are chosen, such that

ũ(0) = ũ′(0) = ũ(T ) = ũ′(T ) = 0 in Ω1 and ṽ(0) = ṽ′(0) = ṽ(T ) = ṽ′(T ) = 0
in Ω2, where for a function ϕ : Ωi × [0,∞) → R we write ϕ(t)(x1, x2) :=
ϕ(x1, x2, t) and ′ denotes the derivative with respect to t. This approach
is equivalent to the use of the Virtual Work Principle from the Classical
Mechanic.

In (1.27) Wb is the part of the work done on the structure plate-membrane
that contributes to bending due to external forces acting on it.

After renaming constants, equation (1.28) leads to the general equations
(1.1)-(1.3) of the model, as well as the boundary and transmission conditions
(1.4)-(1.7). Changing the space of kinematically admissible displacements,
several models with different boundary and transmission conditions can be
obtained. Finally, the damping which can be considered in each model can
be incorporated in Wb.

1.3 Literature

Transmission problems appear very frequently in various fields of physics and
technics, e.g., there are applications in the electrodynamics of solid media
when working with electromagnetic processes in ferromagnetic media with
different dielectric constants. This type of problem also occurs in the solid
mechanics of composite materials. The previous exposition can be found in
[26]. Some authors also associate these problems with structures consisting
of a finite number of interconnected flexible elements such as waves, beams,
plates, casings and combinations thereof, which are representative of frames,
robot arms, solar panels, antennas and deformable mirrors (see [80]). There
are also transmission problems associated with acoustics (see [7, 75]), the
automotive industry (see [13, 114]), polymers (see [24, 53, 54, 76, 82]), fluid
behaviour in certain structures (see [34, 36, 115]), vibration suppression (see
[42]), electrostatics and static magnets (see [88]), and material composition
(see [101]).

The transmission problems were initiated by Meuro Picone in 1954 (see
[61]), which are framed within the theory of partial differential equations
and control theory, (see [35, 87]). Many researchers are interested in the
asymptotic behavior of the solutions of the transmission problem in which

9



Chapter 1. Introduction

they are investigating. In the literature we find this kind of problems with
different types of decay, such as: exponential decay (see [14, 15, 22, 30, 31,
37, 42, 52, 63, 64, 65, 90, 102, 122]), polynomial decay (see [4, 14, 15, 19,
46, 52, 63, 64, 83, 90, 105, 122, 125, 127]) and logarithmic decay (see [46,
50, 68, 71, 90]). Of the works mentioned, only in [14, 15, 52, 64, 122], in
addition to analyzing the exponential stability and the polynomial stability
of their respective systems, the authors studied the absence of exponential
stability. All this asymptotic analysis is done in this document for the system
(1.1)-(1.9). In [68] and [71], the authors study a transmission problem where
the membrane surrounds the plate that has localized Kelvin–Voigt damping.
Instead, we consider the plate around the membrane and it is the latter that
has the Kelvin–Voigt damping, but uniform.

The Kelvin–Voigt damping is a type of linear damping that suppresses the
vibrations of elastic structures and is caused by the internal friction of the
material of the vibrating structures and is thus called internal damping . In
this case the material is viscoelastic because it has properties of viscosity and
elasticity. The term “viscous” implies that it slowly deforms when exposed
to an external force. The term “elastic” implies that once a deforming force
has been removed, the material will return to its original configuration. For
further explanations, see [69, p. 12]. Mathematically, the Kelvin–Voigt damp-
ing is an operator of the same order as the principal operator of the equation
that describes the vibrating structure (see [71, p. 2242]). The model for a

membrane occupying a bounded region Ω̃ of R2 is given by

wtt −∆w + β̃Lw = 0 in Ω̃× R+,

where β̃ ≥ 0 and Lw is a dissipative mechanism. In [110, Subsection 2.4.4], the
authors determine the equation of motion of the vertically moving particles
of the vibrating membrane when β̃ = 0. If the membrane has the frictional
damping (β̃ > 0 and Lw = wt), then the semigroup decays exponentially (see
[111, p. 16]). In [73], the author proved that if the membrane has a global

Kelvin–Voigt damping (i.e., β̃ > 0 and Lw = −∆wt) then the corresponding
semigroup is not only exponentially stable, but also is analytic. For this
reason, Kelvin–Voigt damping is said to be stronger than frictional damping.

Another type of damping that is considered on some vibrating structures
is thermoelastic damping, see [69, p. 13]. This damping originates from the
coupling of the elasticity of the structure with a heat source. The thermal
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effect contributes to the deformation of the structure since its material ex-
pands when the temperature increases and contracts when the temperature
decreases. Our attention is directed towards thermoelastic plates.

The first models for thin plates were developed by the German physicist
Gustav Robert Kirchhoff (1824 - 1887). In the first chapter of [81], one
finds linear and non-linear models for thin plates subject to different physical
situations such as temperature, elasticity and viscosity, depending on different
assumptions and conditions according to each model. A detailed study of
deflections and plate deformations is in [119], here the authors work with
thin plates with small deflections, thin plates with large deflections and thick
plates. For plate deformations, see also [96]. On the theory of vibrating
plates, we recommend to the reader [99].

The literature on thermoplastic plates is very extensive. The following are
some of the works on this subject. The classic linear model for thermoelastic
plates is given by

ρutt − µ̃∆utt + γ̃∆2u+ α̃∆θ = 0 in Ω̃× R+,

cθt − κ̃∆θ − α̃∆ut = 0 in Ω̃× R+,

where ρ, µ̃, γ̃, α̃, c and κ̃ are all positive constants and Ω̃ ⊂ R2 is the region
occupied by the middle surface of the plate. For the physical model we refer
to [79]. In [74], Kim studies the Euler–Bernoulli plate equation (µ̃ = 0) with
thermal effect and homogeneous Dirichlet boundary conditions u = ∂νu =
θ = 0 on ∂Ω̃. He proved exponential decay of the energy of his system.
In [93], Liu and Renardy worked on the Kim’s problem and obtain a much
stronger result, showing that the semigroup associated is of analytic type.
In [43], the authors do not account for rotational forces of the thermoelastic
plate (µ̃ = 0) and consider homogeneous Dirichlet boundary conditions. They

generalize the result of Liu and Renardy, introducing the space W 2
p,D(Ω̃) :=

{u ∈ W 2,p(Ω̃) : u = ∂νu = 0 on ∂Ω̃} with Ω̃ being a bounded domain of

Rn (n ≥ 2) and showing that if the initial data (u, ut, θ)|t=0 ∈ W 2
p,D(Ω̃) ×

Lp(Ω̃) × Lp(Ω̃) then the semigroup is analytic for any p ∈ (1,∞) and also
exponentially stable. In [86], the authors set µ̃ = 0 and, focusing on the case
of free boundary conditions, proved that the associated semigroup is analytic.
The addition of the term ∆utt not only makes the problem physically more
meaningful, it also makes it more mathematically interesting, because we need

11
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more regularity to establish the decay of the solutions. For the case µ̃ > 0
and Dirichlet boundary conditions it was proved in [103] that the solutions
decay exponentially.

Going back to analytical results, it is known that the literature pertaining
to analytic semigroups is very extensive and has a wide variety of topics. For
example, one finds works on: materials with porosity (see [20]), thermoelastic
plate with variable coefficients (see [33]), viscoelastic plate equation of Moore–
Gibson–Thompson type (see [39]), wave equation with Kelvin–Voigt damping
and hyperbolic dynamic boundary conditions (see [60]), system of couple
plate equations with different dampings (see [66]), laminated beam (see [67]),
thermoelastic plate equations with different boundary conditions (see [84]),
thermoelastic plate with hinged mechanical B.C. and Neumann thermal B.C.
(see [85]), homogeneous and isotropic prestressed type III thermoelastic thin
plate (see [91]), qualitative properties for the semigroup generated by certain
matrix operator (see [94]) and thermoelastic plate with dynamical boundary
conditions (see [128]). Other work on analyticity can be seen in [106]. Here
the authors study a system consisting of a thermoelastic Euler–Bernoulli plate
coupled with a membrane that has a global Kelvin–Voigt type damping. They
consider appropriate initial conditions and certain boundary conditions, and
show that the semigroup associated with the problem is analytic. Regarding
transmission problems, it seems that the only work so far with analyticity has
been [51]. There, the system studied by the authors is constituted by a pair of
thermoelastic plates, none of which have the inertial term and their structure
is like the one in Fig. 1.2. In the present manuscript is the analyticity proof
of a transmission problem of a thermoelastic thin plate with a membrane
that has global viscoelastic damping of Kelvin–Voigt type, this is one of the
main results of this work. According to our search, it seems that there is no
such result in the entire literature and for this reason it was submitted for a
publication according to reference [16].

Many researchers studied transmission problems involving systems of the
type: plate-plate, wave-wave and plate-wave. Below we recall some works
concerning the three structures mentioned.

In [42], the authors investigate a coupled system of linear plate equa-
tions, one non-damped plate and the other structurally-damped plate in two
sufficiently smooth and bounded subdomains, and consider a geometric con-
figuration as Fig. 1.1. They showed, independently of the size of the damped

12
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part, that the damping is strong enough to produce exponential stability. In
the literature, it is common to find the following configuration: Let Ω′1, Ω′2
and Ω′ be bounded domains in R2 such that Γ0 := Ω′1 ∩ Ω′2, Γ1 := ∂Ω′1 r Γ0

and Γ2 := ∂Ω′2 rΓ0 are smooth curves. Set Ω′ = Ω′1∪Ω′2∪Γ0 and Γ1∩Γ2 = ∅
(see Fig. 1.2). In [102], the authors consider a problem of transmission, with

Ω′1
Ω′2

Γ0

Γ1

Γ2

ν

ν

ν

Fig. 1.2. The set Ω′ = Ω′1 ∪ Γ0 ∪ Ω′2.

the configuration of Fig. 1.2, of a plate Ω′ constituted by two parts Ω′1 and
Ω′2, being Ω′1 sensitive to temperature changes. They work on the following
model

ρ̂1utt − γ1∆utt + β̂1∆2u+ µ̂∆θ = 0 in Ω′1 × R+,

ρ̂0θt − β0∆θ + γ0θ − µ̂∆ut = 0 in Ω′1 × R+,

ρ̂2vtt − γ2∆vtt + β̂2∆2v = 0 in Ω′2 × R+.

Under certain initial conditions and with several boundary and transmission
conditions different from those of problem (1.1)-(1.9), they show that there
is a solution and that the local thermal effect is strong enough to produce
exponential decay. Afterwards, the author of [112] studies a transmission
problem (Fig. 1.2) for a plate consisting of a thermoelastic part Ω′1 and
an isothermal part Ω′2. He demonstrates the existence of a compact global
attractor when the non-linearity is of the Berger or scalar type. The model
worked was

ρ̂1utt + β̂1∆2u+ µ̂∆θ + F1(u, v) = 0 in Ω′1 × R+,

ρ̂0θt − β0∆θ − µ̂∆ut = 0 in Ω′1 × R+,

ρ̂2vtt + β̂2∆2v + F2(u, v) = 0 in Ω′2 × R+,

satisfying boundary conditions and initial conditions, where the functions
F1 : H2(Ω′1) × H2(Ω′2) → L2(Ω′1) and F2 : H2(Ω′1) × H2(Ω′2) → L2(Ω′2)

13
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are both non-linear. The author studies three problems where F1 and F2

are taken differently. Another transmission problem with the configuration
of Fig. 1.2 is treated in [121]. The authors consider a system constituted
by a thermoelastic plate with localized thermal dissipation of memory type
coupled with an isothermal plate, both plates have inertial term. They prove
that the solutions have exponential decay.

Much study has been made of the wave equation with different damp-
ings. When a vibrating source disturbs the medium, a wave is formed. Sev-
eral dampings can be added to a system of wave equations to control the
vibrations. In [80], Chapter VI, the authors consider the movement of in-
terconnected elastic membranes and determine the equations of this physical
phenomenon. In [31], the authors consider the configuration of Fig. 1.1 and
study the propagation of waves on a domain consisting of two different mate-
rials: one component is elastic where a frictional damping is acting while the
other one possesses a viscoelastic component with a memory with past history.
They establish exponential stability for the solutions of the problem. In [65],
the authors analyze a transmission problem of the wave equation (Fig. 1.2)
with linear dynamical feedback control. They prove that the energy of sys-
tem exponentially decays. In [122], the authors investigate a locally coupled
wave equations with only one internal viscoelastic damping of Kelvin–Voigt
type. The damping and the coupling coefficients are non smooth. They show
that the energy of smooth solutions of the system decays polynomially. In
[18], the authors consider a wave-wave system, in one space dimension, with
frictional damping. They study the wave propagation in a medium with a
component with attrition and another simply elastic, and show that for this
type of material, the dissipation produced by the frictional part is strong
enough to produce exponential decay of the solution, no matter how small is
its size.

There are several works about transmission problems that involve these
plate-wave equations, here we mention some. In [70], Hernández works on a
semi-linear problem of initial and boundary values, this models a thin elastic
plate coupled with an elastic membrane, considering homogeneous bound-
ary conditions. Using semigroup theory, the author obtained existence and
uniqueness of weak solutions. In [68], Hassine studies a transmission problem
of a membrane coupled with an Euller–Bernoulli plate which has a localized
Kelvin–Voigt damping, the membrane surrounds the plate (see Fig. 1.1). He
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proves that sufficiently smooth solutions decay logarithmically. Afterwards,
in [71], the authors work in the Hassine system but adding the rotational
term in the plate. They show that the energy of the transmission system is
stable with logarithmic decay. In [63], the authors investigate a transmission
wave-plate model with different localized frictional damping, in their struc-
ture the plate is next to the wave. They show respectively that the energy
of the system decays polynomially under some geometric condition when the
frictional damping only acts on the part of the plate, and the energy of the
system is exponentially stable when the frictional damping acts only on the
other part of the wave. These same authors, in [64], study another plate-wave
system but now its structure is as in Fig. 1.2 and obtained the same results
as in [63]. We further mention two works about plate-membrane transmission
problems with transmission conditions different from each other but with ex-
actly the same configuration of Fig. 1.1, see [14] and [15]. The plate in [15] is
isothermal and without rotational inertia, while in [14] the plate may or may
not have temperature and rotational term. Both works have stability results,
but in neither of them is analyticity treated, perhaps because the frictional
damping that they place on the membrane is not strong enough to achieve
this type of result in the semigroup associated with their problem.

In this document there is an extensive analysis of a transmission problem
constituted by a thermoelastic plate-membrane structure with the configura-
tion of Fig. 1.1. In the presence and/or absence of inertial term, structural
damping for the plate and Kelvin–Voigt damping on the membrane, we show
results of existence and uniqueness of solutions, regularity and asymptotic
behavior. These results complement what is already in the literature. Addi-
tionally, we establish that the semigroup associated with problem (1.1)-(1.9)
is analytic when γ = m1 = 0 and m2 > 0. For more details see the next
section.

1.4 Document structure

The document contains five chapters. In the first of them, the transmission
problem is described, some literature on the subject is presented and are
mentioned the results obtained in the thesis.

In Chapter 2, the reader will find the fundamental function spaces for the
development of this work. We consider Sobolev spaces with some of their
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properties, among which we mention those regarding continuous immersion,
integration formulas, and important inequalities that satisfy some of their
elements. There is a brief mention of some semigroup results regarding gen-
eration, stability and analyticity. Subsequently, Stone’s theorem for group
generation is given. The theory of interpolation-extrapolation scales is pre-
sented concisely but providing references where the details of the mentioned
results are carried out. The chapter continues with a section devoted to
powers of positive self-adjoint operators and follows with some theory about
regular elliptic problems to establish a characterization that satisfies the do-
mains of powers of operators that are realizations of some elliptic operator.
We end with a result taken from [15] containing the estimate (2.30), that
comes from a boundary value problem, which is used in the last two chapters
to obtain polynomial stability and analyticity.

Chapter 3 is dedicated to an entire analysis that leads to the existence,
uniqueness and regularity of the solutions of the transmission problem. This
is achieved by introducing operators defined in appropriate spaces that sat-
isfy properties that allow establishing a Cauchy problem to which semigroup
theory can be applied to prove existence and uniqueness of solutions. These
results are in Section 3.1 and correspond to the well-posedness of the problem
(1.1)-(1.9) when γ > 0 and m1,m2 ≥ 0, and in the case γ = m1 = 0 with
m2 ≥ 0 (see Theorem 3.15 and Remark 3.16). In the second section of the
chapter regularity results appear that will be very useful to obtain asymptotic
behavior of the solutions of some transmission problems. One of them can be
seen in Remark 3.17, which contains the estimate (3.44) that we will use in
the next two chapters in the proofs of strong stability, of polynomial stability
and in the one of analyticity. The main result of Section 3.2 is Theorem 3.18,
for its demonstration we follow the ideas of the proof of Theorem 1.2 in [10],
there we get a shared regularity that v and vt win when m2 > 0 and we
establish that for smooth data (1.6)-(1.7) are satisfied in the strong sense of
the trace, which will depend on the consideration or not of the parameters γ,
m1 and m2. Remark 3.19 indicates the regularity that the components of the
solution have when the initial data are taken with less smoothness compared
to those of Theorem 3.18.

In Chapter 4, the stability of several plate-membrane type transmission
problems is analyzed, depending on the types of damping that the structure
possesses. In Section 4.1, using a general criteria of Arendt and Batty (see
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Theorem 2.39) we show that our problem possesses strong stability when
the membrane has the Kelvin–Voigt damping (m2 > 0) and in the struc-
ture it is considered the Kirchhoff plate with or without structural damping
(m1 ≥ 0), or the Euler–Bernoulli plate without structural damping (m1 = 0),
see Proposition 4.2 and Proposition 4.5. The Remark 4.4 and Remark 4.7
highlight the role of the thermal effect on the plate in achieving this sta-
bility result. In Section 4.2, employing a well-known characterization (see
Theorem 2.41) we establish by contradiction the exponential stability of the
solutions of the plate-membrane system when the inertial term and the me-
chanical dampings are considered, that is, the constants γ, m1 and m2 are
all positive, see Theorem 4.8. In Section 4.3, we prove that the system con-
formed by a undamped membrane coupled to a thermoelastic Kirchhoff plate
with or without structural damping lacks exponential stability (see Theorem
4.15). To obtain the absence of this asymptotic behavior, we apply Theorem
4.11 and for this we make use of Stone’s Theorem on unitary groups, the
interpolation-extrapolation scales theory and compactness arguments. But
in Section 4.4, for γ,m1 > 0 and m2 = 0 we prove polynomial stability when
we consider the geometric condition (4.99). We base the proof on a multiplier
method and then we apply a generalization due to Muñoz Rivera and Racke
(see Theorem 2.44) of the well-known Borichev and Tomilov characterization
on polynomial decay, see Theorem 2.4 in [25].

In Chapter 5, we proof by contradiction the existence of an analytic semi-
group associated with a transmission problem of a plate without rotational
term that has a thermal effect coupled to a membrane that has a global vis-
coelastic Kelvin–Voigt damping. In other words, the solutions of the system
(1.1)-(1.9) are analytic functions when γ = m1 = 0 and m2 > 0. This can be
proved thanks to the Liu and Zheng analyticity criterion, see Theorem 2.46.
The main result of this chapter is Theorem 5.1 and as a consequence we have
a regularizing effect of the solutions and a couple of corollaries (see Corol-
lary 5.3 and Corollary 5.4). We end with Remark 5.5, which indicates the
non-analyticity of a semigroup associated with our plate-membrane system.

1.5 Generalities

Throughout the thesis, C represents a positive constant which is not neces-
sarily the same every time it appears, it can change from one line to another
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line. If X and Y are topological spaces, then the collection of all bounded
linear operators from X to Y be denoted by L(X, Y ). We shall write L(X)
instead of L(X,X). In this work the term domain means open and connected
subset of Rn, which is different from the concept of the domain of a function.

Let X and Y be two locally convex spaces such that X ⊂ Y so that the
identity operator id : X → Y is continuous. Let A : D(A) ⊂ Y → Y be a
linear operator. The X-realization of A, denoted by AX , is the linear operator

AX : D(AX) ⊂ X → X given by AXx := Ax,

where D(AX) := {x ∈ X ∩ D(A) : Ax ∈ X}. It is easy to see that if A is
closed then AX is closed. This definition is taken from [5, p. 7].

Let X be a Banach space and A : D(A) ⊂ X → X be a linear operator.
The smallest closed extension of A, if it exists, is called the closure of A and is
denoted by A. Operators having a closure are called closable. This definition
is taken from [48, Definition A.7].
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Preliminaries

In this second chapter, the reader will find notations, definitions and results
that will be used later.

2.1 Basic spaces

This section has the purpose of presenting the Sobolev spaces in a structured
way. In addition, we will establish important properties of these spaces. It is
known that these elements are used in the formulation of problems of partial
differential equations. Some concepts and properties given here can be found
in [1, 55, 72, 123, 131].

Let N0 := N∪{0} and n ∈ N. A multi-index α is an n-tuple of non-negative
integers, this is, α = (α1, α2, . . . , αn) ∈ Nn

0 . We denote |α| :=
∑n

j=1 αj. As
usual ∂j represents the partial derivative with respect to the j-th variable xj.
We set

∂α :=
n∏
j=1

∂
αj
j :=

∂|α|

∂xα1
1 · · · ∂xαnn

.

If α = 0Nn0 , then ∂α is the identity operator. Let k ∈ N0 and Ω ⊂ Rn be an
open set. Ck(Ω) denotes the vector space of all functions f : Ω → C such
that ∂αf : Ω → C are continuous for every α ∈ Nn

0 with |α| ≤ k. Note that
C(Ω) := C0(Ω) is constituted by continuous complex-valued functions on Ω.
We define Ck(Ω) as the space of all functions f ∈ Ck(Ω) such that ∂αf extends
continuously to the closure Ω for |α| ≤ k. We fix C∞(Ω) :=

⋂∞
k=0 C

k(Ω). The
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support of f : Ω→ C is given by

supp f := {x ∈ Ω : f(x) 6= 0}.

The space formed by the functions of C∞(Ω) that have compact support in Ω
is denoted by C∞c (Ω) and its elements are called test functions . We say that
a sequence (ϕj)j∈N in C∞c (Ω) converges to zero if the following two conditions
are satisfied:

i) There is a compact subset K of Ω such that suppϕj ⊂ K for all j ∈ N.
ii) ∂αϕj → 0 uniformly in K for every α ∈ Nn

0 , this is,

max
x∈K
|∂αϕj(x)| → 0 as j →∞ for all α ∈ Nn

0 .

The space C∞c (Ω) equipped with this notion of convergence is symbolized by
D(Ω). The topological dual D ′(Ω) := L(D(Ω),C) of D(Ω) is called the space
of distributions on Ω. The complex value of T ∈ D ′(Ω) on ϕ ∈ C∞c (Ω) is
denoted by 〈T, ϕ〉. Note that the continuity of a linear map T of D(Ω) in
C is equivalent to: For every sequence (ϕj)j∈N convergent to zero in D(Ω)
we have that 〈T, ϕj〉 → 0 in C. For α ∈ Nn

0 and T ∈ D ′(Ω), we define the
distributional derivative ∂αT by

〈∂αT, ϕ〉 := (−1)|α|〈T, ∂αϕ〉 for any ϕ ∈ D(Ω).

Suppose that 1 ≤ p <∞. The space of all equivalence classes of Lebesgue
measurable functions u : Ω → C such that |u|p is a integrable function on Ω
will be denoted by Lp(Ω). This space endowed with the norm

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|pdx
)1/p

is a Banach space. The space L2(Ω) considered with the inner product
(u, v)L2(Ω) :=

∫
Ω
u(x)v(x)dx is a Hilbert space.

The space L1
loc(Ω) consists of all functions f : Ω → C such that the

integral
∫
K
|f |dx is finite for each compact subset K of Ω. If f ∈ L1

loc(Ω), we
say that f is locally integrable on Ω. Each u ∈ L1

loc(Ω) defines a distribution
Tu ∈ D ′(Ω) given by

〈Tu, ϕ〉 :=

∫
Ω

u(x)ϕ(x)dx, ϕ ∈ D(Ω).
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We shall write u instead of Tu. Due to Lp(Ω) ⊂ L1
loc(Ω), we can consider any

function of Lp(Ω) as a distribution.

The Sobolev space of non-negative integer order W k,p(Ω) is composed of
all functions u ∈ Lp(Ω) whose distributional derivatives ∂αu ∈ Lp(Ω) for all
|α| ≤ k. We introduce the following norm on W k,p(Ω):

‖u‖Wk,p(Ω) :=

∑
|α|≤k

‖∂αu‖pLp(Ω)

1/p

.

In particular, Hk(Ω) := W k,2(Ω) is a Hilbert space with the scalar product
(u, v)Hk(Ω) :=

∑
|α|≤k (∂αu, ∂αv)L2(Ω). Note that H0(Ω) = L2(Ω). Let k1, k2 ∈

N with k1 > k2, then we have the strict inclusions

Hk1(Ω) ⊂ Hk2(Ω) ⊂ L2(Ω),

see Remark 1.2 in [89, p. 3].

Next we define some non-negative real order Sobolev spaces. Let s ≥ 0.
We shall denote by [s] the integer part of s (i.e., [s] := max{z ∈ Z : z ≤ s})
and by σ its fractional part. So, s = [s] + σ with 0 ≤ σ < 1. The Sobolev
space Hs(Ω) is defined as W s,2(Ω) provided that s ∈ N0 and if s /∈ N0 then
Hs(Ω) contains all functions u ∈ H [s](Ω) that have finite norm ‖u‖Hs(Ω),
which comes from the following inner product:

(u, v)Hs(Ω) := (u, v)H[s](Ω) + (u, v)Hs,σ(Ω) ,

where

(u, v)Hs,σ(Ω) :=
∑
|α|=[s]

∫
Ω

∫
Ω

(∂αu(x)− ∂αu(y))(∂αv(x)− ∂αv(y))

|x− y|n+2σ
dxdy.

The pair (Hs(Ω), (·, ·)Hs(Ω)) is a Hilbert space. Other definitions of these
spaces are in [2, Subsection 5.1], [89, p. 40] and [118, p. 49]. In the liter-
ature we also find the W s,p(Ω) spaces, see for example [45, Section 6]. We
put W s,p

0 (Ω) to denote the closure of C∞c (Ω) in W s,p(Ω). We set Hk
0 (Ω) :=

W k,2
0 (Ω). It can be proved that (Hk

0 (Ω), (·, ·)Hk(Ω)) is a Hilbert space. The
dual of Hk

0 (Ω) is denoted by H−k(Ω).
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We continue this section with a space which is constituted by abstract
functions or vector-valued functions (see, e.g., [35, Subsection 1.1.4], [44,
Chapter 3] or [78, Chapter 1]). Let X be a Banach space, 1 ≤ p < ∞ and
(a, b) ⊂ R. The symbol Lp((a, b), X) denotes the space of all equivalence
classes of strongly Bochner-measurable functions u : (a, b) → X such that
t 7→ ‖u(t)‖X belongs to Lp(a, b), which is a Banach space with the norm

‖u‖Lp((a,b),X) :=

(∫ b

a

‖u(t)‖pX dt
)1/p

.

When p = 2 and X is a Hilbert space, then L2((a, b), X) is a Hilbert space
with the scalar product

(u, v)L2((a,b),X) :=

∫ b

a

(u(t), v(t))X dt.

D ′((a, b), X) := L(D(a, b), X) denotes the space of all vector-valued distri-
butions T : D(a, b) → X. The vector distributional derivative of order k of
T ∈ D ′((a, b), X), denoted by T (k), is defined as

〈T (k), ϕ〉 := (−1)k〈T, ϕ(k)〉 ∀ϕ ∈ D(a, b),

where ϕ(k) := dkϕ/dtk. The previous equality holds in X. Now, if u ∈
Lp((a, b), X) then ũ : D(a, b)→ X given by

〈ũ, ϕ〉 :=

∫ b

a

u(t)ϕ(t)dt

is a continuous linear mapping, this is, ũ ∈ D ′((a, b), X). The above integral
should be understood as a Bochner integral (for details see [1, p. 206] or [47,
Appendix C]). The mapping Lp((a, b), X) 3 u 7→ ũ ∈ D ′((a, b), X) is injective
and thus identifying ũ with u we obtain that

Lp((a, b), X) ⊂ D ′((a, b), X),

see Section 1.3 in [89, p. 6].

We conclude this section with the Aubin–Lions–Simon lemma. Interesting
historical comments on this result can be found in [116].
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Definition 2.1. Let X and Y be two normed spaces such that X ⊂ Y . If
id : X → Y is continuous, we say X is continuously embedded in Y and write

X ↪→ Y . We use the symbol X
c
↪→ Y when id : X → Y is a compact operator.

Theorem 2.2 (Aubin–Lions–Simon lemma). Let B0, B,B1 be three Banach

spaces such that B0
c
↪→ B and B ↪→ B1. Let 1 ≤ p, q <∞ and t > 0. Let us

consider the space

Wp,q((0, t);B0, B1) := {u ∈ Lp((0, t), B0) : ut ∈ Lq((0, t), B1)}

with the norm

‖u‖Wp,q((0,t);B0,B1) := ‖u‖Lp((0,t),B0) + ‖ut‖Lq((0,t),B1) ,

where ut := du/dt. Then,

Wp,q((0, t);B0, B1)
c
↪→ Lp((0, t), B).

Proof. See Theorem II.5.16 in [27].

2.2 Regular boundaries

The boundary of an open set Ω ⊂ Rn is denoted by ∂Ω := Ω ∩ (Rn r Ω).
Here we will find properties, which depend on the regularity of ∂Ω, that
satisfy the Sobolev spaces defined over Ω. One of these results is known as
Rellich–Kondrachov theorem. For a vector-valued version, see [6, Theorem
5.1]. Before presenting the theorem we will give Definition 1.2.1.1 of [62].
There a couple of types of functions are mentioned, among others, whose
definitions we present below.

Let O be an open set of Rn−1. We recall that a function ϕ : O → R is said
to be Lipschitz continuous function or simply Lipschitz function if it satisfies

|ϕ(x′)− ϕ(y′)| ≤ C|x′ − y′| for all x′, y′ ∈ O,

where the constant C > 0 does not depend on x′ and y′. We say that ϕ
belongs to the class Ck,1 if it is k times continuously differentiable and its
derivatives of order k are Lipschitz functions.
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Definition 2.3. Let Ω be an open subset of Rn. We say that ∂Ω is Lipschitz
(resp. of class Ck,1) if for every x ∈ ∂Ω there exists a neighbourhood V of x
in Rn and new orthogonal coordinates {y1, . . . , yn} such that V is a hypercube
in the new coordinates given by

V = {(y1, . . . , yn) : −aj < yj < aj, 1 ≤ j ≤ n},

and moreover there exists a Lipschitz (resp. of class Ck,1) function ϕ, defined
on the set

V ′ := {y′ = (y1, . . . , yn−1) : −aj < yj < aj, 1 ≤ j ≤ n− 1}

and such that

|ϕ(y′)| ≤ an/2 for every y′ ∈ V ′,
Ω ∩ V = {y = (y′, yn) ∈ V : yn < ϕ(y′)},
∂Ω ∩ V = {y = (y′, yn) ∈ V : yn = ϕ(y′)}.

Remark 2.4. The above definition means that, in a neighbourhood of x, Ω
is below the graph of ϕ and that the boundary ∂Ω coincides with the graph
of ϕ.

Theorem 2.5 (cf. [108, Theorem 1.15]). Let Ω be a bounded open subset of
Rn with a Lipschitz boundary. If s > t ≥ 0 and s− n/p > t− n/q, then

W s,p(Ω)
c
↪→ W t,q(Ω).

For 1 < p < ∞ and s ∈ R, the boundary spaces W s,p(∂Ω) are defined
in different ways which are endowed with a norm that makes them Banach
spaces; see Remark 4 in [40, p. 146], [62, Definition 1.3.3.2] and [107, p.
90]. We fix Hs(∂Ω) := W s,2(∂Ω), these spaces are rigorously introduced in
[56, Section 9.2], [72, Section 4.2], [89, p. 34] and [98, Section 2.7]. We put
Lp(∂Ω) := W 0,p(∂Ω). Due to (7.17) in [89, p. 35], we can affirm that Hs(∂Ω)
is dense in L2(∂Ω) for s ≥ 0. When s > 0, the dual space of the antilinear
continuous functionals on Hs(∂Ω) is denoted by H−s(∂Ω). For the boundary
spaces Hs(∂Ω) there is a result of compact embedding and consequently also
continuous.

Theorem 2.6 (cf. [72, Theorem 4.2.2]). Let Ω be a bounded open set of Rn

with a Ck,1 boundary and let t, s ∈ R with |t|, |s| ≤ k + 1/2. Then,

Hs(∂Ω)
c
↪→ H t(∂Ω) for t < s.
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There is a relation among the boundary spaces and the Sobolev spaces
given by the trace theorem, which is stated below.

Theorem 2.7 (cf. [62, Theorem 1.5.1.2]). Let Ω ⊂ Rn be a bounded open
set with a Ck,1 boundary. Let 1 < p < ∞ and s ∈ R such that s − 1/p /∈ Z,
s ≤ k + 1 and 0 ≤ [s− 1/p] =: l. The mapping

Ck,1(Ω) 3 u 7→
(
u
∣∣
∂Ω
,
∂u

∂ν

∣∣∣
∂Ω
, . . . ,

∂lu

∂νl

∣∣∣
∂Ω

)
has a unique extension to a surjective continuous linear operator

γ : W s,p(Ω)→
l∏

j=0

W s−j−1/2,p(∂Ω),

where ∂ju
∂νj

is the j-order normal derivative of u on ∂Ω.

The operator γ is called trace operator and its components are denoted by
γ0, γ1, . . . , γl and known as trace of order 0, trace of order 1,..., trace of order l;
respectively. So, for u ∈ W s,p(Ω) we can write γu = (γ0u, γ1u, . . . , γlu). Due
to Theorem 2.7, for certain Sobolev spaces W s,p

0 (Ω) with regular boundary
∂Ω we have a characterization stated in the following result.

Theorem 2.8 (cf. [62, Corollary 1.5.1.6]). Let Ω ⊂ Rn be a bounded open
set with a Ck,1 boundary. Let 1 < p < ∞ and s ∈ R such that s − 1/p /∈ Z,
s ≤ k+1 and 0 ≤ [s−1/p] =: l. Then, u ∈ W s,p

0 (Ω) if and only if u ∈ W s,p(Ω)
and

u =
∂u

∂ν
= · · · = ∂lu

∂ν l
= 0 on ∂Ω.

Green’s formulas for integration are given below. The following result is
known as integration by parts . A more general version can be found in Section
3.1.2 from [107].

Theorem 2.9 (cf. [62, Theorem 1.5.3.1]). Let Ω be a bounded open subset
of Rn with Lipschitz boundary ∂Ω. For u ∈ W 1,p(Ω) and v ∈ W 1,q(Ω) with
1 < p <∞ and 1/p+ 1/q = 1, we have∫

Ω

(∂ju)vdx = −
∫

Ω

u(∂jv)dx+

∫
∂Ω

uvνjdS

for j = 1, . . . , n. Here νj denotes the j-th component of ν which is the unit
outer normal vector along ∂Ω.
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Remark 2.10. The product uv in the integral over ∂Ω should be understood
as (γ0u)(γ0v). The same holds in similar situations in the boundary integrals
that appear later.

Next we present an integration formula that will be widely used in this
work which is an easy consequence of Theorem 2.9.

Theorem 2.11 (cf. [62, Theorem 1.5.3.7]). Let Ω be a bounded open subset
of Rn with a Lipschitz boundary. Then for every u ∈ H2(Ω) and v ∈ H1(Ω),
we have ∫

Ω

(∆u)vdx = −
∫

Ω

∇u · ∇vdx+

∫
∂Ω

(∂νu)vdS, (2.1)

where ∆u :=
∑n

j=1 ∂
2
ju is the Laplace operator of u, ∇u := (∂1u, . . . , ∂nu) is

the gradient of u and ∂νu denotes the derivative of u in the direction of ν.

Corollary 2.12. Let Ω ⊂ Rn be a bounded open set with a Lipschitz boundary.
Then, ∫

Ω

(∆u)vdx =

∫
Ω

u(∆v)dx+

∫
∂Ω

[(∂νu)v − u(∂νv)]dS (2.2)

for all u, v ∈ H2(Ω).

Proof. An application of (2.1) twice allows to get the desired formula.

Identities (2.1) and (2.2) are known as first Green’s formula and second
Green’s formula, respectively. The next theorem is an extension of Theorem
2.11.

Definition 2.13 (cf. [49, APPENDIX C]). Let U ⊂ Rn be open and bounded
and k ∈ N. We say that the boundary ∂U is Ck if for each point x ∈ ∂U
there exist r > 0 and a Ck function φ : Rn−1 → R such that -upon relabeling
and reorienting the coordinates axis if necessary- we have

U ∩B(x, r) = {x ∈ B(x, r) : xn > φ(x1, . . . , xn−1)},

where B(x, r) := {y ∈ Rn : |x − y| < r}. We also say that ∂U is a boundary
of class Ck or simply Ck-boundary ∂U . The boundary ∂U is of class C∞ if
it is Ck-boundary ∂U for all k ∈ N.

Theorem 2.14 (cf. [21, Lemma 8.2.4]). Let Ω ⊂ Rn be a bounded domain
with C2-boundary ∂Ω. For u ∈ H1(Ω) with ∆u ∈ L2(Ω) and v ∈ H1(Ω), we
have that∫

Ω

(∆u)vdx = −
∫

Ω

∇u · ∇vdx+ 〈∂νu, v〉H−1/2(∂Ω)×H1/2(∂Ω) . (2.3)
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2.2. Regular boundaries

Remark 2.15. In Theorem 2.14, ∆u is a regular distribution generated by
a unique function f ∈ L2(Ω) through the expression

〈∆u, ϕ〉 :=

∫
Ω

fϕdx, ϕ ∈ C∞c (Ω).

In this case, f is denoted by ∆u.

In [62, p. 62], formula (2.3) appears but now: u ∈ H1(Ω) with ∆u ∈ Lp(Ω)
and Ω being a bounded open subset of Rn with a C1,1 boundary.

The following result is an integration formula known as Rellich identity
and it is a immediate consequence of Corollary 2.1 in [100]. This formula will
allow obtaining a key estimate in the proof of polynomial stability in Section
4.4.

Theorem 2.16. Let Ω ⊂ Rn be a bounded domain with boundary of class
C2. If u ∈ H2(Ω) and h ∈ C1(Ω,Rn), then

2 Re

∫
Ω

∆u(h · ∇u)dx = 2 Re

∫
∂Ω

∂νu(h · ∇u)dS −
∫
∂Ω

(h · ν)|∇u|2dS

+

∫
Ω

div h|∇u|2dx− 2 Re
n∑

i,j=1

∫
Ω

∂ihj∂iu∂judx,

where div h := ∂1h1 + · · ·+ ∂nhn.

We continue this section with an integration formula involving the bounded
open set Ω1 ⊂ R2, which has a boundary of class C4, from Section 1.1.

Proposition 2.17 (cf. [15, Lemma 2.1]). For u ∈ H4(Ω1) and v ∈ H2(Ω1)
such that u = ∂νu = v = ∂νv = 0 on Γ, it holds∫

Ω1

(∆2u)vdx = µ

∫
Ω1

∆u∆vdx+ (1− µ)

∫
Ω1

∇2u : ∇2vdx

−
∫
I

(B1u)∂νvdS +

∫
I

(B2u)vdS,

(2.4)

where

∇2u : ∇2v := ux1x1vx1x1 + ux2x2vx2x2 + 2ux1x2vx1x2 . (2.5)
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Generalizations of the previous result can be found in [3], formula (2.13),
or in [128], identity (3.1). Next we give the version of the first reference,
which we will use in Subsection 3.1.2.

Proposition 2.18. Let Ω ⊂ R2 be a bounded open set with boundary of class
C4. If u ∈ H2(Ω) with ∆2u ∈ L2(Ω) and v ∈ H2(Ω), then∫

Ω

(∆2u)vdx = µ (∆u,∆v)L2(Ω) + (1− µ)

∫
Ω

∇2u : ∇2vdx

− 〈B1u, ∂νv〉H−1/2(∂Ω)×H1/2(∂Ω) + 〈B2u, v〉H−3/2(∂Ω)×H3/2(∂Ω) .

2.3 Some useful inequalities

In [49, p. 706] appears the well-known Young’s inequality : Let p, q > 1 such
that 1/p+ 1/q = 1. For a, b ≥ 0 we have

ab ≤ 1

p
ap +

1

q
bq. (2.6)

Proposition 2.19. Let αβ > 0. For a, b ≥ 0 we have that

aαbβ ≤ α

α + β
aα+β +

β

α + β
bα+β. (2.7)

Proof. If αβ > 0, then p := α+β
α

> 1 and q := α+β
β

> 1 satisfy the equality

1/p+1/q = 1. Now, (2.7) follows from the application of (2.6) to the product
aαbβ.

Corollary 2.20. Let a, b ≥ 0 and α ∈ (0, 2). We have

a2−αbα ≤ εa2 + Cα,εb
2 ∀ε > 0, (2.8)

where Cα,ε := α
2

(
2−α
2ε

) 2−α
α .

Proof. As 0 < α < 2, then (2 − α)α > 0. Let ε > 0. Applying (2.7) to the
right-hand side of the expression

a2−αbα =

(√
2ε

2− α
a

)2−α [(
2ε

2− α

)α−2
2α

b

]α
,

we get (2.8).
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Now, we present a generalization of Theorem 1.4.4 in [95], see [17, Propo-
sition 7.3] or [28, Theorem 1.6.6], followed by a simple proof.

Theorem 2.21. Let 1 < p < ∞ and let Ω be a bounded domain in Rn with
C1-boundary ∂Ω. For u ∈ W 1,p(Ω), the following estimate holds:

‖u‖Lp(∂Ω) ≤ C ‖u‖1/p

W 1,p(Ω) ‖u‖
1−1/p
Lp(Ω) (2.9)

with C being a positive constant independent of u.

Proof. By Theorem 1.5.1.10 in [62], there exists a constant C > 0 such that

‖u‖pLp(∂Ω) ≤ C
[
ε1−1/p ‖u‖pW 1,p(Ω) + ε−1/p ‖u‖pLp(Ω)

]
(2.10)

for any u ∈ W 1,p(Ω) and for all 0 < ε < 1. Note that (2.9) is trivially satisfied

if u = 0. Let u ∈ W 1,p(Ω) with u 6= 0. Taking ε =
‖u‖p

Lp(Ω)

‖u‖p
W1,p(Ω)

, we obtain (2.9)

from (2.10).

Corollary 2.22. Let Ω ⊂ Rn be a bounded domain with C1-boundary ∂Ω.
For any u ∈ H2(Ω), the following estimate holds:

‖∂νu‖L2(∂Ω) ≤ C̃ ‖u‖1/2

H2(Ω) ‖∇u‖
1/2

L2(Ω)n

with C̃ being a positive constant independent of u.

Proof. Let u ∈ C2(Ω). Because of Theorem 2.21, we can write

‖∂νu‖L2(∂Ω) ≤
n∑
j=1

‖νj∂ju‖L2(∂Ω)

≤ C max
∂Ω
|ν|

n∑
j=1

‖∂ju‖1/2

H1(Ω) ‖∂ju‖
1/2

L2(Ω)

≤ C̃ ‖u‖1/2

H2(Ω) ‖∇u‖
1/2

L2(Ω)n ,

where C̃ := nC max{|ν(x′)| : x′ ∈ ∂Ω}. Since ∂Ω ∈ C1, then it satisfies the
segment property1 and thus C2(Ω) is dense in H2(Ω), see [1, p. 68]. This
density allows us to finish the proof.

1cf. this concept in [123, Definition 2.1].
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In the next theorem, we present the well-known interpolation inequality
for Sobolev spaces. This result is the product of the combination of Theorem
2 of Subsection 4.3.1 in [120, p. 317], Remark 5 of Subsection 4.2.3 in [120,
p. 314] and part (f) of Theorem of Subsection 1.9.3 in [120, p. 59].

Theorem 2.23. Let Ω be a bounded domain of Rn with C1-boundary. For
0 ≤ s2 < s1 and 0 < θ < 1, there exists a constant C := Cθ,s1,s2 > 0 such that

‖u‖H(1−θ)s1+θs2 (Ω) ≤ C ‖u‖1−θ
Hs1 (Ω) ‖u‖

θ
Hs2 (Ω) (2.11)

for all u ∈ Hs1(Ω).

Next we present the Friedrichs inequality also known as the generalized
Poincaré inequality .

Theorem 2.24 (cf. [107, Theorem 1.9]). Let Ω ⊂ Rn be a bounded domain
with Lipschitz boundary. Let Γ ⊂ ∂Ω with µ(Γ) 6= 0, where µ is the (n− 1)-
dimensional Lebesgue surface measure. Then, for u ∈ H1(Ω) we have that

‖u‖H1(Ω) ≤ C
(
‖u‖2

L2(Γ) + ‖∇u‖2
L2(Ω)n

)1/2

,

where the positive constant C depends only on Ω.

2.4 Semigroups and groups of bounded linear

operators

We will give some concepts (taken from the books [47, 48, 58, 95, 109]) and
results of our interest corresponding to the theory of semigroups and groups
of bounded linear operators, which have to do with generation, stability and
analyticity.

Throughout this section X will be a Banach space over C. The space
L(X) endowed with the usual operator norm is a Banach space.

Definition 2.25. A one-parameter family (T (t))t≥0 ⊂ L(X) is a semigroup
of bounded linear operators or simply semigroup on X if satisfies

i) T (0) = I, where I is the identity operator on X.
ii) T (s+ t) = T (s)T (t) for every s, t ≥ 0.
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Definition 2.26. An operator A is the infinitesimal generator or simply
generator of a semigroup (T (t))t≥0 when its domain is given by

D(A) :=

{
x ∈ X : lim

t→0+

T (t)x− x
t

exists

}
and

Ax := lim
t→0+

T (t)x− x
t

for x ∈ D(A).

A semigroup (T (t))t≥0 on X is called strongly continuous semigroup or
simply a C0-semigroup if

lim
t→0+

T (t)x = x for every x ∈ X.

Proposition 2.27. Let (T (t))t≥0 be a C0-semigroup and A be its infinitesimal
generator. If x ∈ D(A), then T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax.

Proof. See part c) of Theorem 2.4 in [109, p. 4].

Proposition 2.28 (cf. [109, Corollary 2.5 on p. 5]). If A is the infinitesimal
generator of a C0-semigroup (T (t))t≥0, then D(A) is dense in X and A is a
closed linear operator.

Let (T (t))t≥0 be a C0-semigroup. Due to Theorem 2.2 in [109, p. 4], there
exist constants ω ≥ 0 and M ≥ 1 such that ‖T (t)‖L(X) ≤Meωt for all t ≥ 0.
When ω = 0 and M = 1, (T (t))t≥0 is called C0-semigroup of contractions.

Let X ′ be the dual of X. The value of x′ ∈ X ′ at x ∈ X is denoted by
〈x, x′〉X×X′ or 〈x′, x〉X′×X . For x ∈ X the duality set F(x) is defined as

F(x) :=
{
x′ ∈ X ′ : 〈x, x′〉X×X′ = ‖x‖2

X = ‖x′‖2
X′

}
.

The Hahn–Banach theorem (complex case) allows to obtain the Corollary 1.3
in [29] when the vector space is defined over C. So, we have that for every
x ∈ X there exists x′ ∈ X ′ such that ‖x′‖X′ = ‖x‖X and 〈x′, x〉X′×X = ‖x‖2

X .
In consequence, F(x) 6= ∅ for every x ∈ X.
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Definition 2.29. A linear operator A : D(A) ⊂ X → X is dissipative if for
every x ∈ D(A) there exists x′ ∈ F(x) such that Re〈Ax, x′〉X×X′ ≤ 0.

Theorem 2.30 (Lumer–Phillips). Let A : D(A) ⊂ X → X be a linear
operator such that D(A) = X.

i) If A is dissipative and there is λ0 > 0 such that the range, R(λ0I −A),
of λ0I − A is X, then A is the infinitesimal generator of a C0-semigroup of
contractions on X.

ii) If A is the infinitesimal generator of a C0-semigroup of contractions
on X, then R(λI − A) = X for all λ > 0 and A is dissipative.

Proof. See Theorem 4.3 in [109, p. 14].

Theorem 2.31 (cf. [109, Theorem 4.6 on p. 16]). Let A : D(A) ⊂ X → X
be dissipative with R(I − A) = X. If X is reflexive, then D(A) = X.

Remark 2.32. Let V and H be two Hilbert spaces over C such that V
d
↪→ H,

i.e., V is dense in H and is continuously embedded in H. Identifying H with

its antidual, we have V
d
↪→ H

d
↪→ V ′ and moreover

〈f, v〉V ′×V = (f, v)H (2.12)

for all f ∈ H and v ∈ V (see Observação 4.11 in [32]). So, if in the definition
of dissipativity we put H instead of X, we have that A : D(A) ⊂ H → H is
dissipative if for any x ∈ D(A),

Re (Ax, x)H ≤ 0.

Compare this remark with item (iii) from [48, p. 83].

Now, let A : D(A) ⊂ X → X be a linear operator and u0 ∈ X. The
abstract Cauchy problem for A with initial data u0 is given by{

du(t)
dt

= Au(t) for t > 0,

u(0) = u0.
(2.13)

Two types of solutions of the previous system can be considered, which will
depend on the choice of the initial data, thanks to the following two theorems.

Definition 2.33. A classic solution or simply solution of (2.13) is a function
u : [0,∞) → X such that u(t) is continuous for t ≥ 0 and continuously
differentiable for t > 0 with u(t) ∈ D(A) for t > 0 and satisfying (2.13).
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Theorem 2.34. Let (T (t))t≥0 be a C0-semigroup of contractions on X and
let be A its infinitesimal generator. If u0 ∈ D(A), then (2.13) has an unique
solution u(t) = T (t)u0, for t ≥ 0, such that

u ∈ C([0,∞), D(A)) ∩ C1([0,∞), X),

where D(A) is equipped with the graph norm |x|D(A) := ‖x‖X + ‖Ax‖X for
x ∈ D(A).

Proof. See Remark 2.2.1 and Theorem 2.2.2 in [130].

Definition 2.35. A continuous function u : [0,∞) → X is called a mild
solution of (2.13) if

∫ t
0
u(s)ds ∈ D(A) for all t ≥ 0 and moreover

u(t) = A

∫ t

0

u(s)ds+ u0.

Theorem 2.36. Let A be the generator of a C0-semigroup (T (t))t≥0 on X.
If u0 ∈ X, then u(t) := T (t)u0 is the unique mild solution of (2.13).

Proof. See Proposition 6.4 in [47, p. 146].

Next we define the iterations of unbounded operators. Let n ∈ N. The
n-th power An of A : D(A) ⊂ X → X is defined successively as

Anx := A(An−1x),

D(An) := {x ∈ D(A) : An−1x ∈ D(A)},

where A0 is the identity operator.

Theorem 2.37 (Regularity of solutions). Let A be the infinitesimal generator
of a C0-semigroup of contractions on X. If u0 ∈ D(Ak), k ∈ N, then the
unique solution of problem (2.13) belongs to

k⋂
j=0

Ck−j([0,∞), D(Aj)).

Proof. See Theorem 7.5 in [29] or Theorem 2.3.1 in [130].

Now we present some notions of stability followed by certain classical
characterizations. Subsequently, we give the concept of analytic semigroup
and an analyticity result for C0-semigroups of contractions.
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Definition 2.38. Let (T (t))t≥0 be a semigroup on X. Then, (T (t))t≥0 is said
to be strongly stable if

lim
t→∞
‖T (t)x‖X = 0, ∀x ∈ X.

The next theorem corresponds to a simpler version of the well-known
general result for strong stability established by Arendt and Batty (see [8,
Theorem 2.4]). Before presenting the theorem we define a pair of sets. Let
A : D(A) ⊂ X → X be a linear operator. The resolvent set ρ(A) of A
is the set of all λ ∈ C for which λI − A : D(A) → X is bijective and
(λI − A)−1 ∈ L(X). The set σ(A) := Cr ρ(A) is called spectrum of A.

Theorem 2.39 (cf. [47, Corollary 2.22 on p. 327]). Let us suppose that A is
the infinitesimal generator of a C0-semigroup of contractions (T (t))t≥0 on a
Hilbert space H. If A has no purely imaginary eigenvalues and σ(A) ∩ iR is
countable, then (T (t))t≥0 is strongly stable.

Definition 2.40. A semigroup (T (t))t≥0 on X is called exponentially stable
if there exist constants ω > 0 and M ≥ 1 such that

‖T (t)‖L(X) ≤Me−ωt for all t ≥ 0. (2.14)

The following characterization for exponential stability is due to Gearhat
[57] and Prüss [113], see [95, Theorem 1.3.2]. An elementary proof of this
result, but now for bounded C0-semigroups, can be seen in [41].

Theorem 2.41. Let (T (t))t≥0 be a C0-semigroup of contractions on a Hilbert
space H and A be its infinitesimal generator. Then, (T (t))t≥0 is exponentially
stable if and only if iR ⊂ ρ(A) and moreover

lim sup
λ∈R, |λ|→∞

∥∥(iλI − A)−1
∥∥
L(H)

<∞. (2.15)

In case it is not possible to determine the exponential stability, one tries
to look for another type of asymptotic decay. Next we present the notion of
polynomial stability, which is slower than exponential stability.

Definition 2.42. Let (T (t))t≥0 be a semigroup on X and A be its generator.
Then, (T (t))t≥0 is polynomially stable of order α > 0 if there exists C > 0
such that

‖T (t)x‖X ≤ Ct−α |x|D(A) (2.16)

for any t > 0 and for all x ∈ D(A). In that case, one says that (T (t))t≥0

decays at a rate t−α.
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The following observation is based on comments made by Liu and Rao in
Introduction from [92].

Remark 2.43. The norm on the right-hand side of (2.16) can not be the
norm in X because if (T (t))t≥0 is bounded, in particular it could be a C0-
semigroup of contractions, then (2.16) implies (2.14). Indeed, let us assume

‖T (t)x‖X ≤ Ct−α ‖x‖X , t > 0,

for all x ∈ X. As limt→∞ t
−α = 0, then there exists t0 ∈ R+ such that

t−α0 < 1/C and so ‖T (t0)‖L(X) < 1. If (T (t))t≥0 is bounded, there is C̃ ≥ 1

such that ‖T (s)‖L(X) ≤ C̃ for all s ≥ 0. Let t > 0. By the division algorithm,
t = ntt0 + rt where nt ∈ N0 and 0 ≤ rt < t0. In consequence,

‖T (t)‖L(X) = ‖(T (t0))nt T (rt)‖L(X) ≤ C̃ ‖T (t0)‖ntL(X) . (2.17)

If ‖T (t0)‖L(X) = 0, then (2.14) holds trivially. Let us assume ‖T (t0)‖L(X) 6= 0.
From (2.17), we get

‖T (t)‖L(X) ≤ C̃ ‖T (t0)‖−rt/t0L(X) ‖T (t0)‖t/t0L(X) .

Since 0 < ‖T (t0)‖L(X) < 1, we have ‖T (t0)‖−1
L(X) > ‖T (t0)‖−rt/t0L(X) ≥ 1 (note

that −1 < −rt/t0 ≤ 0) and there is δ > 0 such that 1
t0

ln ‖T (t0)‖L(X) = −δ.
Therefore,

‖T (t)‖L(X) < Me−δt,

where M := C̃ ‖T (t0)‖−1
L(X) > 1.

In [25, Theorem 2.4], Borichev and Tomilov have a characterization for
the polynomial stability of bounded C0-semigroups. This result is extended
by Muñoz Rivera and Racke, now considering C0-semigroup of contractions.

Theorem 2.44 (cf. [105, Lemma 5.2]). Let (T (t))t≥0 be a contraction semi-
group on a Hilbert space H with generator A such that iR ∩ σ(A) is empty.
Then, for α′ ∈ N0 and β′ > 0 fixed the following assertions are equivalent:

i) There exist C > 0 and λ0 > 0 such that for all λ ∈ R with |λ| > λ0 and
all F ∈ D(Aα

′
) it holds∥∥(iλI − A)−1F

∥∥
H
≤ C|λ|β′‖Aα′F‖H . (2.18)

ii) There exists some C > 0 such that for all t > 0 it holds∥∥T (t)A−1
∥∥
L(H)
≤ Ct

− 1
α′+β′ . (2.19)
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Asymptotic behavior is also a characteristic of some analytic semigroups.
More precisely, the decay would be of the exponential type (see Corollary 5.3).
On the other side, analytic semigroups have the property of smoothing effect,
that is, the solution of (2.13) is of class C∞ regardless of the irregularity of
the initial data (see [51, Introduction] and [104, Observação 7.1.1]).

Definition 2.45. For 0 < ϑ ≤ π, we set Σϑ := {λ ∈ C r {0} : | argλ| < ϑ}.
A semigroup (T (t))t≥0 on X is said to be analytic if it admits an extension
T (λ) ∈ L(X) for λ ∈ Σθ ∪ {0} for some 0 < θ ≤ π/2 such that

i) λ 7→ T (λ) is analytic on the sector Σθ.
ii) lim

Σθ−ε3λ→0
‖T (λ)x− x‖X = 0 for every x ∈ X and each 0 < ε < θ.

iii) T (λ+ µ) = T (λ)T (µ) for all λ, µ ∈ Σθ.

Theorem 2.46 (cf. [95, Theorem 1.3.3]). Let (T (t))t≥0 be a C0-semigroup
of contractions on a Hilbert space H and let A be its generator. Suppose that
iR ⊂ ρ(A). Then, T (t) is analytic if and only if

lim sup
λ∈R, |λ|→∞

∥∥λ(iλI − A)−1
∥∥
L(H)

<∞ (2.20)

holds.

We continue with some notions about groups of bounded linear operators
and close with a classical result of group generation which was initially proved
by the American mathematician Marshall Harvey Stone in 1932.

Definition 2.47. A one-parameter family (T (t))t∈R ⊂ L(X) is a C0-group
or simply group on X if it satisfies

i) T (0) = I.
ii) T (t+ s) = T (t)T (s) for any t, s ∈ R.
iii) limt→0 T (t)x = x for x ∈ X.

Definition 2.48. The infinitesimal generator A : D(A) ⊂ X → X of a group
(T (t))t∈R on X is the operator

Ax := lim
t→0

1

t

[
T (t)x− x

]
defined for every x in its domain

D(A) :=
{
x ∈ X : lim

t→0

1

t

[
T (t)x− x

]
exists

}
.
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Before giving Stone’s theorem, we will recall some definitions. Let H be
a complex Hilbert space and A : D(A) ⊂ H → H be a densely defined linear
operator. The set

D(A∗) :=
{
y ∈ H : ∃y∗ ∈ H such that (Ax, y)H = (x, y∗)H ∀x ∈ D(A)

}
is a vector subspace of H. Since D(A) = H, then for each y ∈ D(A∗) there
exists an unique y∗ ∈ H such that (Ax, y)H = (x, y∗)H for all x ∈ D(A). The
adjoint of A denoted A∗ is given by A∗ : D(A∗)→ H with y 7→ A∗y := y∗. It
can be easily proved that A∗ is a linear operator. Note that

(Ax, y)H = (x,A∗y)H

for all x ∈ D(A) and for any y ∈ D(A∗). For details of the above statements,
see for example [32, p. 292–294] and [56, p. 313]. The operator A is said to
be self-adjoint if A = A∗. The operator A is called skew-adjoint if and only
if iA is self-adjoint, i.e., A∗ = −A since (λA)∗ = λA∗ for all λ ∈ C (see (i) of
Proposição 5.97 in [32]).

Definition 2.49. Let H be a Hilbert space. A bijective linear operator
U : H → H is unitary if U∗ = U−1.

It is easy to prove that U is unitary if and only if U is an isometry and
R(U) = H. So, if U is unitary then U is a bounded linear operator.

Theorem 2.50 (Stone). Let A : D(A) ⊂ H → H be a densely defined linear
operator on a complex Hilbert space H. Then, A generates a unitary group
(T (t))t∈R on H if and only if A is skew-adjoint.

Proof. See Theorem 3.24 in [48].

2.5 Interpolation-extrapolation scales

Let X be a Banach space and A : D(A) ⊂ X → X be a closed linear operator
with 0 ∈ ρ(A). Since A−1 ∈ L(X), then ξ 7→ ‖A−1ξ‖X defines a norm on X
such that ‖A−1ξ‖X ≤ C ‖ξ‖X for each ξ ∈ X. Equivalence of norms cannot
be guaranteed between ‖ · ‖X and ‖A−1·‖X on X. By Theorem 2.3-2 in [77],
the normed space (X, ‖A−1·‖X) has a completion(

X−1, ‖ · ‖−1

)
:=
(
X,
∥∥A−1·

∥∥
X

)∼
,
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called the extrapolation space of X generated by A, which is a Banach space

such that X
d
↪→ X−1 with ‖ξ‖−1 = ‖A−1ξ‖X for any ξ ∈ X, see [5, p. 262].

Let us suppose that the operator A is the infinitesimal generator of a
C0-semigroup (T (t))t≥0 on X. For each t ≥ 0,

T (t) : X ⊂ X−1 → X−1

is a densely defined bounded linear operator. The extension by continuity
(see, e.g., [32, Teorema 2.42]) implies that there exists a unique extension
of T (t) to X−1, which is denoted by T−1(t). The family (T−1(t))t≥0 is a C0-
semigroup on X−1, called extrapolated semigroup in X−1, whose generator
A−1 : D(A−1) ⊂ X−1 → X−1 is an extension of A with domain D(A−1) = X
such that 0 ∈ ρ(A−1), see [47, Theorem 5.5] and [117, Proposition 4.2].

Definition 2.51 ([48, Definition A.12]). Let X ′ be the dual space of X. As
the domain of A is dense in X, the adjoint operator A′ : D(A′) ⊂ X ′ → X ′

exists and is given by

D(A′) := {x′ ∈ X ′ : ∃y′ ∈ X ′ such that 〈Ax, x′〉 = 〈x, y′〉 ∀x ∈ D(A)},
A′x′ := y′ for all x′ ∈ D(A′).

Here 〈·, ·〉 := 〈·, ·〉X×X′ .

If X is reflexive, then A′ : D(A′) ⊂ X ′ → X ′ is a densely defined close
linear operator such that ρ(A′) = ρ(A). We set X] := X ′, A] := A′ and
X]

1 := (D(A]), ‖A] · ‖X]), see Section 1.2 and Section 1.4 in [5, Chapter V].
Thanks to Corollary 1.4.7 in [5, p. 271], the space X−1 is the dual space of
D(A′), i.e., X−1 = [D(A′)]′.

For m ∈ N0 arbitrary but fixed, we have that the extrapolated discrete
power scale [(Xk, Ak); k ∈ Z∩ [−m,∞)] of order m is well-defined and it is a
densely injected Banach scale. For details, see Section 1.3 in [5, Chapter V].
Here,

Xk :=

{
(D(Ak), ‖ · ‖k) if k ≥ 0,

(X, ‖ · ‖k)∼ if k < 0,

where ‖x‖k :=
∥∥Akx∥∥

X
for x ∈ D(Ak) and k ∈ Z. Ak is the Xk-realization of

A if k ≥ 0 and the closure of A in Xk if k < 0. Putting Tk(t) := T (t)
∣∣
Xk

and
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denoting T−k(t) as the continuous extension of T−k+1(t) to X−k, for k ≥ 0,
the following diagram we obtain

· · · A2 // X2
A1 //

T2(t)

��

X1
A0 //

T1(t)

��

X0
A−1 //

T0(t)

��

X−1
A−2 //

T−1(t)

��

· · ·

· · · X2
A−1

2

oo X1
A−1

1

oo X0
A−1

0

oo X−1
A−1
−1

oo · · ·
A−1
−2

oo

For 0 < θ < 1 consider an admissible interpolation functor (·, ·)θ of exponent
θ, e.g., the real interpolation functor, the complex interpolation functor or
the continuous interpolation functor, see Section 2 in [5, Chapter I] and the
references therein. Let α := k + θ with k ∈ Z ∩ [−m,∞). Defining

Xα := (Xk, Xk+1)θ

and Aα as the Xα-realization of Ak, one has that Xα is an intermediate space
between Xk+1 and Xk, and [(Xα, Aα);α ∈ [−m,∞)] is a densely injected
Banach scale, which is called the interpolation-extrapolation scale of order m
generated by (X,A) and (·, ·)θ. See Theorem 1.5.1 in [5, p. 275]. Therefore,

Xα
d
↪→ Xβ

provided that α > β. Additionally, if A−1 : X → X is a compact operator
then the previous interpolation-extrapolation scale is compactly injected, i.e.,

Xα
c
↪→ Xβ for α > β.

2.6 Powers of positive self-adjoint operators

Here we indicate when a self-adjoint operator is positive and present some
properties that satisfy its fractional powers. Along this section H denotes a
Hilbert space.

A self-adjoint operator A : D(A) ⊂ H → H is said to be positive if there
exists δ > 0 such that

(Ax, x)H ≥ δ ‖x‖2
H for all x ∈ D(A). (2.21)
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Remark 2.52. If A : D(A) → H is a positive self-adjoint operator, then
Lemma 4.31 in [97] implies that (−∞, δ) ⊂ ρ(A) and moreover∥∥(λI − A)−1

∥∥
L(H)
≤ 1

δ − λ
for λ < δ, (2.22)

where δ is the positive constant of (2.21). Putting ϕ(λ) := 1−λ
δ−λ , it follows

that ϕ(λ) converges to 1, as λ → −∞, and so there exists λ0 < 0 such
that |ϕ(λ) − 1| < 1 for any λ < λ0. Note that the function λ 7→ ϕ(λ) is
continuous on the compact interval [λ0, 0]. Therefore, one obtains that there
exists M > 1 such that

1− λ
δ − λ

≤M for λ ≤ 0. (2.23)

Obviously (−∞, 0] ⊂ ρ(A), and the inequalities (2.22) and (2.23) imply that∥∥(λI − A)−1
∥∥
L(H)
≤ M

1 + |λ|
for λ ≤ 0.

Suppose A : D(A)→ H is a positive self-adjoint operator. Then, 0 ∈ ρ(A)
and Remark 2.52 implies that A is a positive operator in the sense of Definition
4.1 in [97] or Definition in Subsection 1.14.1 of [120], and is also positive of
type K (see [5, p. 147]). The spectral theory allows to define the fractional
powers of A. The previous affirmation appears, for instance, in [118, p. 57].
It is known that As : D(As) ⊂ H → H is positive self-adjoint operator for
s > 0. The space D(As) is endowed with the inner product

(u, v)D(As) := (Asu,Asv)H (2.24)

for all u, v ∈ D(As) and for any s > 0, which makes it a Hilbert space
because As is closed and since the norm induced by (2.24), denoted ‖ · ‖D(As),
is equivalent to the graph norm | · |D(As). It can be easily proved that the
isometric isomorphism

Ã : H → [D(A)]′ given by 〈Ãξ, ζ〉[D(A)]′×D(A) := (ξ, Aζ)H (2.25)

is a extension of A which is called standard extension of A.

The following theorem collects some of the properties that the positive
self-adjoint operators satisfy, which can be found in [5, Section 4.6], [97,
Chapter 4], [118, p. 57] and [120, Subsection 1.15.2].
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Theorem 2.53. Let A : D(A) ⊂ H → H be a positive self-adjoint operator.
Their fractional powers satisfy the following properties:

a) If s1, s2 > 0, then As1As2x = As1+s2x for each x ∈ D(As1+s2).

b) If s2 > s1 > 0, then D(As2)
d
↪→ D(As1)

d
↪→ H.

c) If D(A−s) := [D(As)]′ for s > 0, then As1−s2 : D(As1)→ D(As2) is an
isomorphism ∀s1, s2 ∈ R with s1 > s2.

2.7 Elliptic and boundary operators

This section recalls fundamental aspects of elliptic boundary value problems,
and is largely based on Chapter 2 of [89]. Let Ω be a bounded domain in Rn

with boundary of class C∞ and let

A(D)u :=
∑
|α|≤2m

aαD
αu (2.26)

be a linear differential operator in Ω of order 2m. Here u : Ω → C, α ∈ Nn
0 ,

m ∈ N, aα ∈ C and Dα := (−i)|α|∂α. Its principal symbol is the polynomial
A0(ξ) :=

∑
|α|=2m aαξ

α, where ξ ∈ Rn and ξα := ξα1
1 · · · ξαnn .

Definition 2.54. The operator A is said to be elliptic if the following holds

A0(ξ) 6= 0, ∀ξ ∈ Rn r {0}.

If moreover for every linearly independent couple of vectors ξ1 and ξ2 of Rn,
the polynomial A0(ξ1 + ζξ2) in the complex variable ζ has m roots with
positive imaginary part, then A is called properly elliptic.

Example 2.55. It is well known that the Laplacian ∆ and also the Bi-
Laplacian ∆2 are properly elliptic (see, e.g., Section 3.2 in [12]).

Let B1, B2, . . . , Bm be boundary operators of order mj with j = 1, . . . ,m,
respectively, defined as follows

Bj(D)v :=
∑
|β|≤mj

bjβD
βv, (2.27)

where v : Ω→ C, β ∈ Nn
0 , bjβ ∈ C and Dβv must be understood as γ0(Dβv),

and whose principal symbols are given by B0
j (ξ) :=

∑
|β|=mj bjβξ

β. In this
part of the document Γ is considered as a subset of ∂Ω.
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Definition 2.56. The system of operators {Bj}1≤j≤m is a normal system on
Γ if the system satisfies the following two conditions:

a) For x ∈ Γ, it holds B0
j (ξ) 6= 0 for any 0 6= ξ ∈ Rn normal to Γ at x and

for all 1 ≤ j ≤ m.
b) mi 6= mj for i 6= j with 1 ≤ i, j ≤ m.

Definition 2.57. The system {Bj}1≤j≤m covers the operator A on Γ if for all
x ∈ Γ, all 0 6= τ ∈ Rn tangent to Γ at x, and all 0 6= η ∈ Rn normal to Γ at x,
the polynomials C 3 ζ 7→

∑
|β|=mj bjβ(τ + ζη)β with j = 1, . . . ,m are linearly

independent modulo the polynomial
∏m

k=1[ζ − ζ+
k (τ, η)], where ζ+

k (τ, η) are
the roots of the polynomial A0(τ + ζη) with positive imaginary part.

The operator A of (2.26) and the boundary operators of (2.27) constitute
a system called boundary value problem, which is given by{

Au = f in Ω,

Bju = gj on ∂Ω,
(2.28)

and denoted by (A,B1, . . . , Bm). Here f and gj are given functions belonging
to suitable spaces.

Remark 2.58. The general theory of boundary value problems is developed
for boundaries of class C∞. This assumption allows to prove general results.
However, in some cases we do not need too much regularity on the boundary
(see, e.g., Proposition 2.60 and Remark 3.17).

Definition 2.59. The problem (2.28) is a regular elliptic problem if and only
if A is properly elliptic in Ω, the operators Bj have order mj ≤ 2m − 1, the
system {Bj}1≤j≤m is normal on ∂Ω and covers the operator A on ∂Ω.

Suppose the system (A,B1, . . . , Bm) is a regular elliptic problem and now
consider A : D(A) ⊂ L2(Ω)→ L2(Ω) defined as follows:

D(A) := {u ∈ H2m(Ω) : Bj(D)u = 0 on ∂Ω for j = 1, . . . ,m},
Au := A(D)u.

The space D(A) is endowed with the graph norm. The operator A is called
the realization of A in L2(Ω) under the boundary conditions {Bj}1≤j≤m. The
space D(A) will be denoted by H2m

B (Ω) when it is equipped with the norm
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of H2m(Ω). As | · |D(A) ∼ ‖ · ‖H2m on D(A), where ∼ means equivalence in
norm, then the following characterizations hold:

D(Aθ) = [D(A), L2(Ω)]1−θ = [H2m
B (Ω), H0(Ω)]1−θ

=
{
u ∈ H2mθ(Ω) : Bj(D)u = 0 on ∂Ω, mj < 2mθ − 1

2

} (2.29)

for 0 < θ < 1. A summary explanation of how to get the previous equalities
can be seen in [23, p. 172] or [87, p. 284]. Here [X, Y ]θ̃, with 0 ≤ θ̃ ≤ 1,
is the complex interpolation space defined for an interpolation couple (X, Y )
consisting of complex Banach spaces X and Y . See [97, Chapter 2] and [120,
Section 1.9] for details.

Next, we present a proposition that treats a boundary value problem
defined in Ω1 with mixed boundary conditions (Ω1 as in Section 1.1). In
addition to guaranteeing the existence and uniqueness of the problem, this
result offers an estimate that will be very useful later on.

Proposition 2.60 (cf. [15, Corollary 4.3]). Let f ∈ L2(Ω1), g1 ∈ H7/2(Γ),
g2 ∈ H5/2(Γ), h1 ∈ H3/2(I) and h2 ∈ H1/2(I). Then for sufficiently large
λ0 > 0, we have that the boundary value problem

(λ0 + ∆2)u = f in Ω1,

u = g1 on Γ,

∂νu = g2 on Γ,

B1u = h1 on I,

B2u = h2 on I,

has a unique solution u ∈ H4(Ω1). Moreover, the a priori-estimate

‖u‖H4(Ω1) ≤ C
(
‖f‖L2(Ω1) + ‖g1‖H7/2(Γ) + ‖g2‖H5/2(Γ)

+ ‖h1‖H3/2(I) + ‖h2‖H1/2(I)

) (2.30)

holds with a constant C > 0 which depends on λ0 but not on u or on the data.
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Chapter 3

Well-posedness and regularity
of the solutions of a
plate-membrane system

Using semigroup theory of linear operators it will be proved that the plate-
membrane transmission problem with initial conditions (1.1)-(1.9) has a unique
solution, either a classical or a weak solution depending on the choice of the
initial datum, the Lumer–Phillips theorem being the key tool for this purpose.
In addition, the regularity of the solutions will be established.

3.1 Existence and uniqueness of the solutions

In this section the system (1.1)-(1.9) will be written as an abstract Cauchy
problem. For that, certain linear operators defined on appropriate function
spaces are necessary. The energy of the system (1.1)-(1.7) is what allows
these spaces to be determined, which is defined by

Eγ(t) :=
1

2

∫
Ω1

β1µ|∆u|2 + β1(1− µ)|∇2u|2 + ρ1|ut|2 + γ|∇ut|2 dx

+
1

2

∫
Ω2

β2|∇v|2 + ρ2|vt|2 dx+
1

2

∫
Ω1

ρ0|θ|2 dx,
(3.1)

where |∇2u|2 := ∇2u : ∇2u. The above notation was introduced in (2.5).

All the spaces given in this document are taken over the field of complex
numbers. Let k be a natural number. We start by considering the following
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space Hk
Γ(Ω1) :=

{
w ∈ Hk(Ω1) : ∂jw

∂νj
= 0 on Γ for j = 0, . . . , k − 1

}
. For the

particular case k = 2 one has that the space H2
Γ(Ω1) endowed with the inner

product

(w, w̃)H2
Γ(Ω1) := µ (∆w,∆w̃)L2(Ω1) + (1− µ)

(
∇2w,∇2w̃

)
L2(Ω1)4 ,

where (
∇2u,∇2v

)
L2(Ω1)4 :=

∫
Ω1

∇2u : ∇2vdx, (3.2)

is a Hilbert space. Indeed, if u, v ∈ H2
Γ(Ω1) then

(u, v)H2(Ω1) =
∑
|α|≤2

∫
Ω1

∂αu∂αv dx = (u, v)L2(Ω1) + (∇u,∇v)L2(Ω1)2

+

∫
Ω1

ux1x1vx1x1 + ux1x2vx1x2 + ux2x2vx2x2 dx.

(3.3)

Due to u = ∂νu = 0 on Γ, it is easy to see that ∇u = 0 on Γ and therefore
ux1 = ux2 = 0 on Γ. By Friedrichs inequality or Corollary 5.5 in [17],

‖∇u‖2
L2(Ω1)2 = ‖ux1‖

2
L2(Ω1) + ‖ux2‖

2
L2(Ω1)

≤ C2
(
‖∇ux1‖

2
L2(Ω1)2 + ‖∇ux2‖

2
L2(Ω1)2

)
≤ 2C2

∥∥∇2u
∥∥2

L2(Ω1)4 .

(3.4)

By (3.2)-(3.4) and again Friedrichs inequality,

‖u‖2
H2(Ω1) ≤ ‖u‖

2
L2(Ω1) + ‖∇u‖2

L2(Ω1)2 +
∥∥∇2u

∥∥2

L2(Ω1)4 ≤ C̃ ‖u‖2
H2

Γ(Ω1) . (3.5)

Hölder’s inequality allows us to write

‖u‖2
H2

Γ(Ω1) = µ

∫
Ω1

|ux1x1|2 + 2 Re(ux1x1ux2x2) + |ux2x2|2dx

+ (1− µ)

∫
Ω1

|ux1x1|2 + |ux2x2|2 + 2|ux1x2|2dx ≤ 4 ‖u‖2
H2(Ω1) .

This shows that ‖ · ‖H2
Γ(Ω1) and ‖ · ‖H2(Ω1) are equivalent norms on H2

Γ(Ω1).

Theorem 2.7 guarantees that H2
Γ(Ω1) is a closed subspace of H2(Ω1).
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Let η := γ
ρ1

. If the inertial term is present on the plate, that is γ > 0,

then H1
Γ,η(Ω1) will be the space H1

Γ(Ω1) and when γ = 0 it will be L2(Ω1).
For η ≥ 0, the space H1

Γ,η(Ω1) is endowed with the scalar product

(w, w̃)H1
Γ,η(Ω1) := (w, w̃)L2(Ω1) + η (∇w,∇w̃)L2(Ω1)2 .

Note that ‖ · ‖H1
Γ(Ω1) and ‖ · ‖H1(Ω1) are equivalent norms on the space H1

Γ(Ω1).

The continuity of the zero order trace operator H1(Ω1) 3 u 7→ γ0u ∈ H1/2(Γ)
allows us to prove that H1

Γ(Ω1) is a closed subspace in H1(Ω1). Therefore,(
H1

Γ,η(Ω1), (·, ·)H1
Γ,η(Ω1)

)
is a Hilbert space for any η ≥ 0.

Based on the expression (3.1), the energy space or phase space is defined,
which is presented below. For η ≥ 0, we set

Hη :=
{
ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5)> ∈Xη : ϕ1 = ϕ3 on I

}
,

where Xη := H2
Γ(Ω1) × H1

Γ,η(Ω1) × H1(Ω2) × L2(Ω2) × L2(Ω1). The energy
space is equipped with the inner product

(ϕ, ψ)Hη
:=β1 (ϕ1, ψ1)H2

Γ(Ω1) + ρ1 (ϕ2, ψ2)H1
Γ,η(Ω1) + β2 (∇ϕ3,∇ψ3)L2(Ω2)2

+ ρ2 (ϕ4, ψ4)L2(Ω2) + ρ0 (ϕ5, ψ5)L2(Ω1)

for all ϕ, ψ ∈Hη. It is easy to see that the operator T : Xη → H1/2(I) given
by T (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) := ϕ1 − ϕ3

∣∣
I

is linear, and also continuous thanks to
the trace theorem. As Hη = T−1({0}), then Hη is closed in Xη. By Theorem
2.24 and the trace theorem,

‖ϕ3‖2
H1(Ω2) ≤ C

(
‖ϕ1‖2

H2
Γ(Ω1) + ‖∇ϕ3‖2

L2(Ω2)2

)
for ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈Hη. This allows us to prove that there is C > 0
such that ‖ϕ‖Xη

≤ C ‖ϕ‖Hη
for any ϕ ∈Hη. From the definition of the space

Xη follows immediately the inequality ‖ϕ‖Hη
≤ C ‖ϕ‖Xη

for all ϕ ∈ Hη. In

consequence,
(
Hη, (·, ·)Hη

)
is a Hilbert space.

3.1.1 Basic operators

At this point in the document, the contents of Section 2.6 and Section 2.7
are necessary to obtain properties of the operators that will be part of the
abstract formulation of the problem (1.1)-(1.9). The following definition is
taken from Subsection 7.1 of [29].
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Definition 3.1. Let H be a Hilbert space. An unbounded linear operator
A : D(A) ⊂ H → H is said to be monotone if and only if (Au, u)H ≥ 0 for
all u ∈ D(A). If also R(I + A) = H, then A is called maximal monotone.

Throughout this document I denotes the identity operator. The following
two results will allows us to show that certain operators that are of interest
to us are self-adjoint.

Lemma 3.2. Let H be a Hilbert space and A : D(A) ⊂ H → H a monotone
operator. If there exists λ0 > 0 such that R(λ0I + A) = H, then A is a
maximal monotone operator.

Proof. Let B := 1
λ0
A. Note that B : D(B) ⊂ H → H is an unbounded

linear operator with D(B) := D(A). As (Bu, u)H ≥ 0 for all u ∈ D(B) and
R(I + B) = H, we have that B is a maximal monotone operator. The part
(c) of Proposition 7.1 from [29] implies R(I + λB) = H for every λ > 0. In
particular, taking λ = λ0 we get R(I + A) = H.

Lemma 3.3 (cf. [29, Proposition 7.6]). Let A : D(A) ⊂ H → H be a
maximal monotone symmetric operator. Then A is self-adjoint.

Proposition 3.4. If AB : L2(Ω1) ⊃ D(AB) → L2(Ω1) is the Bi-Laplacian,
this is AB := ∆2, with domain

D(AB) :=
{
w ∈ H4(Ω1) : w = ∂νw = 0 on Γ and B1w = B2w = 0 on I

}
,

then AB is a positive self-adjoint operator.

Proof. By Proposition 2.17, we have (ABw,w)L2(Ω1) = ‖w‖2
H2

Γ(Ω1) ≥ 0 for all

w ∈ D(AB). The operator AB is maximal monotone. In fact: According
to Lemma 3.2 it is enough to prove that R(λI + AB) = L2(Ω1) for some
λ > 0, this is, there is λ > 0 such that for any f ∈ L2(Ω1) there exists
w ∈ D(AB) so that (λI + AB)w = f and this in turn is equivalent to the
following formulation

Given f ∈ L2(Ω1) there exists w ∈ H4(Ω1) such that

λw + ∆2w = f in Ω1,

w = ∂νw = 0 on Γ,

B1w = B2w = 0 on I.

(3.6)
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Proposition 2.60 guarantees the existence of λ > 0 so that (3.6) holds. It is
immediate from formula (2.4) that (ABw, w̃)L2(Ω1) = (w,ABw̃)L2(Ω1) for all
w, w̃ ∈ D(AB). Thus, AB is a symmetric operator. Due to Lemma 3.3, AB is
a self-adjoint operator. Estimation (3.5) implies the existence of C > 0 such
that (ABw,w)L2(Ω1) ≥ C ‖w‖2

L2(Ω1) for all w ∈ D(AB).

The operator AsB : D(AsB)→ L2(Ω1) is a positive self-adjoint operator for
any s > 0, see Section 2.6 and Proposition 3.4. Recall that D(AsB) is endowed
with the scalar product (w, w̃)D(AsB) := (AsBw,AsBw̃)L2(Ω1) for w, w̃ ∈ D(AsB),

see (2.24), and becomes a Hilbert space. For s1 > s2 > 0, we have

D(As1B )
d
↪→ D(As2B )

d
↪→ L2(Ω1), (3.7)

see part b) of Theorem 2.53. Characterization (2.29) allows us to explicitly
write the domain of some fractional powers of the operator AB. Hereinafter,
the symbol ∼= means equality between sets and equivalence in norm. We have,

D(A1/4
B ) ∼= H1

Γ(Ω1),

D(A1/2
B ) ∼= H2

Γ(Ω1),

D(A3/4
B ) ∼=

{
w ∈ H3(Ω1) ∩H2

Γ(Ω1) : B1w = 0 on I
}
.

(3.8)

Due to (3.7), we have that D(AB) is dense in D(A1/2
B ). If ξ, ζ ∈ D(A1/2

B ),
there exist two sequences (ξn)n∈N and (ζn)n∈N contained in D(AB) such that

ξn → ξ and ζn → ζ in D(A1/2
B ). Taking into account (2.12), part a) of

Theorem 2.53 and the fact that A1/2
B is a self-adjoint operator, we obtain

〈ABξn, ζn〉[D(A1/2
B )]′×D(A1/2

B )
= (ABξn, ζn)L2(Ω1) = (A1/2

B ξn,A1/2
B ζn)L2(Ω1) (3.9)

for each n ∈ N. Note that ABξ ∈ [D(A1/2
B )]

′
, see part c) of Theorem 2.53.

We compute that∣∣ 〈ABξn, ζn〉[D(A1/2
B )]′×D(A1/2

B )
− 〈ABξ, ζ〉[D(A1/2

B )]′×D(A1/2
B )

∣∣
=
∣∣ 〈ABξn, ζn − ζ〉[D(A1/2

B )]′×D(A1/2
B )

+ 〈AB(ξn − ξ), ζ〉[D(A1/2
B )]′×D(A1/2

B )

∣∣
≤ ‖ABξn‖[D(A1/2

B )]′
‖ζn − ζ‖D(A1/2

B )
+ ‖AB(ξn − ξ)‖[D(A1/2

B )]′
‖ζ‖

D(A1/2
B )

.

Now the continuity of the operator AB : D(A1/2
B )→ [D(A1/2

B )]
′

implies that

〈ABξn, ζn〉[D(A1/2
B )]′×D(A1/2

B )
→ 〈ABξ, ζ〉[D(A1/2

B )]′×D(A1/2
B )

. (3.10)
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By Proposition 2.17 and the equivalence of norms of the second characteri-
zation in (3.8), we get the convergence

(ABξn, ζn)L2(Ω1) = (ξn, ζn)H2
Γ(Ω1) → (ξ, ζ)H2

Γ(Ω1) . (3.11)

We find that

(A1/2
B ξn,A1/2

B ζn)L2(Ω1) = (ξn, ζn)
D(A1/2

B )
→ (ξ, ζ)

D(A1/2
B )

= (A1/2
B ξ,A1/2

B ζ)L2(Ω1).

By (3.9)-(3.11) and the last limit, we can write the following equalities

〈ABξ, ζ〉[D(A1/2
B )]′×D(A1/2

B )
= (A1/2

B ξ,A1/2
B ζ)L2(Ω1) = (ξ, ζ)H2

Γ(Ω1) (3.12)

for all ξ, ζ ∈ D(A1/2
B ).

Proposition 3.5. The operator AL : L2(Ω1) ⊃ D(AL) → L2(Ω1) given by
AL := −∆ is a positive self-adjoint operator, where

D(AL) :=
{
w ∈ H2(Ω1) : w = 0 on Γ and ∂νw = 0 on I

}
.

Proof. Using the integration by parts formula (2.1) and Friedrichs inequality,
one has that (ALu, u)L2(Ω1) ≥ C ‖u‖2

L2(Ω1) for any u ∈ D(AL). Thus, AL is
monotone. By elliptic regularity theory (see, e.g., Theorem 3.2 and Remark
3.3 in [14]) one has that for sufficiently large λ > 0, the solution u of the
boundary value problem 

λu−∆u = f in Ω1,

u = 0 on Γ,

∂νu = 0 on I,

belongs to H2(Ω1) for any f ∈ L2(Ω1). Thus, AL is maximal monotone and
it is easy to see that it is symmetric.

The square root operator A1/2
L of AL is self-adjoint and positive, and its

domain has the following characterization:

D(A1/2
L ) ∼= H1

Γ(Ω1). (3.13)

It is clear that (ALw, w̃)L2(Ω1) = (∇w,∇w̃)L2(Ω1)2 ∀w, w̃ ∈ D(AL). Using the

density of D(AL) in D(A1/2
L ), the equivalence of norms ‖ · ‖H1

Γ(Ω1) ∼ ‖ · ‖H1(Ω1)

on H1
Γ(Ω1), (3.13) and an argument as in the previous page, we derive

〈ALξ, ζ〉[D(A1/2
L )]′×D(A1/2

L )
= (A1/2

L ξ,A1/2
L ζ)L2(Ω1) = (∇ξ,∇ζ)L2(Ω1)2 (3.14)
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for all ξ, ζ ∈ D(A1/2
L ).

Now, we define the inertia operator Mη := I + ηAL with D(Mη) :=

D(AL) if η > 0 and D(M0) := L2(Ω1). For ξ ∈ D(A1/2
L ), we have that

the part c) of Theorem 2.53 implies ALξ ∈ [D(A1/2
L )]′ and in consequence

Mηξ = ξ + ηALξ ∈ H−1
Γ,η(Ω1) := [H1

Γ,η(Ω1)]′. From (2.12), (3.13) and (3.14)
it follows that

〈Mηξ, ζ〉H−1
Γ,η(Ω1)×H1

Γ,η(Ω1) = (ξ, ζ)H1
Γ,η(Ω1) for all ξ, ζ ∈ H1

Γ,η(Ω1). (3.15)

By the Lax–Milgram theorem, see [40, Theorem 7 on p. 368], we obtain that
Mη : H1

Γ,η(Ω1)→ H−1
Γ,η(Ω1) is an isomorphism. In particular, M−1

η exists for

η ≥ 0, where M−1
0 is the identity in L2(Ω1).

Proposition 3.6. The operator AT : L2(Ω1) ⊃ D(AT )→ L2(Ω1) defined by
AT := −∆ + σ

β
I, with domain

D(AT ) :=
{
ϑ ∈ H2(Ω1) : ∂νϑ+ κϑ = 0 on ∂Ω1

}
,

is self-adjoint and positive.

Proof. Using integration by parts, see Theorem 2.11, it is easy to get that

(ATϑ, ϑ)L2(Ω1) = ‖∇ϑ‖2
L2(Ω1)2 + κ ‖ϑ‖2

L2(∂Ω1) +
σ

β
‖ϑ‖2

L2(Ω1) (3.16)

for all ϑ ∈ D(AT ). Hence, (AT ϑ̃, ϑ̃)L2(Ω1) ≥ C‖ϑ̃‖2
L2(Ω1) for any ϑ̃ ∈ D(AT ),

which is trivially true if σ > 0 and when σ = 0 is also true thanks to Theorem
2.24 since κ > 0. By Theorem 3.2 and part (b) of Remark 3.3 in [14]: For
sufficiently large λ0 > 0, the boundary value problem

λ0u−∆u = f in Ω1,

∂νu+ κu = 0 on ∂Ω1,

has a unique solution u ∈ H2(Ω1) whenever f ∈ L2(Ω1). This allows to assert
that R(λI + AT ) = L2(Ω1) for some λ > 0. It is very simple to check that
AT is symmetric. An application of Lemma 3.2 and Lemma 3.3 completes
the proof.
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Chapter 3. Well-posedness and regularity of the solutions of a plate-membrane system

The same arguments used for the operators AB and AL are considered for
the operator AT to obtain the following characterization

D(A1/2
T ) ∼= H1(Ω1). (3.17)

Therefore, one can establish via density and integration by parts the identity

(ξ, ζ)
D(A1/2

T )
= (∇ξ,∇ζ)L2(Ω1)2 + κ (ξ, ζ)L2(∂Ω1) +

σ

β
(ξ, ζ)L2(Ω1) (3.18)

for all ξ, ζ ∈ D(A1/2
T ).

3.1.2 Abstract formulation of the problem

The operators AB, AL, AT and Mη together with others, will be part of
a matrix operator which will allow to write system (1.1)-(1.9) as a Cauchy
problem on the Hilbert space Hη. We will make use of two Green maps
introduced in [10, p. 158]. Let G1 and G2 be defined by the formulas G1x := ũ
and G2y := ṽ, where ũ and ṽ solve the following problems

∆2ũ = 0 in Ω1,

ũ = ∂ν ũ = 0 on Γ,

B1ũ = x on I,

B2ũ = 0 on I,

and


∆2ṽ = 0 in Ω1,

ṽ = ∂ν ṽ = 0 on Γ,

B1ṽ = 0 on I,

B2ṽ = y on I.

(3.19)

We define the Neumann map N (introduced in [11, p. 405]) given byN z := w̃
where w̃ is solution of the problem

∆w̃ = 0 in Ω1,

w̃ = 0 on Γ,

∂νw̃ = z on I.

(3.20)

From elliptic theory, see Section 7.3 of Chapter 2 in [89], we obtain that

N : Hs(I) → Hs+ 3
2 (Ω1) and Gi : Hs(I) → Hs+ 3

2
+i(Ω1), with i = 1, 2, are

bounded linear maps for any s ≥ 0.

Lemma 3.7. For all f ∈ D(AB), we have that a) G∗1ABf = γ1f on I and
b) G∗2ABf = −γ0f on I, where γ0w := w

∣∣
I
, γ1w := ∂νw

∣∣
I

and G∗i denotes the
adjoint of Gi in the sense

(Giϕ, ψ)L2(Ω1) = (ϕ,G∗i ψ)L2(I) for ϕ ∈ L2(I) and ψ ∈ L2(Ω1).
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Proof. Let f ∈ D(AB) and g ∈ L2(I). Note that G1g ∈ H5/2(Ω1). Taking
into account (2.12) and the integration formula of Proposition 2.18, we obtain(

∆2f,G1g
)
L2(Ω1)

−
(
f,∆2G1g

)
L2(Ω1)

= − (B1f, ∂νG1g)L2(I)

+ (B2f,G1g)L2(I) + (∂νf,B1G1g)L2(I) − (f,B2G1g)L2(I) .

On account of ∆2G1g = 0 in Ω1 and B1f = B2f = B2G1g = 0 on I, we
deduce

(G∗1ABf, g)L2(I) = (ABf,G1g)L2(Ω1) =
(
∆2f,G1g

)
L2(Ω1)

= (γ1f, g)L2(I) .

This last one shows a). The proof of b) is similar.

Proposition 3.8. For any w ∈ D(A1/2
B ) and g ∈ L2(I), we have

〈ABGig, w〉[D(A1/2
B )]′×D(A1/2

B )
=
(
g, (−1)i−1γ2−iw

)
L2(I)

(3.21)

for i = 1, 2.

Proof. Let w ∈ D(A1/2
B ) and g ∈ L2(I). As D(AB) is dense in D(A1/2

B ), then

there is (wn)n∈N ⊂ D(AB) such that limn→∞wn = w in D(A1/2
B ). For any

n ∈ N, the part a) of Lemma 3.7 implies

〈ABG1g, wn〉[D(A1/2
B )]′×D(A1/2

B )
= (G1g,ABwn)L2(Ω1) = (g, γ1wn)L2(I) . (3.22)

As G1g, wn ∈ D(A1/2
B ), then identity (3.12) allows us to write the convergence

lim
n→∞

〈ABG1g, wn〉[D(A1/2
B )]′×D(A1/2

B )
= lim

n→∞
(G1g, wn)

D(A1/2
B )

= (G1g, w)
D(A1/2

B )
= 〈ABG1g, w〉[D(A1/2

B )]′×D(A1/2
B )

.
(3.23)

The continuous embedding H1/2(I) ↪→ L2(I), see Theorem 2.6, and the con-
tinuity of the trace operator γ1 : H2(Ω1)→ H1/2(I) imply

‖γ1wn − γ1w‖L2(I) ≤ C ‖wn − w‖H2(Ω1) ≤ C ‖wn − w‖D(A1/2
B )

because ‖ · ‖H2
Γ(Ω1) and ‖ · ‖H2(Ω1) are equivalent norms on H2

Γ(Ω1). Therefore,

limn→∞ γ1wn = γ1w in L2(I). Thus,

lim
n→∞

(g, γ1wn)L2(I) = (g, γ1w)L2(I) . (3.24)

From (3.22)-(3.24) it follows (3.21) when i = 1. Using the same arguments
as before, (3.21) is proved when i = 2.
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Lemma 3.9. The L2(Ω1)-adjoint N ∗ of the Neumann map N is given by
(ϕ,N ∗ψ)L2(I) = (Nϕ, ψ)L2(Ω1) for ϕ ∈ L2(I) and ψ ∈ L2(Ω1). Then, for any
f ∈ D(AL), we have

N ∗ALf = γ0f. (3.25)

Proof. Let g ∈ L2(I) and f ∈ D(AL). Note that N g ∈ H3/2(Ω1) satisfies
∆N g ∈ L2(Ω1). Applying the generalization of Green’s first formula (see
Theorem 2.14) twice, we may write

(N ∗ALf, g)L2(I) = (ALf,N g)L2(Ω1)

= (∇f,∇N g)L2(Ω1)2 − (∂νf,N g)L2(Γ) − (∂νf,N g)L2(I)

= − (f,∆N g)L2(Ω1) + (f, ∂νN g)L2(Γ) + (f, ∂νN g)L2(I)

= (f, g)L2(I) .

Above we have considered the definitions of D(AL) and N , see Proposition
3.5 and (3.20). Therefore, (3.25) is true.

Proposition 3.10. For all w ∈ D(A1/2
L ) and g ∈ L2(I), it holds

〈ALN g, w〉[D(A1/2
L )]′×D(A1/2

L )
= (g, γ0w)L2(I) . (3.26)

Proof. Similar to the proof of Proposition 3.8. Here we use the fact that
D(AL) is dense in D(A1/2

L ) and apply Lemma 3.9, also consider (3.14).

Proposition 3.11. For g ∈ L2(I), we have

ABG2g +ALN g = 0 in H−1
Γ (Ω1).

Proof. Let g ∈ L2(I). Note that G2g ∈ D(A3/4
B ) and N g ∈ D(A1/2

L ). So,

A3/4
B G2g,A1/2

L N g ∈ L2(Ω1). Parts a) and c) of Theorem 2.53, and the first
characterization of (3.8) imply

ABG2g = A1/4
B A

3/4
B G2g ∈ H−1

Γ (Ω1).

Similar arguments allows to affirm

ALN g ∈ H−1
Γ (Ω1).

Let f ∈ D(A1/4
B ). Now, we will argue analogously as in the proof of Proposi-

tion 3.8. The density of D(AB) in D(A1/4
B ) implies the existence of a sequence
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(fn)n∈N ⊂ D(AB) such that limn→∞ fn = f in D(A1/4
B ). Using the fact that

A3/4
B is self-adjoint and part b) of Lemma 3.7, we get that

〈ABG2g, fn〉[D(A1/4
B )]′×D(A1/4

B )
= (A3/4

B G2g,A1/4
B fn)L2(Ω1) = (g,−γ0fn)L2(I)

for all n ∈ N. Now, putting A1/4
B A

1/2
B instead of A3/4

B below, we obtain that

〈ABG2g, fn〉[D(A1/4
B )]′×D(A1/4

B )
= (A3/4

B G2g,A1/4
B fn)L2(Ω1) = (A1/2

B G2g, fn)
D(A1/4

B )
.

for any n ∈ N. Taking limit as n→∞ in the two equalities above, we have

〈ABG2g, f〉[D(A1/4
B )]′×D(A1/4

B )
= (g,−γ0f)L2(I) . (3.27)

To end, let w ∈ H1
Γ(Ω1). An application of identities (3.26) and (3.27) to-

gether with the characterizations (3.8), the first of them, and (3.13) allows
us to write the following equalities

〈ABG2g +ALN g, w〉H−1
Γ (Ω1)×H1

Γ(Ω1)

= 〈ABG2g, w〉[D(A1/4
B )]′×D(A1/4

B )
+ 〈ALN g, w〉[D(A1/2

L )]′×D(A1/2
L )

= (g,−γ0w)L2(I) + (g, γ0w)L2(I) = 0.

This shows what we wanted.

Now, let u, θ : R+ × Ω1 → C and v : R+ × Ω2 → C be three arbitrary
functions with sufficient regularity. Taking into account the definition of the
operators G1 and G2 in (3.19), it follows in Ω1 that

β1∆2u = β1∆2u+ α∆2G1θ − γ∆2G2∂νutt −m1∆2G2∂νut

+ α∆2G2∂νθ + β2∆2G2∂νv +m2∆2G2∂νvt = ABΨ,
(3.28)

where Ψ := β1u+αG1θ−γG2∂νutt−m1G2∂νut+αG2∂νθ+β2G2∂νv+m2G2∂νvt.
The first conditions of (1.4) are equivalent to Ψ = ∂νΨ = 0 on R+ × Γ and
the transmission conditions on the interface (1.6) and (1.7) can be replaced
by B1Ψ = B2Ψ = 0 on R+ × I. As AB is a positive self-adjoint operator, it
follows from (2.25) that it has a standard extension ÃB : L2(Ω1)→ [D(AB)]

′
.

For simplicity of notation, we shall write AB instead of ÃB, with no fear of
confusion. From (3.28) it follows that

β1∆2u = β1ABu+ αABG1θ − γABG2∂νutt −m1ABG2∂νut

+ αABG2∂νθ + β2ABG2∂νv +m2ABG2∂νvt
(3.29)
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in [D(AB)]
′
. Let utt ∈ H2(Ω1) with utt = 0 on Γ. Note that ∆N∂νutt = 0

in Ω1, N∂νutt = 0 on Γ and ∂νN∂νutt = ∂νutt on I. Then, utt −N∂νutt = 0
on Γ and ∂ν(utt − N∂νutt) = 0 on I. So, utt − N∂νutt ∈ D(AL). Using the
standard extension of AL, writing in the last equality below AL instead of
ÃL, we get

∆utt = ∆utt−∆N∂νutt = −AL(utt−N∂νutt) = −ALutt+ALN∂νutt (3.30)

in [D(AL)]
′
. Let ut ∈ H2(Ω1) with ut = 0 on Γ. Reasoning similarly as above,

∆ut = −ALut +ALN∂νut in [D(AL)]
′
. (3.31)

The equalities (3.29)-(3.31) together with Proposition 3.11 allow us to
rewrite the problem (1.1)-(1.7) as

ρ1Mηutt + β1ABu+ αABG1γ0θ − ακABG2γ0θ + β2ABG2γ1v

+m2ABG2γ1vt +m1ALut − α
(
AT − σ

β
I
)
θ = 0,

ρ0θt + βAT θ + αALut − αALN∂νut = 0,

ρ2vtt − β2∆v −m2∆vt = 0.

(3.32)

If w := (u, ut, v, vt, θ)
> is in an appropriate space, we can write (3.32) together

with the initial conditions (1.8) and (1.9) as the following Cauchy problem

∂tw(t) = Aηw(t), t > 0, and w(0) = w0, (3.33)

where w0 := (u0, u1, v0, v1, θ0)>. For η > 0, the operator Aη is given by

Aη := D


0 I 0 0 0

−β1AB −m1AL −β2ABG2γ1 −m2ABG2γ1 αP
0 0 0 I 0
0 0 β2∆ m2∆ 0
0 −αAL(I −Nγ1) 0 0 −βAT

 ,

where D is the diagonal matrix given by diag
(
I, 1

ρ1
M−1

η , I, 1
ρ2
I, 1

ρ0
I
)

and
P := AT − σ

β
I − ABG1γ0 + κABG2γ0. Now, introducing the term W :=

β1ABw1 + β2ABG2γ1w3 +m2ABG2γ1w4 + αABG1γ0w5 − ακABG2γ0w5 allows
us to write

Aηw =


w2

− 1
ρ1
M−1

η W − m1

ρ1
M−1

η ALw2 + α
ρ1
M−1

η ATw5 − ασ
βρ1
M−1

η w5

w4
β2

ρ2
∆w3 + m2

ρ2
∆w4

− α
ρ0
AL(I −Nγ1)w2 − β

ρ0
ATw5

 ,
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where w := (w1, w2, w3, w4, w5)>. The domain of the operator Aη is defined
in the following way

D(Aη) :=
{
w = (wj)

>
1,...,5 ∈Hη : w2 ∈ H2

Γ(Ω1), w4 ∈ H1(Ω2), w5 ∈ D(AT ),

W ∈ H−1
Γ,η(Ω1), β2∆w3 +m2∆w4 ∈ L2(Ω2) and w2 = w4 on I

}
.

Remark 3.12. If w = (w1, w2, w3, w4, w5)> ∈ D(Aη), then Aηw ∈ Hη. In
effect, since w2 ∈ H1

Γ(Ω1) we get from (3.13) and part c) of Theorem 2.53
that ALw2 ∈ H−1

Γ,η(Ω1). As w2 ∈ H2
Γ(Ω1) we have that ∂νw2

∣∣
∂Ω1
∈ H1/2(∂Ω1)

and so Nγ1w2 ∈ H2(Ω1). Therefore, w2 − Nγ1w2 ∈ H2(Ω1). From the
definition of the Neumann map N it follows that w2 −Nγ1w2 = 0 on Γ and
∂ν(w2 −Nγ1w2) = 0 on I. Thus, AL(I −Nγ1)w2 ∈ L2(Ω1).

When η = 0, we not consider structural damping (i.e., m1 = 0). Under
these conditions, we define the operator A0 : H0 ⊃ D(A0)→H0 as follows

A0


w1

w2

w3

w4

w5

 :=


w2

− 1
ρ1
ABW0 + α

ρ1
ATw5 − ασ

βρ1
w5

w4
β2

ρ2
∆w3 + m2

ρ2
∆w4

− α
ρ0
AL(I −Nγ1)w2 − β

ρ0
ATw5

 , (3.34)

where W0 := β1w1 + β2G2γ1w3 + m2G2γ1w4 + αG1γ0w5 − ακG2γ0w5. The
domain of A0 is given by

D(A0) :=
{
w = (wj)

>
1,...,5 ∈ [D(A1/2

B )]2 × [H1(Ω2)]2 ×D(AT ) :W0 ∈ D(AB),

β2∆w3 +m2∆w4 ∈ L2(Ω2) and wj = wj+2 on I for j = 1, 2
}
.

3.1.3 The semigroup approach

We will prove that the linear operator Aη : D(Aη) ⊂Hη →Hη, for η ≥ 0, is
dissipative. This result is associated with the derivative of the energy of our
system (3.1), which is given by

∂tEγ(t) =−m1 ‖∇ut‖2
L2(Ω1)2 −m2 ‖∇vt‖2

L2(Ω2)2

− σ ‖θ‖2
L2(Ω1) − β ‖∇θ‖

2
L2(Ω1)2 − βκ ‖θ‖2

L2(∂Ω1)
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and for this reason the energy of the system decreases as time passes. Phys-
ically, the system is said to be dissipative. The Lumer–Phillips theorem,
see Theorem 2.30, will establish that Aη is the generator of a C0-semigroup
of contractions on Hη and as a consequence we will have that the Cauchy
problem (3.33) has a unique solution.

Proposition 3.13. Let η ≥ 0. For w = (w1, w2, w3, w4, w5)> ∈ D(Aη), we
have

Re (Aηw,w)Hη
=−m1 ‖∇w2‖2

L2(Ω1)2 −m2 ‖∇w4‖2
L2(Ω2)2

− σ ‖w5‖2
L2(Ω1) − β ‖∇w5‖2

L2(Ω1)2 − βκ ‖w5‖2
L2(∂Ω1) .

(3.35)

Therefore, Aη is dissipative.

Proof. We first assume that η > 0. If w = (w1, w2, w3, w4, w5)> ∈ D(Aη),
then it follows from the inner product of Hη that

(Aηw,w)Hη
= β1 (w2, w1)H2

Γ(Ω1) + (β2∆w3 +m2∆w4, w4)L2(Ω2)

+
(
−M−1

η W +M−1
η

(
−m1ALw2 + αATw5 − ασ

β
w5

)
, w2

)
H1

Γ,η(Ω1)
(3.36)

+ β2 (∇w4,∇w3)L2(Ω2)2 + (−αAL(w2 −N∂νw2)− βATw5, w5)L2(Ω1) .

Using the first Green’s formula (2.3) and the fact that w2 = w4 on I, we get

(β2∆w3 +m2∆w4, w4)L2(Ω2)

= − (∇(β2w3 +m2w4),∇w4)L2(Ω2)2 − (∂ν(β2w3 +m2w4), w4)L2(I)

= −β2 (∇w3,∇w4)L2(Ω2)2 −m2 ‖∇w4‖2
L2(Ω2)2 − β2 (∂νw3, w2)L2(I) (3.37)

−m2 (∂νw4, w2)L2(I) .

By (2.12), (3.14), (3.15) and integration by parts, we obtain(
−M−1

η W +M−1
η

(
−m1ALw2 + αATw5 − ασ

β
w5

)
, w2

)
H1

Γ,η(Ω1)

= −〈W , w2〉H−1
Γ,η(Ω1)×H1

Γ,η(Ω1) −m1 〈ALw2, w2〉H−1
Γ,η(Ω1)×H1

Γ,η(Ω1)

+ α (ATw5, w2)L2(Ω1) −
ασ
β

(w5, w2)L2(Ω1)

= −〈W , w2〉[D(A1/2
B )]′×D(A1/2

B )
−m1 ‖∇w2‖2

L2(Ω1)2 (3.38)

+ α (∇w5,∇w2)L2(Ω1)2 − α (∂νw5, w2)L2(I) .
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We have used that W ∈ H−1
Γ,η(Ω1) ⊂ [D(A1/2

B )]
′

and −∆w5 = (AT − σ
β
I)w5

(see definition of D(Aη), (3.8) and Proposition 3.6). On the other hand,

〈W , w2〉[D(A1/2
B )]′×D(A1/2

B )
= β1 〈ABw1, w2〉[D(A1/2

B )]′×D(A1/2
B )

+ β2 〈ABG2γ1w3, w2〉[D(A1/2
B )]′×D(A1/2

B )
+m2 〈ABG2γ1w4, w2〉[D(A1/2

B )]′×D(A1/2
B )

+ α 〈ABG1γ0w5, w2〉[D(A1/2
B )]′×D(A1/2

B )
− ακ 〈ABG2γ0w5, w2〉[D(A1/2

B )]′×D(A1/2
B )

.

Due to (3.12) and (3.21), we get

〈W , w2〉[D(A1/2
B )]′×D(A1/2

B )
= β1 (w1, w2)H2

Γ(Ω1) − β2 (∂νw3, w2)L2(I)

−m2 (∂νw4, w2)L2(I) + α (w5, ∂νw2)L2(I) + ακ (w5, w2)L2(I) .
(3.39)

From (3.16), (3.30) and integration by parts it follows that(
− αAL(w2 −N∂νw2)− βATw5, w5

)
L2(Ω1)

= −α (∇w2,∇w5)L2(Ω1)2 + α (∂νw2, w5)L2(I) − β ‖∇w5‖2
L2(Ω1)2 (3.40)

− βκ ‖w5‖2
L2(∂Ω1) − σ ‖w5‖2

L2(Ω1) .

A combination of equalities (3.36)-(3.40) implies

(Aηw,w)Hη
= i2β1 Im (w2, w1)H2

Γ(Ω1) + i2α Im (∂νw2, w5)L2(I)

+ i2α Im (∇w5,∇w2)L2(Ω1)2 + i2β2 Im (∇w4,∇w3)L2(Ω2)2 −m1 ‖∇w2‖2
L2(Ω1)2

−m2 ‖∇w4‖2
L2(Ω2)2 − σ ‖w5‖2

L2(Ω1) − β ‖∇w5‖2
L2(Ω1)2 − βκ ‖w5‖2

L2(∂Ω1) .

Taking real part above we see that (3.35) holds. For η = 0 and m1 = 0 the
proof is similar.

Proposition 3.14. Let P be as in the definition of Aη, see page 56. For

w1 ∈ D(A1/2
B ) and w5 ∈ H1(Ω1), we have

〈Pw5, w1〉[D(A1/2
B )]′×D(A1/2

B )
= (∇w5,∇w1)L2(Ω1)2 − (w5, ∂νw1)L2(I) . (3.41)

Proof. Let w1 ∈ D(A1/2
B ) and w5 ∈ H1(Ω1). Characterization (3.17) implies

that w5 ∈ D(A1/2
T ) and thus ATw5 ∈ [D(A1/2

T )]′. As D(A1/2
B ) ⊂ D(A1/2

T ), we

have that ATw5 ∈ [D(A1/2
B )]′. Note that G1γ0w5,G2γ0w5 ∈ D(A1/2

B ) and thus
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ABG1γ0w5,ABG2γ0w5 ∈ [D(A1/2
B )]′. Hence, Pw5 ∈ [D(A1/2

B )]′. Using (2.12),
we obtain

〈Pw5, w1〉[D(A1/2
B )]′×D(A1/2

B )
= 〈ATw5, w1〉[D(A1/2

T )]′×D(A1/2
T )
− σ

β
(w5, w1)L2(Ω1)

− 〈ABG1γ0w5, w1〉[D(A1/2
B )]′×D(A1/2

B )
+ κ 〈ABG2γ0w5, w1〉[D(A1/2

B )]′×D(A1/2
B )

.

Now, (3.18) and (3.21) leads to the identity (3.41).

Theorem 3.15. For all η > 0 and m1,m2 ≥ 0, the operator Aη generates a
C0-semigroup (Tη(t))t≥0 of contractions on Hη. Therefore, for any w0 ∈Hη

there exists a unique mild solution w ∈ C([0,∞),Hη) of (3.33). Furthermore,
for any w0 ∈ D(A k

η ) with k ∈ N, there exists a unique classical solution w to
the problem (3.33) that belongs to ∩kj=0C

k−j([0,∞), D(A j
η )).

Proof. Because of Proposition 3.13, Theorem 2.31 and Theorem 2.30 it is
sufficient to prove that I − Aη : D(Aη) → Hη is a surjective operator. Let
f = (f1, f2, f3, f4, f5)> ∈Hη. We will find w = (w1, w2, w3, w4, w5)> ∈ D(Aη)
such that (I −Aη)w = f , this is,

w1 − w2 = f1 in D(A1/2
B ),

w2 + 1
ρ1
M−1

η

(
W +m1ALw2 − αATw5 + ασ

β
w5

)
= f2 in H1

Γ,η(Ω1),

w3 − w4 = f3 in H1(Ω2),

w4 − β2

ρ2
∆w3 − m2

ρ2
∆w4 = f4 in L2(Ω2),

w5 + α
ρ0
AL(I −Nγ1)w2 + β

ρ0
ATw5 = f5 in L2(Ω1).

Plugging in wj+1 = wj−fj for j = 1, 3, we have the following matrix equation ρ1Mη + β1AB +m1AL (β2 +m2)ABG2γ1 −αP
0 ρ2I − (β2 +m2)∆ 0

αAL(I −Nγ1) 0 ρ0I + βAT

 w1

w3

w5


+

 0
m2∆f3

0

 =

 ρ1Mηf1 +m1ALf1 + ρ1Mηf2 +m2ABG2γ1f3

ρ2f3 + ρ2f4

αAL(I −Nγ1)f1 + ρ0f5


in H−2

Γ (Ω1)× L2(Ω2)× L2(Ω1). We set Y := X ×H1(Ω1), where the Hilbert
space

X :=
{

(w1, w3)> ∈ D(A1/2
B )×H1(Ω2) : w1 = w3 on I

}
(3.42)
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is equipped with the scalar product

((w1, w3), (w̃1, w̃3))X := β1 (w1, w̃1)
D(A1/2

B )
+ β2 (∇w3,∇w̃3)L2(Ω2)2 .

The sesquilinear form b : Y × Y → C, defined by

b((w1, w3, w5), (φ1, φ3, φ5)) := ρ1 (w1, φ1)H1
Γ,η(Ω1) + β1 (w1, φ1)H2

Γ(Ω1)

+m1 (∇w1,∇φ1)L2(Ω1)2 − α (∇w5,∇φ1)L2(Ω1)2 + α (w5, ∂νφ1)L2(I)

+ ρ2 (w3, φ3)L2(Ω2) + (β2 +m2) (∇w3,∇φ3)L2(Ω2)2 + α (∇w1,∇φ5)L2(Ω1)2

− α (∂νw1, φ5)L2(I) + ρ0 (w5, φ5)L2(Ω1) + β (∇w5,∇φ5)L2(Ω1)2

+ βκ (w5, φ5)L2(∂Ω1) + σ (w5, φ5)L2(Ω1) ,

is continuous. The coercivity of b is immediate, i.e.,

Re b((w1, w3, w5), (w1, w3, w5)) ≥ C ‖(w1, w3, w5)‖2
Y

for all (w1, w3, w5) ∈ Y . The mapping K : Y → C given by

K(φ1, φ3, φ5) := ρ1 (f1 + f2, φ1)H1
Γ,η(Ω1) +m1 (∇f1,∇φ1)L2(Ω1)2

+ ρ2 (f3 + f4, φ3)L2(Ω2) +m2 (∇f3,∇φ3)L2(Ω2)2

− α (∆f1, φ5)L2(Ω1) + ρ0 (f5, φ5)L2(Ω1)

is antilinear and continuous. By the Lax–Milgram theorem, there exists a
unique (w1, w3, w5) ∈ Y such that

b((w1, w3, w5), (φ1, φ3, φ5)) = K(φ1, φ3, φ5) (3.43)

for all (φ1, φ3, φ5) ∈ Y . By (3.12), (3.14), (3.15), (3.18), (3.21), Proposition
3.14, the first Green’s formula and (3.43), we obtain the matrix equation and
its third row implies

ATw5 = α
β
AL(I −Nγ1)(f1 − w1) + ρ0

β
(f5 − w5) ∈ L2(Ω1)

and as AT : D(AT ) → L2(Ω1) is a bijection because it is a positive self-
adjoint operator, see Remark 2.52, then w5 ∈ D(AT ). We set w2 := w1 − f1

and w4 := w3 − f3. From the first and second rows of the matrix equation,
it follows that W ∈ H−1

Γ,η(Ω1) and β2∆w3 + m2∆w4 ∈ L2(Ω2), respectively.

Note that w2 = w4 on I. Hence, w := (w1, w2, w3, w4, w5)> ∈ D(Aη). Finally,
we have proven that the range R(I −Aη) is equal to Hη.

The unique solution of the Cauchy problem (3.33), classical or weak, is of
the form w(t) = Tη(t)w0 (t ≥ 0) and its regularity depends on the choice of
the initial datum (see Theorem 2.34, Theorem 2.36 and Theorem 2.37).
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Remark 3.16. The statement of the previous theorem is also true when
η = m1 = 0 and m2 ≥ 0. The proof is analogous to that presented above.

3.2 Regularity

The section starts with a regularity result which contains a useful estimate
that we will use in the next two chapters. Said result will allow the proof of
Theorem 3.18. This theorem indicates that when the initial data have good
regularity, then some components of the solution of the problem (1.1)-(1.9)
gain regularity.

Remark 3.17. Let O be a bounded domain in Rn with a C2,1 boundary. We
recall that the classic map

H2(O) 3 u 7→ (−∆u, u
∣∣
∂O) ∈ L2(O)×H3/2(∂O)

is an isomorphism, see [123, p. 253], which implies that for each f ∈ L2(O)
and g ∈ H3/2(∂O) there exists a unique u ∈ H2(O) such that ∆u = f in O
with u

∣∣
∂O = g

∣∣
∂O. Moreover,

‖u‖H2(O) ≤ C(‖f‖L2(O) + ‖g‖H3/2(∂O)). (3.44)

Theorem 3.18. Let η > 0 and m1,m2 ≥ 0. If w ∈ D(A 2
η ), then w1 ∈

H4(Ω1), w2 ∈ H3(Ω1), β2w3 +m2w4 ∈ H2(Ω2) and w5 ∈ H3(Ω1). Therefore,
if w0 ∈ D(A 2

η ) then w(t) := Tη(t)w0 (t ≥ 0) is the unique solution of the
problem (1.1)-(1.9), which belongs to D(A 2

η ) and satisfies the boundary and
transmission conditions, (1.6) and (1.7), in the strong sense of traces.

Proof. If ξ = (ξ1, ξ2, ξ3, ξ4, ξ5)> ∈ D(Aη), we have that β1ABξ1+β2ABG2γ1ξ3+

m2ABG2γ1ξ4+αABG1γ0ξ5−ακABG2γ0ξ5 =:Wξ ∈ [D(A1/4
B )]

′
. It is well known

that AB : D(A3/4
B ) → [D(A1/4

B )]
′

is an isomorphism, see part c) of Theorem
2.53. Thus, A−1

B Wξ ∈ H3(Ω1) due to the third characterization in (3.8). Due
to the trace operators γi−1 and the regularity of the Green maps Gi, i = 1, 2,
we obtain

ξ1 = 1
β1
A−1
B Wξ − 1

β1
G2γ1(β2ξ3 +m2ξ4)− α

β1
(G1γ0ξ5 − κG2γ0ξ5) ∈ H3(Ω1).

Let w = (w1, w2, w3, w4, w5)> ∈ D(A 2
η ). Since Aηw ∈ D(Aη), then the

above allows us to affirm that w2 ∈ H3(Ω1). We also have

1
ρ1
M−1

η

(
W +m1ALw2 − αATw5 + ασ

β
w5

)
=: φ ∈ D(A1/2

B ). (3.45)
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3.2. Regularity

Note that G2γ1φ ∈ D(A3/4
B ) and so ABG2γ1φ ∈ H−1

Γ,η(Ω1). Taking φ̃ ∈ D(A1/2
B )

and applying integration by parts together with (2.12), (3.14) and (3.21), we
get the following equalities

〈∆φ+ABG2γ1φ, φ̃〉H−1
Γ,η(Ω1)×H1

Γ,η(Ω1)

= (∆φ, φ̃)L2(Ω1) + 〈ABG2γ1φ, φ̃〉[D(A1/2
B )]′×D(A1/2

B )

= −〈ALφ, φ̃〉H−1
Γ,η(Ω1)×H1

Γ,η(Ω1)

(3.46)

and thus
Mηφ = φ− η∆φ− ηABG2γ1φ in H−1

Γ,η(Ω1). (3.47)

Doing wjk := β2wj + m2wk, we obtain that ∆w34 =: f̃ ∈ L2(Ω2). Note
that w34 = w12 on I with γ0w12 ∈ H3/2(I). By Remark 3.17, there exists a

unique w̃34 ∈ H2(Ω2) such that ∆w̃34 = f̃ in Ω2 and w̃34

∣∣
I

= w12

∣∣
I
. Since

w34 − w̃34 ∈ H1
0 (Ω2) is a weak solution of ∆(w34 − w̃34) = 0, we immediately

obtain w34 = w̃34, which leads to β2w3 +m2w4 ∈ H2(Ω2). From (3.45)-(3.47)
it follows that

W −m1ABG2γ1w2 + γABG2γ1φ = ρ1φ− γ∆φ+m1∆w2 − α∆w5 ∈ L2(Ω1).

In consequence,

β1w1−m1G2γ1w2 +G2γ1(β2w3 +m2w4)+α(G1−κG2)γ0w5 +γG2γ1φ ∈ D(AB)

because AB : D(AB) → L2(Ω1) is bijective, see Remark 2.52. Once again,
appealing to the regularity of the operators γi−1 and maps Gi we obtain that
w1 ∈ H4(Ω1). Now, the last expression above leads us to that the boundary
and transmission conditions (1.6) and (1.7) hold in the strong sense of the
traces with w2 and w4 instead of ut and vt, respectively. On the other hand,
we have that

α
ρ0
ϕ̂− β

ρ0
ATw5 =: φ̂ ∈ D(AT ), (3.48)

where ϕ̂ := −AL(I−Nγ1)w2. This is also due to the fact that Aηw ∈ D(Aη).

As w2 ∈ H3(Ω1), then ϕ̂ = ∆w2 ∈ H1(Ω1). Because of φ̂ ∈ H2(Ω1), we get
from (3.17) and (3.48) that

ATw5 = α
β
ϕ̂− ρ0

β
φ̂ ∈ D(A1/2

T ).

Finally, since the operator AT : D(A3/2
T ) → D(A1/2

T ) is bijective (see again

part c) of Theorem 2.53) we conclude that w5 ∈ D(A3/2
T ) ⊂ H3(Ω1).

63



Chapter 3. Well-posedness and regularity of the solutions of a plate-membrane system

If w0 ∈ D(A 2
η ), then w0 ∈ D(Aη) and Aηw0 ∈ D(Aη). By Proposition

2.27, Tη(t)w0 ∈ D(Aη) and AηTη(t)w0 = Tη(t)Aηw0 ∈ D(Aη). Hence, the
unique solution of the problem (1.1)-(1.9) satisfies w(t) = Tη(t)w0 ∈ D(A 2

η )
for any t ≥ 0.

Remark 3.19. Let η ≥ 0. Due to the proof of Theorem 3.18, we have: If
w = (w1, w2, w3, w4, w5)> ∈ D(Aη) then β2w3+m2w4 ∈ H2(Ω2) and moreover
w ∈ H4−χ(Ω1)×H2(Ω1)× [H1(Ω2)]2 ×H2(Ω1), where χ := χ(0,∞)(η) stands
for the characteristic function of (0,∞).
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Chapter 4

Asymptotic behavior of the
solutions of some
plate-membrane problems

In this chapter the reader will find an extensive study of the asymptotic
behavior of the solutions of the plate-membrane transmission problem (1.1)-
(1.9). We will see that for γ ≥ 0 and m2 > 0 the solutions will have strong
stability, see Corollary 4.3 and Corollary 4.6. When the structural damping
on the plate is not considered (m1 = 0) it will be the thermal effect that will
help to obtain the strong stability, see part b) of Remark 4.4 and Remark
4.7. We prove by contradiction the exponential stability of the energy of
the system when the plate has rotational inertial (γ > 0) and the structure
is damped (m1 > 0 and m2 > 0), see Theorem 4.8. When we remove the
Kelvin–Voigt damping (m2 = 0) and the inertial term is present, an absence of
exponential stability is caused (see Theorem 4.15). In this case, the solutions
have polynomial stability when we add a geometric condition (see Theorem
4.16).

4.1 Strong stability

First we will prove that the operator Aη is continuously invertible, this is,
0 is in the resolvent set ρ(Aη). This result will be key to prove the strong
stability of the solutions of our problem for when γ ≥ 0 and m2 > 0.
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Chapter 4. Asymptotic behavior of the solutions of some plate-membrane problems

Proposition 4.1. 0 ∈ ρ(Aη) if a) η > 0 and m1,m2 ≥ 0 or b) η = m1 = 0
and m2 ≥ 0.

Proof. Due to the similarity between the proofs of the two cases a) and b),
we will only prove part a).

We show that the operator Aη : D(Aη) → Hη is bijective. Let f =
(f1, f2, f3, f4, f5)> ∈ Hη. We will find a unique w = (w1, w2, w3, w4, w5)> ∈
D(Aη) such that Aηw = f . Conveniently we set w2 := f1, w4 := f3 and
w5 := −A−1

T

[
α
β
AL(I − Nγ1)f1 + ρ0

β
f5

]
. We recall again that Remark 2.52

implies that AT is bijective. We now consider the following system{
β1ABw1 + β2ABG2γ1w3 = h in H−2

Γ (Ω1),

−β2∆w3 −m2∆f3 = −ρ2f4 in L2(Ω2),
(4.1)

where h := −m1ALf1−ρ1Mηf2−m2ABG2γ1f3+αPw5. With X as in (3.42),

we define b̃ : X ×X → C by b̃((w1, w3), (φ1, φ3)) := ((w1, w3), (φ1, φ3))X . The

function K̃ : X → C given by

K̃(φ1, φ3) :=−m1 (∇f1,∇φ1)L2(Ω1)2 − ρ1 (f2, φ1)H1
Γ,η(Ω1) + α (∇w5,∇φ1)L2(Ω1)2

− α (w5, ∂νφ1)L2(I) −m2 (∇f3,∇φ3)L2(Ω2)2 − ρ2 (f4, φ3)L2(Ω2)

is an element of the antidual space X ′ . By the Riesz’s representation theorem
there exists a unique (w1, w3) ∈ X such that

b̃((w1, w3), (φ1, φ3)) = K̃(φ1, φ3) (4.2)

for all (φ1, φ3) ∈ X . From (3.12), (3.14), (3.15), (3.21), Proposition 3.14, the
first Green’s formula and (4.2), we obtain that (4.1) is true. Reasoning as in
the last part of the proof of Theorem 3.15, we get w := (w1, w2, w3, w4, w5)> ∈
D(Aη). Thus, Aη is surjective. As the constructed w above is unique, then
Aη is injective.

Since Aη : D(Aη)→Hη is a closed linear operator (due to Theorem 3.15
and Proposition 2.28) and bijective, we conclude that A −1

η ∈ L(Hη).

The following proposition together with Theorem 2.39 allow us to affirm
that (Tη(t))t≥0 is strongly stable in Hη, when there is Kelvin–Voigt damping
on the membrane.

Proposition 4.2. Let η > 0, m1 ≥ 0 and m2 > 0. The imaginary axis is
contained in the resolvent set of Aη, this is, iR ⊂ ρ(Aη).
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4.1. Strong stability

Proof. Let η and m2 be positive, and m1 be non-negative. As 0 ∈ ρ(Aη) and
ρ(Aη) is open in C, see Proposition 4.1 and Theorem 1 in [124, p. 211], then
there is R > 0 such that B(0, R) ⊂ ρ(Aη). For real δ such that 0 < δ < R, we
have i[−δ, δ] ⊂ ρ(Aη). Thus, R := {λ > 0 : i[−λ, λ] ⊂ ρ(Aη)} is not empty.
Let λ∗ := supR. If λ∗ = ∞, we have nothing to prove. Let us suppose
λ∗ <∞. If λ∗ ∈ R, then i[−λ∗, λ∗] is contained in ρ(Aη) and so it is possible
to find r > 0 such that i[−λ∗ − r, λ∗ + r] ⊂ ρ(Aη). The above indicates that
λ∗ + r ∈ R which contradicts the assumption that λ∗ is the supremum of R.
Hence, λ∗ 6∈ R. Then, there exists (λn)n∈N ⊂ R such that limn→∞ λn = λ∗

and limn→∞ ‖(iλnI −Aη)
−1‖L(Hη) = ∞, see proof of Theorem 4.1 in [105].

Hence, there exists (f̃n)n∈N ⊂Hη with

‖f̃n‖Hη = 1 and lim
n→∞

‖(iλnI −Aη)
−1f̃n‖Hη =∞.

Here putting w̃n := (iλnI−Aη)
−1f̃n, wn := w̃n/‖w̃n‖Hη and fn := f̃n/‖w̃n‖Hη ,

we get that

(iλnI −Aη)wn = fn (4.3)

with

‖wn‖Hη
= 1 (4.4)

and

‖(iλnI −Aη)wn‖Hη
−−−→
n→∞

0. (4.5)

It is clear that (wn)n∈N ⊂ D(Aη). From (4.3) it follows that

iλnw
n
1 − wn2 = fn1 , (4.6)

iλnρ1w
n
2 +M−1

η

(
Wn +m1ALwn2 − αATwn5 + ασ

β
wn5
)

= ρ1f
n
2 , (4.7)

iλnw
n
3 − wn4 = fn3 , (4.8)

iλnρ2w
n
4 − β2∆wn3 −m2∆wn4 = ρ2f

n
4 , (4.9)

iλnρ0w
n
5 + αAL(I −Nγ1)wn2 + βATwn5 = ρ0f

n
5 , (4.10)

whereWn := β1ABwn1 +ABG2γ1(β2w
n
3 +m2w

n
4 )+αABG1γ0w

n
5−ακABG2γ0w

n
5 .

Moreover,

‖(iλnI −Aη)wn‖2
Hη

= β1 ‖fn1 ‖
2
H2

Γ(Ω1) + ρ1 ‖fn2 ‖
2
H1

Γ,η(Ω1) + β2 ‖∇fn3 ‖
2
L2(Ω2)2

+ ρ2 ‖fn4 ‖
2
L2(Ω2) + ρ0 ‖fn5 ‖

2
L2(Ω1) .
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The limit (4.5) and (4.6)-(4.10) imply that

iλnw
n
1 − wn2 → 0 in H2

Γ(Ω1), (4.11)

iλnρ1Mηw
n
2 +Wn +m1ALwn2 − α

(
AT − σ

β

)
wn5 → 0 in H−1

Γ,η(Ω1), (4.12)

iλn∇wn3 −∇wn4 → 0 in L2(Ω2), (4.13)

iλnρ2w
n
4 − β2∆wn3 −m2∆wn4 → 0 in L2(Ω2), (4.14)

iλnρ0w
n
5 + αAL(I −Nγ1)wn2 + βATwn5 → 0 in L2(Ω1). (4.15)

Due to the dissipativity (3.35) of the operator Aη, we have

Re ((iλnI −Aη)wn, wn)Hη
= m1 ‖∇wn2‖

2
L2(Ω1)2 +m2 ‖∇wn4‖

2
L2(Ω2)2

+ σ ‖wn5‖
2
L2(Ω1) + β ‖∇wn5‖

2
L2(Ω1)2 + βκ ‖wn5‖

2
L2(∂Ω1) .

(4.16)

By Theorem 2.24, Cauchy–Schwarz inequality and (4.4), we get the estimate

‖wn5‖
2
H1(Ω1) ≤ C Re ((iλnI −Aη)wn, wn)Hη

≤ C ‖(iλnI −Aη)wn‖Hη
.

In consequence,

wn5 → 0 in H1(Ω1). (4.17)

Assuming m1 > 0, from (4.5) and (4.16) we obtain

∇wn2 → 0 in L2(Ω1) and ∇wn4 → 0 in L2(Ω2). (4.18)

The limits λn → λ∗, (4.13) and the right-hand side of (4.18) imply

∇wn3 → 0 in L2(Ω2). (4.19)

On the other hand,

(iλnρ2w
n
4 − β2∆wn3 −m2∆wn4 , w

n
4 )L2(Ω2)

= iλnρ2 ‖wn4‖
2
L2(Ω2) − (β2∆wn3 +m2∆wn4 , w

n
4 )L2(Ω2) .

(4.20)

Using integration by parts and the fact that wn2 = wn4 on I, we compute

(β2∆wn3 +m2∆wn4 , w
n
4 )L2(Ω2) = −β2 (∇wn3 ,∇wn4 )L2(Ω2)2

−m2 ‖∇wn4‖
2
L2(Ω2)2 − (∂ν(β2w

n
3 +m2w

n
4 ), wn2 )L2(I) ,

(4.21)
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4.1. Strong stability

by Remark 3.19 we have β2w
n
3 +m2w

n
4 ∈ H2(Ω2). Thanks to Cauchy–Schwarz

inequality and the trace theorem,∣∣ (∂ν(β2w
n
3 +m2w

n
4 ), wn2 )L2(I)

∣∣
≤ C ‖β2w

n
3 +m2w

n
4‖H2(Ω2) ‖w

n
2‖H1(Ω1) .

(4.22)

Note that wn2 ∈ H1
Γ(Ω1) and in consequence ‖wn2‖H1(Ω1) ≤ C ‖∇wn2‖L2(Ω1)2 ,

see Theorem 2.24. By the left-hand side of (4.18),

wn2 → 0 in H1(Ω1). (4.23)

As ∆(β2w
n
3 +m2w

n
4 ) = iλnρ2w

n
4−ρ2f

n
4 in Ω2 and β2w

n
3 +m2w

n
4 = β2w

n
1 +m2w

n
2

on I, see (4.9), Remark 3.17 implies

‖β2w
n
3 +m2w

n
4‖H2(Ω2)

≤ C
(
‖iλnρ2w

n
4 − ρ2f

n
4 ‖L2(Ω2) + ‖β2w

n
1 +m2w

n
2‖H3/2(I)

)
≤ C

(
|λn| ‖wn4‖L2(Ω2) + ‖fn4 ‖L2(Ω2) + ‖wn1‖H2(Ω1) + ‖wn2‖H2(Ω1)

)
. (4.24)

We know that fn4 → 0 in L2(Ω2). By (4.4), the sequences (wn1 )n∈N and
(wn4 )n∈N are bounded in H2(Ω1) and L2(Ω2), respectively. The limit (4.11)
implies that (wn2 )n∈N is bounded in H2(Ω1). Hence,

‖β2w
n
3 +m2w

n
4‖H2(Ω2) ≤ C. (4.25)

From (4.14), (4.18)-(4.23) and (4.25), it follows that

wn4 → 0 in L2(Ω2). (4.26)

Now, let us consider the following equality〈
iλnρ1Mηw

n
2 +Wn +m1ALwn2 − αATwn5 + ασ

β
wn5 , w

n
1

〉
H−1

Γ,η×H
1
Γ,η

= iλnρ1 〈Mηw
n
2 , w

n
1 〉H−1

Γ,η×H
1
Γ,η

+ 〈Wn, wn1 〉H−1
Γ,η×H

1
Γ,η

+m1 〈ALwn2 , wn1 〉H−1
Γ,η×H

1
Γ,η

+
〈
− αATwn5 + ασ

β
wn5 , w

n
1

〉
H−1

Γ,η×H
1
Γ,η
,

(4.27)

where H−1
Γ,η ×H1

Γ,η := H−1
Γ,η(Ω1)×H1

Γ,η(Ω1). By (3.15), we have the following∣∣ 〈Mηw
n
2 , w

n
1 〉H−1

Γ,η(Ω1)×H1
Γ,η(Ω1)

∣∣ =
∣∣ (wn2 , wn1 )H1

Γ,η(Ω1)

∣∣ ≤ C ‖wn2‖H1(Ω1) . (4.28)
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Proceeding as in the proof of Proposition 3.13, we obtain

〈Wn, wn1 〉H−1
Γ,η×H

1
Γ,η

= β1 ‖wn1‖
2
H2

Γ(Ω1) − (∂ν(β2w
n
3 +m2w

n
4 ), wn1 )L2(I)

+ α (wn5 , ∂νw
n
1 )L2(I) + ακ (wn5 , w

n
1 )L2(I) .

(4.29)

Arguing as in (4.22) and considering (4.25),∣∣ (∂ν(β2w
n
3 +m2w

n
4 ), wn1 )L2(I)

∣∣ ≤ C ‖wn1‖H1(Ω1) . (4.30)

The equivalence of norms ‖ · ‖H2
Γ(Ω1) ∼ ‖ · ‖H2(Ω1) and ‖ · ‖H1

Γ(Ω1) ∼ ‖ · ‖H1(Ω1)

on H2
Γ(Ω1) and H1

Γ(Ω1), respectively, together with Theorem 2.5 allow to
obtain immediately the continuous embedding H2

Γ(Ω1) ↪→ H1
Γ(Ω1). Now, the

limits (4.11) and (4.23) imply

wn1 → 0 in H1(Ω1). (4.31)

By the trace theorem, we get∣∣ (wn5 , ∂νwn1 )L2(I)

∣∣ ≤ C ‖wn5‖H1(Ω1) ‖w
n
1‖H2(Ω1) ≤ C ‖wn5‖H1(Ω1) (4.32)

and ∣∣ (wn5 , wn1 )L2(I)

∣∣ ≤ C ‖wn5‖H1(Ω1) . (4.33)

From (3.14), it follows that∣∣ 〈ALwn2 , wn1 〉H−1
Γ,η×H

1
Γ,η

∣∣ =
∣∣ (∇wn2 ,∇wn1 )L2(Ω1)2

∣∣ ≤ C ‖∇wn2‖L2(Ω1)2 . (4.34)

Using integration by parts,〈
−ATwn5 + σ

β
wn5 , w

n
1

〉
H−1

Γ,η(Ω1)×H1
Γ,η(Ω1)

= (∆wn5 , w
n
1 )L2(Ω1)

= − (∇wn5 ,∇wn1 )L2(Ω1)2 + (∂νw
n
5 , w

n
1 )L2(∂Ω1) . (4.35)

Applying Cauchy–Schwarz inequality,∣∣ (∇wn5 ,∇wn1 )L2(Ω1)2

∣∣ ≤ ‖∇wn5‖L2(Ω1)2 ‖∇wn1‖L2(Ω1)2 . (4.36)

As ∂νw
n
5 + κwn5 = 0 on ∂Ω1, then∣∣ (∂νwn5 , wn1 )L2(∂Ω1)

∣∣ ≤ C ‖wn5‖H1(Ω1) ‖w
n
1‖H1(Ω1) . (4.37)
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4.1. Strong stability

From (4.12), (4.17), (4.23) and (4.27)-(4.37), we can affirm

wn1 → 0 in H2(Ω1). (4.38)

The limits (4.17), (4.19), (4.23), (4.26) and (4.38) imply wn → 0 in Hη, this
contradicts (4.4). Hence, λ∗ =∞.

Let us now consider m1 = 0. In this case, we initially only have the right-
hand side of (4.18) and consequently (4.19) holds. Note that (4.20), (4.21)
and (4.25) are true here too. The boundedness of the sequence (wn2 )n∈N in
H2(Ω1), the trace theorem and Corollary 2.22 allows us to write∣∣ (∂ν(β2w

n
3 +m2w

n
4 ), wn2 )L2(I)

∣∣
≤ C ‖β2w

n
3 +m2w

n
4‖

1/2

H2(Ω2) ‖∇(β2w
n
3 +m2w

n
4 )‖1/2

L2(Ω2)2 ‖wn2‖H1(Ω1)

≤ C
(
‖∇wn3‖

1/2

L2(Ω2)2 + ‖∇wn4‖
1/2

L2(Ω2)2

)
. (4.39)

By (4.4), (4.14), right-hand side of (4.18), (4.19)-(4.21) and (4.39) we get

wn4 → 0 in L2(Ω2). (4.40)

From (4.15) and (4.17), it follows that

α∆wn2 + β∆wn5 → 0 in L2(Ω1).

The integration by parts formula (2.1) allows the calculation

(α∆wn2 + β∆wn5 , w
n
2 )L2(Ω1) = −α ‖∇wn2‖

2
L2(Ω1)2 + α (∂νw

n
2 , w

n
2 )L2(I)

− β (∇wn5 ,∇wn2 )L2(Ω1)2 + β (∂νw
n
5 , w

n
2 )L2(I) .

It is easy to see that

(∇wn5 ,∇wn2 )L2(Ω1)2 → 0 and (∂νw
n
5 , w

n
2 )L2(I) → 0.

Since wn2 = wn4 on I,∣∣ (∂νwn2 , wn2 )L2(I)

∣∣ =
∣∣ (∂νwn2 , wn4 )L2(I)

∣∣ ≤ ‖∂νwn2‖L2(I) ‖w
n
4‖L2(I)

≤ C ‖wn2‖H2(Ω1) ‖w
n
4‖H1/2(I) ≤ C ‖wn4‖H1(Ω2) . (4.41)

The limit of the right part of (4.18), (4.40) and (4.41) imply

(∂νw
n
2 , w

n
2 )L2(I) → 0. (4.42)

Therefore, ∇wn2 → 0 in L2(Ω1). Reasoning as in the previous case, we obtain
again the same contradiction.
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Corollary 4.3. Let η > 0, m1 ≥ 0 and m2 > 0. Then (Tη(t))t≥0 is strongly
stable in Hη.

Remark 4.4. a) In absence of temperature on the plate we also have strong
stability when the rotational term is present and the structure is damped.

b) The thermal effect on the plate guarantees the strong stability when
we remove the structural damping on the plate and leave the Kelvin–Voigt
damping on the membrane and there is presence of the rotational term.

c) With an appropriate geometric condition on Ω2, see (4.99), for the
situation η,m1 > 0 and m2 = 0 we also have strong stability (see the proof
of Theorem 4.16).

Now we will see the second strong stability result of the system (1.1)-(1.9)
when both the inertial term and the structural damping are not present, but
there is Kelvin–Voigt damping on the membrane.

Proposition 4.5. If η = m1 = 0 and m2 > 0, then the imaginary axis is
contained in the resolvent set of A0, i.e., iR ⊂ ρ(A0).

Proof. Arguing as in Proposition 4.2, there exists (λn)n∈N ⊂ R and λ∗ ∈ R+

such that limn→∞ λn = λ∗. Moreover, there are sequences (wn)n∈N ⊂ D(A0)
and (fn)n∈N ⊂H0 such that

(iλnI −A0)wn = fn (4.43)

with
‖wn‖H0

= 1 and ‖(iλnI −A0)wn‖H0
−−−→
n→∞

0. (4.44)

From (3.34) and (4.43) it follows that

iλnw
n
1 − wn2 = fn1 , (4.45)

iλnρ1w
n
2 +ABWn

0 − αATwn5 + ασ
β
wn5 = ρ1f

n
2 , (4.46)

iλnw
n
3 − wn4 = fn3 , (4.47)

iλnρ0w
n
5 + αAL(I −Nγ1)wn2 + βATwn5 = ρ0f

n
5 , (4.48)

where Wn
0 := β1w

n
1 + β2G2γ1w

n
3 +m2G2γ1w

n
4 + αG1γ0w

n
5 − ακG2γ0w

n
5 . Notice,

‖(iλnI −A0)wn‖2
H0

= β1 ‖fn1 ‖
2
H2

Γ(Ω1) + ρ1 ‖fn2 ‖
2
L2(Ω1) + β2 ‖∇fn3 ‖

2
L2(Ω2)2

+ ρ2 ‖fn4 ‖
2
L2(Ω2) + ρ0 ‖fn5 ‖

2
L2(Ω1) .
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The limit of (4.44) and (4.45)-(4.48) imply that

iλnw
n
1 − wn2 → 0 in H2

Γ(Ω1), (4.49)

iλnρ1w
n
2 +ABWn

0 − αATwn5 + ασ
β
wn5 → 0 in L2(Ω1), (4.50)

iλn∇wn3 −∇wn4 → 0 in L2(Ω2), (4.51)

iλnρ0w
n
5 + αAL(I −Nγ1)wn2 + βATwn5 → 0 in L2(Ω1). (4.52)

Due to the dissipativity (3.35) of the operator A0, we have

Re ((iλnI −A0)wn, wn)H0
= m2 ‖∇wn4‖

2
L2(Ω2)2 + σ ‖wn5‖

2
L2(Ω1)

+ β ‖∇wn5‖
2
L2(Ω1)2 + βκ ‖wn5‖

2
L2(∂Ω1) .

(4.53)

In consequence,
wn5 → 0 in H1(Ω1). (4.54)

As m2 > 0, from (4.44) and (4.53) we obtain

∇wn4 → 0 in L2(Ω2). (4.55)

The limits λn → λ∗, (4.51) and (4.55) imply

∇wn3 → 0 in L2(Ω2). (4.56)

Here, we can make use of (4.39), (4.40) and (4.42). Now, we will work on the
following equation(

iλnρ1w
n
2 +ABWn

0 − αATwn5 + ασβ−1wn5 , w
n
2

)
L2(Ω1)

= iλnρ1 ‖wn2‖
2
L2(Ω1) + (ABWn

0 , w
n
2 )L2(Ω1) + α (∆wn5 , w

n
2 )L2(Ω1) .

(4.57)

Using integration by parts, Cauchy–Schwarz inequality, ∂νw
n
5 = −κwn5 on I,

the trace theorem and (4.54) we get

(∆wn5 , w
n
2 )L2(Ω1) → 0. (4.58)

Due to Proposition 3.8,

(ABWn
0 , w

n
2 )L2(Ω1) = β1 (wn1 , w

n
2 )H2

Γ(Ω1) − (∂ν(β2w
n
3 +m2w

n
4 ), wn2 )L2(I)

+ α (wn5 , ∂νw
n
2 )L2(I) + ακ (wn5 , w

n
2 )L2(I) . (4.59)
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The trace theorem and (4.54) imply

(wn5 , ∂νw
n
2 )L2(I) → 0 and (wn5 , w

n
2 )L2(I) → 0. (4.60)

Joining (4.39), the left-hand side of (4.44), (4.50) and (4.55)-(4.60) we obtain
the following convergence

iλnρ1 ‖wn2‖
2
L2(Ω1) + β1 (wn1 , w

n
2 )H2

Γ(Ω1) → 0. (4.61)

From (4.49), it follows that

iλn ‖wn1‖
2
H2

Γ(Ω1) − (wn2 , w
n
1 )H2

Γ(Ω1) → 0. (4.62)

Taking into account (4.54) and adding (4.50) with (4.52), we have

iλnβρ1w
n
2 + βABWn

0 − α2∆wn2 → 0 in L2(Ω1)

and thus

β
[
iλnρ1 ‖wn2‖

2
L2(Ω1) + β1 (wn1 , w

n
2 )H2

Γ(Ω1)

]
− α2 (∆wn2 , w

n
2 )L2(Ω1) → 0. (4.63)

By (4.61) and (4.63),
(∆wn2 , w

n
2 )L2(Ω1) → 0

and in consequence

‖∇wn2‖
2
L2(Ω1)2 − (∂νw

n
2 , w

n
2 )L2(I) → 0. (4.64)

From (4.42) and (4.64), it follows that ∇wn2 → 0 in L2(Ω1). By Friedrichs
inequality, we obtain

wn2 → 0 in L2(Ω1). (4.65)

From (4.61), (4.62) and (4.65), it follows that

wn1 → 0 in H2(Ω1). (4.66)

Because of (4.40), (4.54), (4.56), (4.65) and (4.66) we have wn → 0 in H0.
This contradicts the first assertion in (4.44).

Corollary 4.6. Let η = m1 = 0 and m2 > 0. Then (T0(t))t≥0 is strongly
stable in H0.

Remark 4.7. The temperature on the plate played a very important role in
obtaining the result of Proposition 4.5.
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4.2. Exponential stability

4.2 Exponential stability

The main result of the section is the exponential stability of our problem
(1.1)-(1.9) when γ > 0 and we maintain all dampings on the structure. In
consequence, for the solutions w(t) = Tη(t)w0 of this system, we will have
that ‖w(t)‖Hη

≤ Ce−δt ‖w0‖Hη
for all t ≥ 0, being C and δ positive constants.

We will use the characterization of Theorem 2.41. The proof will be done by
contradiction.

Theorem 4.8. If η > 0, m1 > 0 and m2 > 0, then the semigroup (Tη(t))t≥0

generated by Aη is exponentially stable.

Proof. From Proposition 4.2, we have iR ⊂ ρ(Aη). Let us suppose (2.15)
is not true. Then, there exists a sequence (λn, wn)n∈N ⊂ R × D(Aη) with
‖wn‖Hη

= 1 such that

‖(iλnI −Aη)wn‖Hη
−−−→
n→∞

0.

As the resolvent of Aη is holomorphic (see Theorem 1 in [124, p. 211]) and
therefore bounded on compact subsets of the imaginary axis, we see that the
sequence (λn)n∈N is unbounded, thereby we may assume limn→∞ λn =∞. If
fn := (iλnI −Aη)wn, then (4.6)-(4.18) hold. Note that in this proof we can
make use of (4.20)-(4.24). From (4.13),

i∇wn3 − λ−1
n ∇wn4 → 0 in L2(Ω2).

By the right-hand side of (4.18), we obtain

∇wn3 → 0 in L2(Ω2). (4.67)

From (4.11),
iwn1 − λ−1

n wn2 → 0 in H2(Ω1)

and in consequence (λ−1
n w2)n∈N is bounded in H2(Ω1). On the other hand,

using (4.24) we get

λ−1
n ‖β2w

n
3 +m2w

n
4‖H2(Ω2) ≤ C. (4.68)

A combining of (4.14), (4.20)-(4.23) and (4.68) causes that

wn4 → 0 in L2(Ω2). (4.69)
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From (4.11),
i ‖wn1‖

2
H2

Γ(Ω1) − λ
−1
n (wn2 , w

n
1 )H2

Γ(Ω1) → 0. (4.70)

Now, let us consider the following equality〈
iλnρ1Mηw

n
2 +Wn +m1ALwn2 − αATwn5 + ασβ−1wn5 , w

n
2

〉
H−1

Γ,η×H
1
Γ,η

= iλnρ1 〈Mηw
n
2 , w

n
2 〉H−1

Γ,η×H
1
Γ,η

+ 〈Wn, wn2 〉H−1
Γ,η×H

1
Γ,η

(4.71)

+m1 〈ALwn2 , wn2 〉H−1
Γ,η×H

1
Γ,η

+
〈
−αATwn5 + ασβ−1wn5 , w

n
2

〉
H−1

Γ,η×H
1
Γ,η
.

By (3.15), ∣∣ 〈Mηw
n
2 , w

n
2 〉H−1

Γ,η(Ω1)×H1
Γ,η(Ω1)

∣∣ = ‖wn2‖
2
H1

Γ,η(Ω1) . (4.72)

Proceeding as in the proof of Proposition 3.13,

〈Wn, wn2 〉H−1
Γ,η×H

1
Γ,η

= β1 (wn1 , w
n
2 )H2

Γ(Ω1) − (∂ν(β2w
n
3 +m2w

n
4 ), wn2 )L2(I)

+ α (wn5 , ∂νw
n
2 )L2(I) + ακ (wn5 , w

n
2 )L2(I) .

(4.73)

Taking into account (4.22) and (4.68),∣∣λ−1
n (∂ν(β2w

n
3 +m2w

n
4 ), wn2 )L2(I)

∣∣ ≤ C ‖wn2‖H1(Ω1) . (4.74)

By the trace theorem,∣∣λ−1
n (wn5 , ∂νw

n
2 )L2(I)

∣∣ ≤ Cλ−1
n ‖wn2‖H2(Ω1) ‖w

n
5‖H1(Ω1) ≤ C ‖wn5‖H1(Ω1) (4.75)

and∣∣λ−1
n (wn5 , w

n
2 )L2(I)

∣∣ ≤ Cλ−1
n ‖wn2‖H1(Ω1) ‖w

n
5‖H1(Ω1) ≤ C ‖wn5‖H1(Ω1) . (4.76)

From (3.14),∣∣λ−1
n 〈ALwn2 , wn2 〉H−1

Γ,η(Ω1)×H1
Γ,η(Ω1)

∣∣ = λ−1
n ‖∇wn2‖

2
L2(Ω1)2 . (4.77)

Using integration by parts,〈
−ATwn5 + σ

β
wn5 , w

n
2

〉
H−1

Γ,η(Ω1)×H1
Γ,η(Ω1)

= (∆wn5 , w
n
2 )L2(Ω1)

= − (∇wn5 ,∇wn2 )L2(Ω1)2 + (∂νw
n
5 , w

n
2 )L2(∂Ω1) . (4.78)

Applying Cauchy–Schwarz inequality,∣∣λ−1
n (∇wn5 ,∇wn2 )L2(Ω1)2

∣∣ ≤ λ−1
n ‖∇wn2‖L2(Ω1)2 ‖∇wn5‖L2(Ω1)2 . (4.79)
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As ∂νw
n
5 + κwn5 = 0 on ∂Ω1, then∣∣λ−1

n (∂νw
n
5 , w

n
2 )L2(∂Ω1)

∣∣ ≤ Cλ−1
n ‖wn2‖H1(Ω1) ‖w

n
5‖H1(Ω1) . (4.80)

From (4.12), (4.17), (4.23) and (4.71)-(4.80), we get

λ−1
n (wn1 , w

n
2 )H2

Γ(Ω1) → 0

and therefore
wn1 → 0 in H2(Ω1), (4.81)

see (4.70). Combining (4.17), (4.23), (4.67), (4.69) and (4.81), we can write
‖wn‖Hη

→ 0. This is a contradiction to ‖wn‖Hη
= 1.

Remark 4.9. In the previous proof we took into account the temperature.
However, Theorem 4.8 continues to be true when we remove the temperature
on the plate. But when we remove the structural damping on the plate and we
leave the other conditions of the theorem, we know nothing about exponential
stability, even with temperature in the plate.

Remark 4.10. In the next chapter we will see that if η = m1 = 0 and
m2 > 0, then the semigroup (T0(t))t≥0 is exponentially stable.

4.3 Lack of exponential stability

In this section, we will prove that our system (1.1)-(1.9) is not exponentially
stable, if we remove the Kelvin–Voigt damping on the membrane and we leave
the rotational term on the plate. Our proof is supported by the following
theorem.

Theorem 4.11 (cf. [59, Theorem 3.1]). Let H0 be a closed subspace of a
Hilbert space H. Let (T0(t))t∈R be a unitary group on H0 and (T (t))t≥0 be a
C0-semigroup over H. If the difference T (t) − T0(t) : H0 → H is a compact
operator for all t > 0, then (T (t))t≥0 is not exponentially stable.

We define H := {0} × {0} × H1
0 (Ω2) × L2(Ω2) × {0} endowed with the

norm ‖ŵ‖2
H := β2 ‖∇ŵ3‖2

L2(Ω2)2 + ρ2 ‖ŵ4‖2
L2(Ω2). Let us consider the system

determined by the wave equation with zero Dirichlet boundary condition
ρ2v̂tt − β2∆v̂ = 0 in R+ × Ω2,

v̂ = 0 on R+ × I,
v̂(0, ·) = v̂0, v̂t(0, ·) = v̂1 in Ω2,

(4.82)
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where the initial data v̂0 and v̂1 lie in appropiate Hilbert spaces. We introduce
the operator

AG : D(AG ) ⊂H →H given by AG


0
0
ŵ3

ŵ4

0

 :=


0
0
ŵ4

β2

ρ2
∆ŵ3

0


with domain D(AG ) := {0}×{0}×H2(Ω2)∩H1

0 (Ω2)×H1
0 (Ω2)×{0}. Putting

ŵ = (ŵj)
>
j=1,...,5 := (0, 0, v̂, v̂t, 0)> we have that the system (4.82) can be

written as the Cauchy problem

∂tŵ(t) = AG ŵ(t) (t > 0) with ŵ(0) = (0, 0, v̂0, v̂1, 0)>.

The operator iAG : D(AG )→H is densely defined due to H2(Ω2)∩H1
0 (Ω2)

and H1
0 (Ω2) are dense in H1

0 (Ω2) and L2(Ω2), respectively, symmetric because
(iAG ŵ, ŵ)H ∈ R for any ŵ ∈ D(AG ), see [77, p. 534], and surjective (Remark
3.17 allows to conclude that). Proposição 5.122 in [32] implies that iAG is
self-adjoint and therefore AG is skew-adjoint. By Theorem 2.50, we obtain
that AG generates a unitary group (UG (t))t∈R on H .

Lemma 4.12. Let v̂ be a sufficiently regular solution of (4.82) with v̂0 ∈
H1(Ω2) and v̂1 ∈ L2(Ω2). For t > 0 the following estimate holds

‖∂ν v̂‖2
L2((0,t),L2(I)) ≤ C

(
‖v̂1‖2

L2(Ω2) + ‖∇v̂0‖2
L2(Ω2)2

)
(4.83)

with C being a positive constant that depends on ρ2, β2,Ω2 and t but indepen-
dent of the solution and the initial data.

Proof. Let t > 0. Multiplying the differential equation in (4.82) by the con-
jugate of v̂t, integrating over Ω2, employing integration by parts and after
taking real part yields

1

2

d

ds

(
ρ2 ‖v̂t(s)‖2

L2(Ω2) + β2 ‖∇v̂(s)‖2
L2(Ω2)2

)
= 0 (4.84)

for 0 ≤ s ≤ t. The initial data in (4.82) and (4.84) imply∫
Ω2

ρ2|v̂t(s)|2 + β2|∇v̂(s)|2dx =

∫
Ω2

ρ2|v̂1|2 + β2|∇v̂0|2dx. (4.85)
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Let ~ : Ω2 → R2 be a vector field of class C1 in Ω2 with ~
∣∣
I

= −ν. Using the
conditions that satisfy ~ and v̂ on I, theorem of divergence and the identity
~ · ∇|v̂t(s)|2 = div(~|v̂t(s)|2)− (div ~)|v̂t(s)|2, we obtain∫

Ω2

Re(v̂tt(s)~ · ∇v̂(s))dx =
1

2

∫
Ω2

(div ~)|v̂t(s)|2dx

+
d

ds

∫
Ω2

Re(v̂t(s)~ · ∇v̂(s))dx.

(4.86)

On the other side, using the convention of summation over repeated indices
and integration by parts, we have∫

Ω2

Re(∆v̂(s)~ · ∇v̂(s))dx = −Re

∫
Ω2

(∂j v̂(s))(∂j~k)(∂kv̂(s))dx

+
1

2

∫
Ω2

(div ~)|∇v̂(s)|2dx+
1

2

∫
I

|∂ν v̂(s)|2dS.
(4.87)

Multiplying the differential equation in (4.82) by ~ · ∇v̂ and using (4.86)
together with (4.87), we get∫
I

|∂ν v̂(s)|2dS = 2
ρ2

β2

d

ds

∫
Ω2

Re(v̂t(s)~ · ∇v̂(s))dx+
ρ2

β2

∫
Ω2

(div ~)|v̂t(s)|2dx

+ 2 Re

∫
Ω2

(∂j v̂(s))(∂j~k)(∂kv̂(s))dx−
∫

Ω2

(div ~)|∇v̂(s)|2dx.

Note that |~|, | div ~| and |∂j~k| are bounded scalar fields on Ω2. Integrating
above with respect to the variable s from 0 to t, and then using the inequali-
ties of Cauchy–Schwarz and Young together with equality (4.85), we deduce
(4.83).

We next state and prove a result that will be useful in the proof of the
next theorem. Moreover, we take the opportunity to introduce Remark 4.14
which will be important for the next section.

Proposition 4.13. If η > 0, m1 ≥ 0 and m2 = 0, then the operator Aη has
compact resolvent.

Proof. Let η > 0, m1 ≥ 0 and m2 = 0. By Remark 3.19 and Lemma 3.5 in
[14], we have the continuous embedding

D(Aη) ↪→ H3(Ω1)×H2(Ω1)×H2(Ω2)×H1(Ω2)×H2(Ω1).
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Reasoning as in Proposition 3.9 from [14], we get that id : D(Aη) → Hη is
compact. Now, the statement is a consequence of Proposition 5.8 in [48, p.
107].

Remark 4.14. Thanks to the previous proposition and Corollary 1.15 in [48,
p. 162], we have that the spectrum σ(Aη) is composed only by eigenvalues
when η > 0, m1 ≥ 0 and m2 = 0.

Theorem 4.15. For η > 0, m1 ≥ 0 and m2 = 0, we have that the system
(1.1)-(1.9) does not have exponential decay.

Proof. It is very simple to see that H is a closed subspace of Hη. We will
show that Tη(t)−UG (t) : H →Hη (t > 0) is compact. It is enough to prove
that Tη(t)−UG (t) : D →Hη is compact because D := {0}2× [D(Ω2)]2×{0}
is a dense subspace of H . For w0 ∈ D and t ≥ 0, we set

E (t) :=
1

2
‖Tη(t)w0 −UG (t)w0‖2

Hη
.

Note that D(Aη) 3 w(t) := Tη(t)w0 and D(AG ) 3 ŵ(t) := UG (t)w0 because
w0 ∈ D(Aη) ∩D(AG ), see Theorem 2.27. By (3.33), we can write

d

dt
E (t) = Re (Aηw(t), w(t))Hη

+ Re(AG ŵ(t), ŵ(t))Hη (4.88)

− Re (Aηw(t), ŵ(t))Hη
− Re(AG ŵ(t), w(t))Hη .

From (3.35) we know Re (Aηw(t), w(t))Hη
≤ 0. Using integration by parts

and taking into account that ŵ4(t) = 0 on I, we get the following expression

(AG ŵ(t), ŵ(t))Hη = i2β2 Im (∇ŵ4(t),∇ŵ3(t))L2(Ω2)2

and thus Re(AG ŵ(t), ŵ(t))Hη = 0. From the definition of the operator Aη,
see Subsection 3.1.2, it is immediate that

(Aηw(t), ŵ(t))Hη
= β2(∇w4(t),∇ŵ3(t))L2(Ω2)2 − β2(∇w3(t),∇ŵ4(t))L2(Ω2)2 .

Employing integration by parts, we obtain

(AG ŵ(t), w(t))Hη = β2(∇ŵ4(t),∇w3(t))L2(Ω2)2

− β2(∇ŵ3(t),∇w4(t))L2(Ω2)2 − β2(∂νŵ3(t), w4(t))L2(I).
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The last two equalities produce the following expression

− (Aηw(t), ŵ(t))Hη
− (AG ŵ(t), w(t))Hη = i2β2 Im(∇ŵ3(t),∇w4(t))L2(Ω2)2

+ i2β2 Im(∇w3(t),∇ŵ4(t))L2(Ω2)2 + β2(∂νŵ3(t), w4(t))L2(I).

Taking real part in the last equality, inserting this into (4.88) and integrating
over (0, t), we obtain the estimate

E (t) ≤ β2 Re (∂νŵ3, w2)L2((0,t),L2(I)) . (4.89)

The equality E (0) = 0 was used and the fact that w2(t) = w4(t) on I.
Let (wk0)k∈N ⊂ D be a bounded sequence in H . We must prove that

(Tη(t)w
k
0 − UG (t)wk0)k∈N possesses a convergent subsequence in Hη. This

would show the compactness of Tη(t) − UG (t) : D → Hη. We set wk(t) :=
Tη(t)w

k
0 and ŵk(t) := UG (t)wk0 . Due to Lemma 4.12,

‖∂νŵk3‖L2((0,t),L2(I)) ≤ C‖ŵk(0)‖H = C‖wk0‖H ≤ C for all k ∈ N. (4.90)

Let φ ∈ Y := H4
0 (Ω1) × H2

0 (Ω1) × H2
0 (Ω2) × H1

0 (Ω2) × H2
0 (Ω1). Taking

w ∈ D(Aη) and reasoning as in the proof of Proposition 3.13, we get

(Aηw, φ)Hη
= β1 (w2, φ1)H2

Γ(Ω1) − β1 (w1, φ2)H2
Γ(Ω1) −m1 (∇w2,∇φ2)L2(Ω1)2

− α (w5,∆φ2)L2(Ω1) − β2 (w4,∆φ3)L2(Ω2) − β2 (∇w3,∇φ4)L2(Ω2)2

− α (∇w2,∇φ5)L2(Ω1)2 + β1 (w5,∆φ5)L2(Ω1) − σ (w5, φ5)L2(Ω1) .

Let $ ∈ H2(Ω1) with $ = 0 on ∂Ω1. We have that ∂kτ$ = 0 on ∂Ω1 for
any k ∈ N. Because of Propositions 3C.7 and 3C.11 in [87], we obtain

B1$ = ∂2
ν$ + µ(div ν)∂ν$, (4.91)

B2$ = ∂3
ν$ + (2− µ)∂2

τ∂ν$ + [∂ν(div ν)]∂ν$ + (div ν)∂2
ν$. (4.92)

Indeed: (4.91) is immediate. Thanks to the part (ii) of Corollary 3C.10 in
[87], we obtain ∂ν∂τ$ = ∂τ∂ν$ and ∂ν∂

2
τ$ = ∂τ∂ν∂τ$. Introducing these

last equalities in (3C.69) from [87], we get (4.92).
As φ1 ∈ H4

0 (Ω1), then ∂jνφ1 = 0 on ∂Ω1 for j = 0, 1, 2, 3 (see Theorem
2.8). From (4.91) and (4.92), it follows that B1φ1 = B2φ1 = 0 on ∂Ω1. So,
Proposition 2.17 implies

(φ1, w2)H2
Γ(Ω1) =

(
∆2φ1, w2

)
L2(Ω1)

.
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Therefore, ∣∣ (Aηw, φ)Hη

∣∣ ≤ Cφ ‖w‖Hη
,

where Cφ := C ‖φ‖Y . In consequence, the linear application A : D(Aη)→ C
defined by Aw := (Aηw, φ)Hη

is continuous. As D(Aη) is dense in Hη there
exists a unique extension linear and continuous of A to Hη, which is denoted

by Ã : Hη → C. Note that φ ∈H ′
η , and for w̃ ∈ D(Aη) we have

〈w̃, Ã〉Hη×H ′
η

= Ãw̃ = Aw̃ = (Aηw̃, φ)Hη
= 〈Aηw̃, φ〉Hη×H ′

η
.

Thus, φ ∈ D(A ′
η). With this it is shown that Y ⊂ D(A ′

η). We will now use
the interpolation-extrapolation scales theory presented in Section 2.5. Let
X0 := Hη, X−1 := (X0, ‖A −1

η · ‖Hη)
∼ and X−α̃ := [X0, X−1]α̃ for α̃ ∈ (0, 1),

where [·, ·]α̃ stands for the complex interpolation functor. We have that

X0
c
↪→ X−α̃ ↪→ X−1

for α̃ ∈ (0, 1). The embedding above is compact because A −1
η : Hη →Hη is

a compact operator, see Proposition 4.13. As X−1 = [D(A ′
η)]′, we can insure

that the embedding

X−1 ↪→ H−4(Ω1)×H−2(Ω1)×H−2(Ω2)×H−1(Ω2)×H−2(Ω1) (4.93)

holds and since from the definition of Hη we have

X0 ↪→ H2(Ω1)×H1(Ω1)×H1(Ω2)× L2(Ω2)× L2(Ω1), (4.94)

then (4.93), (4.94) and Theorem 2.4 in [89] imply that

X−α̃ ↪→ H2−5α̃(Ω1)×H1−3α̃(Ω1)×H1−3α̃(Ω2)×H−α̃(Ω2)×H−2α̃(Ω1). (4.95)

Let t > 0 be fixed. For s ∈ [0, t] we have that ‖Tη(s)‖L(Hη) ≤ 1. Therefore,

‖wk‖2
L2((0,t),Hη) =

∫ t

0

‖wk(s)‖2
Hη
ds ≤

∫ t

0

‖Tη(s)‖2
L(Hη) ‖w

k
0‖2

Hη
ds ≤ C.

Thus, the sequence (wk)k∈N is bounded in the Hilbert space L2((0, t),Hη).
Now, we use ∂tw

k = Aηw
k to get the following

sup
s∈[0,t]

‖∂swk(s)‖X−1 = sup
s∈[0,t]

‖Aηw
k(s)‖X−1 = sup

s∈[0,t]

‖wk(s)‖Hη ≤ C.

82



4.4. Polynomial stability

So, (∂tw
k)k∈N is bounded in L2((0, t), X−1). We have proven that the sequence

(wk)k∈N is bounded in the spaceW2,2((0, t);X0, X−1). By Aubin–Lions–Simon
lemma, see Theorem 2.2, yields that there exists a subsequence (wkj)j∈N of
(wk)k∈N, which is convergent in L2((0, t), X−α̃). From (4.95) we see that

the second component (w
kj
2 )j∈N converges in L2((0, t), H1−3α̃(Ω1)). Choosing

α̃ < 1
6

and taking the trace on I we obtain convergence in L2((0, t), H
1
2
−3α̃(I))

and therefore in L2((0, t), L2(I)) for the subsequence (w
kj
2 )j∈N of (wk2

∣∣
I
)k∈N.

Note ((Tη(t)−UG (t))w
kj
0 )j∈N is a subsequence of (Tη(t)w

k
0−UG (t)wk0)k∈N.

We write anm := an − am for any sequence (an)n∈N. With this notation, we
have

wkikj(t)− ŵkikj(t) = Tη(t)(w
ki
0 − w

kj
0 )−UG (t)(wki0 − w

kj
0 ). (4.96)

For i, j ∈ N and t ≥ 0, we now consider

E ij(t) :=
1

2
‖wkikj(t)− ŵkikj(t)‖2

Hη
. (4.97)

By (4.89) and (4.90), we compute that

E ij(t) ≤ β2|(∂νŵ
kikj
3 , w

kikj
2 )L2((0,t),L2(I))|

≤ β2‖∂νŵ
kikj
3 ‖L2((0,t),L2(I))‖w

kikj
2 ‖L2((0,t),L2(I))

≤ C‖wki2 − w
kj
2 ‖L2((0,t),L2(I)) → 0 (as i, j →∞). (4.98)

Thanks to (4.96)-(4.98), we get that ((Tη(t) − UG (t))w
kj
0 )j∈N is a Cauchy

sequence in Hη and therefore converges in this Hilbert space. Accordingly,
Tη(t) − UG (t) is a compact operator from H to Hη for any t > 0. In
consequence, Theorem 4.11 leads to the conclusion of the present theorem.

4.4 Polynomial stability

In this section we will prove that our system (1.1)-(1.9) is polynomially stable
under certain geometric condition, imposed on the domain Ω2, when we do not
have the Kelvin–Voigt damping on the membrane, but the inertial term and
structural damping are present. For the proof, we will use the characterization
of Theorem 2.44.
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Chapter 4. Asymptotic behavior of the solutions of some plate-membrane problems

In order to establish the polynomial stability, we need the following usual
geometrical condition: There exists a point x0 ∈ R2 such that

q(x) · ν(x) ≤ 0 for x ∈ I, (4.99)

where q is the vector field defined by q(x) := x− x0 for x ∈ Ω2.

Theorem 4.16. Let η > 0, m1 > 0 and m2 = 0 and assume that (4.99)
is satiesfied. Then, the semigroup (Tη(t))t≥0 decays polynomially of order at

least 1/25. Furthermore, if w0 ∈ D(A k
η ), k ∈ N, then there exists a constant

Ck > 0 such that

‖Tη(t)w0‖Hη
≤ Ck
tk/25

|w0|D(A k
η ) (4.100)

for all t > 0.

Proof. First we will prove that the intersection iR∩ σ(Aη) is empty, then we
will look for an estimate of the type (2.18) and this will allow us to obtain
an inequality like (2.19). Finally, a standard argument leads to (4.100).

Since 0 ∈ ρ(Aη) there is λ0 > 0 such that {iζ : −λ0 < ζ < λ0} ⊂ ρ(Aη).
Let λ ∈ R with |λ| ≥ λ0. To prove that iR∩σ(Aη) = ∅ it is sufficient to show
that iλ /∈ σ(Aη). Taking w = (w1, w2, w3, w4, w5)> ∈ D(A 2

η ) and setting

f := (iλI −Aη)w, (4.101)

we derive that f ∈ D(Aη) and further

iλw1 − w2 = f1 in H2
Γ(Ω1), (4.102)

iλρ1Mηw2 +W +m1ALw2 + α∆w5 = ρ1Mηf2 in H−1
Γ,η(Ω1), (4.103)

iλw3 − w4 = f3 in H1(Ω2), (4.104)

iλρ2w4 − β2∆w3 = ρ2f4 in L2(Ω2), (4.105)

iλρ0w5 + αAL(I −Nγ1)w2 + βATw5 = ρ0f5 in L2(Ω1). (4.106)

Here we set f := (f1, f2, f3, f4, f5)>. From (4.101), we get the following

− Re (Aηw,w)Hη
≤ ‖f‖Hη

‖w‖Hη
. (4.107)

By (3.35) and (4.107),

‖w2‖H1
Γ,η(Ω1) ≤ C ‖f‖1/2

Hη
‖w‖1/2

Hη
(4.108)
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and
‖w5‖H1(Ω1) ≤ C ‖f‖1/2

Hη
‖w‖1/2

Hη
. (4.109)

Replacing (4.102) in (4.103) and (4.106), we obtain

− λ2ρ1Mηw1 +W + iλm1ALw1 − αATw5 + αβ−1σw5

= iλρ1Mηf1 +m1ALf1 + ρ1Mηf2

(4.110)

and
iλρ0w5 − iλα∆w1 + βATw5 = −α∆f1 + ρ0f5. (4.111)

Inserting (4.104) into (4.105) leads to

− λ2ρ2w3 − β2∆w3 = iλρ2f3 + ρ2f4. (4.112)

Multiplying (4.110) by w1, under the duality between H−1
Γ,η(Ω1) and H1

Γ,η(Ω1),
considering the identities (3.12)-(3.15) and (3.21), using integration by parts
and knowing that ∂νw5 + κw5 = 0 on I, we get

− λ2ρ1 ‖w1‖2
H1

Γ,η(Ω1) + β1 ‖w1‖2
H2

Γ(Ω1) − β2 (∂νw3, w1)L2(I)

+ α (w5, ∂νw1)L2(I) + iλm1 ‖∇w1‖2
L2(Ω1)2 − α (∇w5,∇w1)L2(Ω1)2

= iλρ1 (f1, w1)H1
Γ,η(Ω1) +m1 (∇f1,∇w1)L2(Ω1)2 + ρ1 (f2, w1)H1

Γ,η(Ω1) .

(4.113)

Multiplying (4.111) by w5, using integration by parts, (3.16) and (3.18) we
get the following equality

iλρ0 ‖w5‖2
L2(Ω1) + iλα (∇w1,∇w5)L2(Ω1)2

− iλα (∂νw1, w5)L2(I) + β ‖w5‖2

D(A1/2
T )

= α (∇f1,∇w5)L2(Ω1)2

− α (∂νf1, w5)L2(I) + ρ0 (f5, w5)L2(Ω1) .

(4.114)

Multiplying (4.112) by w3 and using integration by parts, we obtain

− λ2ρ2 ‖w3‖2
L2(Ω2) + β2 ‖∇w3‖2

L2(Ω2)2 + β2 (∂νw3, w3)L2(I)

= iλρ2 (f3, w3)L2(Ω2) + ρ2 (f4, w3)L2(Ω2) .
(4.115)

Multiplying (4.114) by −iλ−1, adding together with (4.113) and (4.115), and
taking into account that w1 = w3 on I, we see

− λ2ρ1 ‖w1‖2
H1

Γ,η(Ω1) + β1 ‖w1‖2
H2

Γ(Ω1) + i2α Im (w5, ∂νw1)L2(I)
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+ iλm1 ‖∇w1‖2
L2(Ω1)2 + i2α Im (∇w1,∇w5)L2(Ω1)2 + ρ0 ‖w5‖2

L2(Ω1)

− iλ−1β ‖w5‖2

D(A1/2
T )
− λ2ρ2 ‖w3‖2

L2(Ω2) + β2 ‖∇w3‖2
L2(Ω2)2

= iλρ1 (f1, w1)H1
Γ,η(Ω1) +m1 (∇f1,∇w1)L2(Ω1)2 + ρ1 (f2, w1)H1

Γ,η(Ω1)

− iλ−1α (∇f1,∇w5)L2(Ω1)2 + iλ−1α (∂νf1, w5)L2(I) − iλ
−1ρ0 (f5, w5)L2(Ω1)

+ iλρ2 (f3, w3)L2(Ω2) + ρ2 (f4, w3)L2(Ω2) .

Because of Friedrichs’s inequality there exists a constant C > 0 such that
‖Φ3‖L2(Ω2) ≤ C ‖Φ‖Hη

for any Φ = (Φ1,Φ2,Φ3,Φ4,Φ5) ∈ Hη. Taking real

part above, using (4.109) and remembering that 1 ≤ λ−1
0 |λ| we achieve

β1 ‖w1‖2
H2

Γ(Ω1) + β2 ‖∇w3‖2
L2(Ω2)2 + ρ0 ‖w5‖2

L2(Ω1) ≤ λ2ρ1 ‖w1‖2
H1

Γ,η(Ω1)

+ λ2ρ2 ‖w3‖2
L2(Ω2) + C

(
|λ| ‖f‖Hη

‖w‖Hη
+ ‖f‖3/2

Hη
‖w‖1/2

Hη

)
.

(4.116)

By (4.104), we find

ρ2 ‖w4‖2
L2(Ω2) = ρ2 ‖iλw3 − f3‖2

L2(Ω2) ≤ C
(
λ2 ‖w3‖2

L2(Ω2) + ‖f‖2
Hη

)
. (4.117)

By (4.102) and (4.108), we derive

λ2 ‖w1‖2
H1

Γ,η(Ω1) = ‖f1 + w2‖2
H1

Γ,η(Ω1) ≤ C
(
‖f‖2

Hη
+ ‖f‖Hη

‖w‖Hη

)
. (4.118)

Combining (4.108) and (4.116)-(4.118), we obtain

‖w‖2
Hη
≤ C

(
λ2 ‖w3‖2

L2(Ω2) + |λ| ‖f‖Hη
‖w‖Hη

+ ‖f‖3/2
Hη
‖w‖1/2

Hη
+ ‖f‖2

Hη

)
.

(4.119)
Now, we will establish an estimate for λ2 ‖w3‖2

L2(Ω2). Thanks to the Rellich
identity, see Theorem 2.16, choosing there h = q, we can write

Re

∫
Ω2

∆w3(q ·∇w3)dx = −Re

∫
I

∂νw3(q ·∇w3)− 1

2
(q ·ν) |∇w3|2 dS. (4.120)

Multiplying (4.112) by the scalar field q · ∇w3, integrating, taking real part
and using (4.120) we get

− λ2ρ2 Re

∫
Ω2

w3(q · ∇w3)dx+ β2 Re

∫
I

∂νw3(q · ∇w3)dS

− β2

2

∫
I

(q · ν)|∇w3|2dS = Re

∫
Ω2

(iλρ2f3 + ρ2f4)(q · ∇w3)dx.

(4.121)

86



4.4. Polynomial stability

Making use of identity q · ∇w3 = div(qw3) − 2w3 and employing integrating
by parts, it holds

Re

∫
Ω2

w3(q · ∇w3)dx = −‖w3‖2
L2(Ω2) −

1

2

∫
I

(q · ν)|w3|2dS. (4.122)

By (4.121) and (4.122),

λ2ρ2 ‖w3‖2
L2(Ω2) = Re

∫
Ω2

(iλρ2f3 + ρ2f4)(q · ∇w3)dx− 1

2
λ2ρ2

∫
I

(q · ν)|w3|2dS

− β2 Re

∫
I

∂νw3(q · ∇w3)dS +
1

2
β2

∫
I

(q · ν)|∇w3|2dS.

Keeping in mind that q · ν ≤ 0 on I, w1 = w3 on I and (4.118), we obtain

λ2 ‖w3‖2
L2(Ω2) ≤ C

(
|λ| ‖f‖Hη

‖w‖Hη
+ ‖f‖2

Hη
+

∫
I

|β2∂νw3(q · ∇w3)|dS
)
.

(4.123)

Next we are going to estimate the last integral denoted this by I . Let f̃ =
(f̃1, f̃2, f̃3, f̃4, f̃5) and f̃ := Aηw. Since w ∈ D(A 2

η ), we have that f̃2 ∈ H2
Γ(Ω1)

and also

β1w1−m1G2γ1w2 +β2G2γ1w3 +α(G1−κG2)γ0w5−γG2γ1f̃2 ∈ D(AB), (4.124)

see the proof of Theorem 3.18. In consequence,

β2∂νw3 = γ∂ν f̃2 − β1B2w1 +m1∂νw2 + ακw5 on I.

By (4.101), iλw − f̃ = f . Thus, f̃2 = iλw2 − f2. Therefore,

I =

∫
I

|β2∂νw3||q · ∇w3|dS ≤ C ‖β2∂νw3‖L2(I) ‖∇w3‖L2(I)2

≤ C
(
|λ| ‖∂νw2‖L2(I) + ‖∂νf2‖L2(I) + ‖B2w1‖L2(I) + ‖w5‖L2(I)

)
‖∇w3‖L2(I)2 .

From (4.105), ∆w3 = iλβ−1
2 ρ2w4 − β−1

2 ρ2f4 in Ω2 and as w3 = w1 on I, then
by Remark 3.17 and the trace theorem we get

‖w3‖H2(Ω2) ≤ C
( ∥∥iλβ−1

2 ρ2w4 − β−1
2 ρ2f4

∥∥
L2(Ω2)

+ ‖w1‖H3/2(I)

)
≤ C

(
|λ| ‖w‖Hη

+ ‖f‖Hη

)
. (4.125)
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Applying Theorem 2.21 to the partial derivatives of first order of w3, we
obtain

‖∇w3‖L2(I)2 ≤ C ‖w3‖1/2

H2(Ω2) ‖w3‖1/2

H1(Ω2)

≤ C
(
|λ|1/2 ‖w‖Hη

+ ‖f‖1/2
Hη
‖w‖1/2

Hη

)
. (4.126)

By (4.102),

‖w2‖H2(Ω1) ≤ C ‖iλw1 − f1‖H2
Γ(Ω1) ≤ C

(
|λ| ‖w‖Hη

+ ‖f‖Hη

)
. (4.127)

Applying Corollary 2.22 to w2 and considering (4.108) together with (4.127),
we get

|λ| ‖∂νw2‖L2(I) ≤ C|λ| ‖w2‖1/2

H2(Ω1) ‖w2‖1/2

H1(Ω1)

≤ C
(
|λ|3/2 ‖f‖1/4

Hη
‖w‖3/4

Hη
+ |λ| ‖f‖3/4

Hη
‖w‖1/4

Hη

)
. (4.128)

Doing f̂ := Aηf with f̂ = (f̂1, f̂2, f̂3, f̂4, f̂5), we have that f̂1 = f2 and by the
trace theorem

‖∂νf2‖L2(I) ≤ C ‖f2‖H2
Γ(Ω1) = C‖f̂1‖H2

Γ(Ω1) ≤ C ‖Aηf‖Hη
. (4.129)

By (3C.53) in [87], we can write B2w1 = ∂ν∂τw1. Applying Corollary 2.22
to ∆w1 and Theorem 2.21 to the partial derivatives of third order of w1, and
then using Sobolev’s interpolation inequality, we deduce that

‖B2w1‖L2(I) ≤ C
(
‖∂ν∆w1‖L2(I) + ‖∂τ∂ν∂τw1‖L2(I)

)
≤ C

(
‖∆w1‖1/2

H2(Ω1) ‖∇∆w1‖1/2

L2(Ω1)2 + ‖w1‖1/2

H4(Ω1) ‖w1‖1/2

H3(Ω1)

)
≤ C ‖w1‖5/6

H4(Ω1) ‖w1‖1/6

H1(Ω1) . (4.130)

Using the definitions ofMη,W , AT , AB, (3.30), (3.31), Proposition 3.11 and
(4.124) we can establish that equation (4.103) is equivalent to the following
system

∆2w1 = β−1
1 (ρ1f2 − iλρ1w2 + γ∆f̃2 +m1∆w2 − α∆w5) =: f̃∗ in Ω1,

w1 = 0 on Γ,

∂νw1 = 0 on Γ,

B1w1 = −αβ−1
1 w5 on I,

B2w1 = β−1
1 (γ∂ν f̃2 +m1∂νw2 − β2∂νw3 + ακw5) on I.
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By Proposition 2.60 there are positive constants λ
(2)
0 and C such that

‖w1‖H4(Ω1) ≤ C
(
‖λ(2)

0 w1 + f̃∗‖L2(Ω1) +
∥∥−αβ−1

1 w5

∥∥
H3/2(I)

+ ‖β−1
1 (γ∂ν f̃2 +m1∂νw2 − β2∂νw3 + ακw5)‖H1/2(I)

)
.

(4.131)

From (4.127), (4.129) and the fact that 0 ∈ ρ(Aη) it follows that

‖∆f̃2‖L2(Ω1) ≤ C‖f̃2‖H2
Γ(Ω1) = C ‖iλw2 − f2‖H2

Γ(Ω1)

≤ C
(
λ2 ‖w‖Hη

+ |λ| ‖Aηf‖Hη

)
. (4.132)

As ∆w5 = β−1(iλρ0w5 − α∆w2 + σw5 − ρ0f5) =: f̂∗ in Ω1 and ∂νw5 + κw5 =
0 on ∂Ω1, this is due to w5 satisfies (4.106) and is an element of D(AT ), by

regularity theory there exist positive constants λ
(3)
0 and C such that

‖w5‖H2(Ω1) ≤ C‖λ(3)
0 w5 − f̂∗‖L2(Ω1) ≤ C

(
|λ| ‖w‖Hη

+ ‖f‖Hη

)
. (4.133)

In the last inequality it was used (4.127). By (4.125), (4.127), (4.129), (4.131)-
(4.133) and the trace theorem we see that

‖w1‖H4(Ω1) ≤ C
(
λ2 ‖w‖Hη

+ |λ| ‖Aηf‖Hη

)
.

By (4.118),

‖w1‖H1(Ω1) ≤ C|λ|−1
(
‖Aηf‖Hη

+ ‖Aηf‖1/2
Hη
‖w‖1/2

Hη

)
.

From (4.130),

‖B2w1‖L2(I) ≤ C
(
|λ|3/2 ‖Aηf‖1/6

Hη
‖w‖5/6

Hη
+ |λ|3/2 ‖Aηf‖1/12

Hη
‖w‖11/12

Hη

+ |λ|2/3 ‖Aηf‖Hη
+ |λ|2/3 ‖Aηf‖11/12

Hη
‖w‖1/12

Hη

)
.

(4.134)

By the trace theorem and (4.109), we get

‖w5‖L2(I) ≤ C ‖w5‖H1(Ω1) ≤ C ‖f‖1/2
Hη
‖w‖1/2

Hη
. (4.135)

Due to (4.126), (4.128), (4.129), (4.134), (4.135) and Corollary 2.20, we write

I ≤ εC ‖w‖2
Hη

+ Cε|λ|48 ‖Aηf‖2
Hη

for any ε > 0. (4.136)
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Due to (4.119), (4.123) and (4.136) we obtain that

‖w‖Hη
≤ C|λ|24 ‖Aηf‖Hη

. (4.137)

Let w̃ ∈ D(Aη) and f̃ := (iλI − Aη)w̃ = 0. In this situation, we have that
Aηw̃ = iλw̃ ∈ D(Aη) and so w̃ ∈ D(A 2

η ). Now, an application of (4.137)
allows us to obtain w̃ = 0. In consequence, Ker(iλI −Aη) = {0} and thus iλ
is not an eigenvalue of Aη. By Remark 4.14, we get that iλ /∈ σ(Aη).

Let us consider F ∈ D(Aη) and λ ∈ R with |λ| > λ0. As iλ ∈ ρ(Aη), then
iλI − Aη : D(Aη) → Hη is invertible and so there exists U ∈ D(Aη) such
that (iλI−Aη)U = F . Since AηU = iλU −F ∈ D(Aη), then U ∈ D(A 2

η )
and thus (4.137) holds replacing w and f by U and F , respectively. Hence,∥∥(iλI −Aη)

−1F
∥∥

Hη
≤ C|λ|24 ‖AηF‖Hη

.

From Theorem 2.44 with α′ = 1 and β′ = 24 it follows the first statement of
our theorem, ∥∥Tη(t)A

−1
η

∥∥
L(Hη)

≤ Ct−1/25 for all t > 0. (4.138)

Let k ∈ N, w0 ∈ D(A k
η ) and f0 := A k

η w0. Note that f0 ∈ Hη. Since
A k
η is invertible, we have that w0 = A −k

η f0. Using part c) of Theorem 2.4 in
[109, p. 5], one can prove that T k

η (t)A −k
η φ = [Tη(t)A −1

η ]kφ for any φ ∈ Hη

and for all t ≥ 0. Thus, from (4.138) it follows that

‖Tη(t)w0‖Hη
=
∥∥(Tη(t/k)A −1

η

)k
f0

∥∥
Hη
≤ (Ck1/25)kt−k/25 |w0|D(A k

η )

for any t > 0.

Remark 4.17. a) The estimate (4.100) indicates that the more regular are
the initial data, the decay of the energy (3.1) is faster. Indeed: If w0 ∈ D(A k

η ),
then (4.100) implies that

Eγ(t) =
1

2
‖Tη(t)w0‖2

Hη
≤ C̃k
t2k/25

|w0|2D(A k
η ) for all t > 0,

where C̃k := C2
k/2.

b) The result of the previous theorem continues to be true if the plate is
isothermal, i.e., the temperature is not necessary to obtain the decay rate of
Theorem 4.16.

c) If we remove the structural damping (m1 = 0) of our thermoelastic
plate-membrane system, we do not know anything about asymptotic polyno-
mial behavior for parameters η > 0 and m2 ≥ 0, and when also η = m2 = 0.
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4.4. Polynomial stability

Remark 4.18. In the proof of Theorem 4.16, we did not aim at optimal
polynomial rate.
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Chapter 5

Analyticity of the semigroup
associated with a transmission
problem

The goal of this chapter (Theorem 5.1) is an analytical result when both
the inertial term and the structural damping are not present, but there is
Kelvin–Voigt damping on the membrane and temperature on the plate. As
a consequence we will have that w(t) = T0(t)w0 ∈ D(A ∞

0 ) := ∩∞k=0D(A k
0 )

for w0 ∈ H0, i.e., no matter how irregular the initial data always the corre-
sponding solution is of class C∞ (see [51, p. 2] and [104, p. 179]). Other
implications of the analyticity of a semigroup can be found in [94]. We will
achieve our analytical purpose by making use of the well known result of
Theorem 2.46. The proof will be done by contradiction.

Theorem 5.1. If η = m1 = 0 and m2 > 0, then the semigroup (T0(t))t≥0

generated by A0 is analytic.

Proof. From Proposition 4.5, we have that iR ⊂ ρ(A0). Let us suppose (2.20)
is not true. According to Remark 2.7 in [39], there are sequences (λn)n∈N ⊂ R
with |λn| → ∞ and (f̂n)n∈N ⊂H0 with ‖f̂n‖H0 = 1 such that

lim
n→∞

‖λn(iλnI −A0)−1f̂n‖H0 =∞.

Without loss of generality, we will assume that λn is positive for each n ∈ N.
The opposite situation, λn < 0 for any n ∈ N, is discussed in Remark 5.2.
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Chapter 5. Analyticity of the semigroup associated with a transmission problem

Setting ŵn := λn(iλnI − A0)−1f̂n, wn := ŵn/‖ŵn‖H0 and fn := f̂n/‖ŵn‖H0 ,
we obtain the following

‖wn‖H0
= 1 and

(
iI − λ−1

n A0

)
wn = fn (5.1)

with ∥∥(iI − λ−1
n A0)wn

∥∥
H0
−−−→
n→∞

0. (5.2)

Note that (wn)n∈N ⊂ D(A0). From the second assertion in (5.1),

iwn1 − λ−1
n wn2 = fn1 , (5.3)

iρ1w
n
2 + λ−1

n

(
ABWn

0 − αATwn5 + ασ
β
wn5
)

= ρ1f
n
2 , (5.4)

iwn3 − λ−1
n wn4 = fn3 , (5.5)

iρ2w
n
4 − β2λ

−1
n ∆wn3 −m2λ

−1
n ∆wn4 = ρ2f

n
4 , (5.6)

iρ0w
n
5 + αλ−1

n AL(I −Nγ1)wn2 + βλ−1
n ATwn5 = ρ0f

n
5 , (5.7)

where Wn
0 := β1w

n
1 + β2G2γ1w

n
3 + m2G2γ1w

n
4 + αG1γ0w

n
5 − ακG2γ0w

n
5 . Note

that∥∥(iI − λ−1
n A0)wn

∥∥2

H0
= β1 ‖fn1 ‖

2
H2

Γ(Ω1) + ρ1 ‖fn2 ‖
2
L2(Ω1) + β2 ‖∇fn3 ‖

2
L2(Ω2)2

+ ρ2 ‖fn4 ‖
2
L2(Ω2) + ρ0 ‖fn5 ‖

2
L2(Ω1) .

Then, the limit (5.2) and (5.3)-(5.7) imply that

iwn1 − λ−1
n wn2 → 0 in H2

Γ(Ω1), (5.8)

iρ1w
n
2 + λ−1

n

(
ABWn

0 − αATwn5 + ασ
β
wn5
)
→ 0 in L2(Ω1), (5.9)

i∇wn3 − λ−1
n ∇wn4 → 0 in L2(Ω2), (5.10)

iρ2w
n
4 − β2λ

−1
n ∆wn3 −m2λ

−1
n ∆wn4 → 0 in L2(Ω2), (5.11)

iρ0w
n
5 + αλ−1

n AL(I −Nγ1)wn2 + βλ−1
n ATwn5 → 0 in L2(Ω1). (5.12)

Due to (3.35),

Re
(
(iI − λ−1

n A0)wn, wn
)

H0
=
m2

λn
‖∇wn4‖

2
L2(Ω2)2 +

σ

λn
‖wn5‖

2
L2(Ω1)

+
β

λn
‖∇wn5‖

2
L2(Ω1)2 +

βκ

λn
‖wn5‖

2
L2(∂Ω1) .

(5.13)

By the first assertion in (5.1) and (5.13), we get

λ−1
n ‖wn5‖

2
H1(Ω1) ≤ C Re

(
(iI − λ−1

n A0)wn, wn
)

H0
≤ C

∥∥(iI − λ−1
n A0)wn

∥∥
H0
.
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Now, (5.2) implies
λ−1/2
n wn5 → 0 in H1(Ω1). (5.14)

For being m2 positive, it follows from (5.2) and (5.13) that

λ−1/2
n ∇wn4 → 0 in L2(Ω2). (5.15)

The limit (5.10) and (5.15) imply

∇wn3 → 0 in L2(Ω2). (5.16)

We will obtain a key convergence in this proof through the following equality.(
iρ0w

n
5 + αλ−1

n AL(I −Nγ1)wn2 + βλ−1
n ATwn5 , wn5

)
L2(Ω1)

= iρ0 ‖wn5‖
2
L2(Ω1) − αλ

−1
n (∆wn2 , w

n
5 )L2(Ω1) + βλ−1

n (ATwn5 , wn5 )L2(Ω1) .
(5.17)

Integration by parts implies

(∆wn2 , w
n
5 )L2(Ω1) = − (∇wn2 ,∇wn5 )L2(Ω1)2 + (∂νw

n
2 , w

n
5 )L2(I) . (5.18)

As (wn1 )n∈N is bounded in H2(Ω1), the limit (5.8) implies that
(
λ−1
n wn2

)
n∈N is

also bounded in H2(Ω1). By interpolation inequality (2.11), we compute that

1

λ
1/2
n

‖wn2‖H1(Ω1) ≤ C
‖wn2‖

1/2

H2(Ω1)

λ
1/2
n

‖wn2‖
1/2

L2(Ω1) ≤ C. (5.19)

Using Cauchy–Schwarz inequality and (5.19),∣∣λ−1
n (∇wn2 ,∇wn5 )L2(Ω1)2

∣∣ ≤ Cλ−1/2
n ‖wn5‖H1(Ω1) . (5.20)

Next we will apply Theorem 2.21 to wn5 and Corollary 2.22 to wn2 . Considering
again (5.19), we have∣∣λ−1

n (∂νw
n
2 , w

n
5 )L2(I)

∣∣ ≤ λ−1
n ‖∂νwn2‖L2(I) ‖w

n
5‖L2(I)

≤ C
‖wn2‖

1/2

H2(Ω1)

λ
1/2
n

‖wn2‖
1/2

H1(Ω1)

λ
1/4
n

‖wn5‖
1/2

H1(Ω1)

λ
1/4
n

‖wn5‖
1/2

L2(Ω1)

≤ Cλ−1/4
n ‖wn5‖

1/2

H1(Ω1) . (5.21)

Thanks to the fact that A1/2
T is self-adjoint and to (3.17), we can write∣∣λ−1

n (ATwn5 , wn5 )L2(Ω1)

∣∣ = λ−1
n ‖wn5‖

2

D(A1/2
T )
≤ Cλ−1

n ‖wn5‖
2
H1(Ω1) . (5.22)
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Due to boundedness of (wn5 )n∈N in L2(Ω1), (5.12), (5.14), (5.17), (5.18) and
(5.20)-(5.22), we conclude

wn5 → 0 in L2(Ω1). (5.23)

On the other hand,(
iρ2w

n
4 − β2λ

−1
n ∆wn3 −m2λ

−1
n ∆wn4 , w

n
4

)
L2(Ω2)

= iρ2 ‖wn4‖
2
L2(Ω2) − λ

−1
n (β2∆wn3 +m2∆wn4 , w

n
4 )L2(Ω2) .

(5.24)

By Remark 3.19, integration by parts and the fact that wn2 = wn4 on I we
derive

λ−1
n (β2∆wn3 +m2∆wn4 , w

n
4 )L2(Ω2) = −β2λ

−1
n (∇wn3 ,∇wn4 )L2(Ω2)2

−m2λ
−1
n ‖∇wn4‖

2
L2(Ω2)2 − λ−1

n (∂ν(β2w
n
3 +m2w

n
4 ), wn2 )L2(I) .

(5.25)

Obviously,∣∣λ−1
n (∇wn3 ,∇wn4 )L2(Ω2)2

∣∣ ≤ λ−1/2
n ‖∇wn3‖L2(Ω2)2 λ

−1/2
n ‖∇wn4‖L2(Ω2)2 . (5.26)

As ∆(β2w
n
3 +m2w

n
4 ) = iρ2λnw

n
4 − ρ2λnf

n
4 in Ω2 and β2w

n
3 +m2w

n
4 = β2w

n
1 +

m2w
n
2 on I, see (5.6), Remark 3.17 implies

‖β2w
n
3 +m2w

n
4‖H2(Ω2)

≤ C
(
‖iρ2λnw

n
4 − ρ2λnf

n
4 ‖L2(Ω2) + ‖β2w

n
1 +m2w

n
2‖H3/2(I)

)
≤ C

(
λn ‖wn4‖L2(Ω2) + λn ‖fn4 ‖L2(Ω2) + ‖wn1‖H2(Ω1) + ‖wn2‖H2(Ω1)

)
.

Because of (wn4 )n∈N and (fn4 )n∈N are bounded sequences in L2(Ω2), then

λ−1
n ‖β2w

n
3 +m2w

n
4‖H2(Ω2) ≤ C. (5.27)

Thanks to Cauchy–Schwarz inequality, Theorem 2.21 and (5.19) we obtain∣∣λ−1
n (∂ν(β2w

n
3 +m2w

n
4 ), wn2 )L2(I)

∣∣
≤ Cλ−3/4

n ‖∂ν(β2w
n
3 +m2w

n
4 )‖L2(I) λ

−1/4
n ‖wn2‖

1/2

H1(Ω1) ‖w
n
2‖

1/2

L2(Ω1)

≤ Cλ−3/4
n ‖∂ν(β2w

n
3 +m2w

n
4 )‖L2(I) . (5.28)

Taking into account (5.27) and applying Corollary 2.22 to β2w
n
3 +m2w

n
4 ,

λ−3/4
n ‖∂ν(β2w

n
3 +m2w

n
4 )‖L2(I)
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≤ C
1

λ
1/2
n

‖β2w
n
3 +m2w

n
4‖

1/2

H2(Ω2)

1

λ
1/4
n

‖∇(β2w
n
3 +m2w

n
4 )‖1/2

L2(Ω2)2

≤ C
(
λ−1/4
n ‖∇wn3‖

1/2

L2(Ω2)2 + λ−1/4
n ‖∇wn4‖

1/2

L2(Ω2)2

)
. (5.29)

From (5.11), (5.15), (5.16), (5.24)-(5.26), (5.28) and (5.29), it follows that

wn4 → 0 in L2(Ω2). (5.30)

Now, let us consider the following equality(
iρ1w

n
2 + λ−1

n

(
ABWn

0 − αATwn5 + αβ−1σwn5
)
, wn2

)
L2(Ω1)

= iρ1 ‖wn2‖
2
L2(Ω1) + λ−1

n (ABWn
0 , w

n
2 )L2(Ω1) + αλ−1

n (∆wn5 , w
n
2 )L2(Ω1) .

(5.31)

Applying integration by parts,

(∆wn5 , w
n
2 )L2(Ω1) = − (∇wn5 ,∇wn2 )L2(Ω1)2 + (∂νw

n
5 , w

n
2 )L2(I) . (5.32)

Because of ∂νw
n
5 +κwn5 = 0 on I, the trace theorem and (5.19) we obtain that∣∣λ−1
n (∂νw

n
5 , w

n
2 )L2(I)

∣∣ ≤ Cλ−1
n ‖wn5‖L2(I) ‖w

n
2‖L2(I)

≤ C
‖wn5‖H1(Ω1)

λ
1/2
n

‖wn2‖H1(Ω1)

λ
1/2
n

≤ Cλ−1/2
n ‖wn5‖H1(Ω1) .

(5.33)

Gathering (4.59), (5.9), (5.14)-(5.16), (5.20), (5.21), (5.28), (5.29) and (5.31)-
(5.33) we have that

iρ1 ‖wn2‖
2
L2(Ω1) + β1λ

−1
n (wn1 , w

n
2 )H2

Γ(Ω1) → 0.

Multiplying (5.8) by wn1 , we obtain

i ‖wn1‖
2
H2

Γ(Ω1) − λ
−1
n (wn2 , w

n
1 )H2

Γ(Ω1) → 0.

The last two limits allow to write

ρ1 ‖wn2‖
2
L2(Ω1) − β1 ‖wn1‖

2
H2

Γ(Ω1) → 0. (5.34)

Our goal now is to show that the sequence (wn2 )n∈N converges to zero in
L2(Ω1). Developing an analogous argument as in the limit (4.64), taking into
account that λn →∞, we find that

λ−1
n ‖∇wn2‖

2
L2(Ω1)2 − λ−1

n (∂νw
n
2 , w

n
2 )L2(I) → 0. (5.35)

97



Chapter 5. Analyticity of the semigroup associated with a transmission problem

Using the fact that wn2 = wn4 on I, Theorem 2.21, Corollary 2.22 and (5.19)
we obtain that∣∣λ−1

n (∂νw
n
2 , w

n
2 )L2(I)

∣∣ ≤ λ−1
n ‖∂νwn2‖L2(I) ‖w

n
4‖L2(I)

≤ C
‖wn2‖

1/2

H2(Ω1)

λ
1/2
n

‖wn2‖
1/2

H1(Ω1)

λ
1/4
n

‖wn4‖
1/2

H1(Ω2)

λ
1/4
n

‖wn4‖
1/2

L2(Ω2)

≤ Cλ−1/4
n ‖wn4‖

1/2

H1(Ω2) . (5.36)

Due to (λ
−1/2
n wn4 )n∈N and (λ

−1/2
n ∇wn4 )n∈N are sequences that converge to zero

in L2(Ω2), see the first assertion of (5.1) and (5.15), then

λ−1/2
n wn4 → 0 in H1(Ω2). (5.37)

From (5.35)-(5.37), it follows that

λ−1/2
n ∇wn2 → 0 in L2(Ω1). (5.38)

By (5.4),
ABWn

0 = ρ1λnf
n
2 − iρ1λnw

n
2 − α∆wn5 .

Since (wn)n∈N ⊂ D(A0), it is immediate from the definition of the domain of
the operator A0 that Wn

0 ∈ D(AB). Because of the latter and the definitions
of the Green maps G1 and G2 given in (3.19), we have that the last equation
is equivalent to the following elliptic boundary value problem

∆2wn1 = β−1
1 ρ1λnf

n
2 − iβ−1

1 ρ1λnw
n
2 − αβ−1

1 ∆wn5 =: f ∗ in Ω1,

wn1 = 0 on Γ,

∂νw
n
1 = 0 on Γ,

B1w
n
1 = −αβ−1

1 wn5 on I,

B2w
n
1 = −β−1

1 ∂ν(β2w
n
3 +m2w

n
4 ) + αβ−1

1 κwn5 on I.

(5.39)

By Proposition 2.60, there are two positive constants λ
(1)
0 and C that satisfy

‖wn1‖H4(Ω1) ≤ C
(
‖λ(1)

0 wn1 + f ∗‖L2(Ω1) + ‖ − αβ−1
1 wn5‖H3/2(I)

+ ‖ − β−1
1 ∂ν(β2w

n
3 +m2w

n
4 ) + αβ−1

1 κwn5‖H1/2(I)

)
≤ C

(
‖wn1‖L2(Ω1) + λn ‖fn2 ‖L2(Ω1) + λn ‖wn2‖L2(Ω1) (5.40)

+ ‖wn5‖H2(Ω1) + ‖β2w
n
3 +m2w

n
4‖H2(Ω2)

)
.
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From (5.7) and the fact wn5 ∈ D(AT ), it follows that: ∆wn5 = iβ−1ρ0λnw
n
5 −

αβ−1∆wn2 + σβ−1wn5 − ρ0β
−1λnf

n
5 =: g∗ in Ω1 and ∂νw

n
5 + κwn5 = 0 on ∂Ω1.

By regularity theory, see for instance part b) of Remark 3.3 in [14], there are

constants λ
(2)
0 > 0 and C > 0 such that

‖wn5‖H2(Ω1) ≤ C‖λ(2)
0 wn5 − g∗‖L2(Ω1)

≤ C
(
‖wn5‖L2(Ω1) + λn ‖wn5‖L2(Ω1) + ‖wn2‖H2(Ω1) + λn ‖fn5 ‖L2(Ω1)

)
.

Therefore,
λ−1
n ‖wn5‖H2(Ω1) ≤ C. (5.41)

Thanks to (5.27), (5.40) and (5.41) we can affirm that
(
λ−1
n wn1

)
n∈N is bounded

in H4(Ω1). By interpolation inequality,

1

λ
1/2
n

‖wn1‖H3(Ω1) ≤ C
‖wn1‖

1/2

H4(Ω1)

λ
1/2
n

‖wn1‖
1/2

H2(Ω1) ≤ C. (5.42)

Due to the first equation in (5.39),

iwn2 = −β1

ρ1
λ−1
n ∆2wn1 + fn2 − α

ρ1
λ−1
n ∆wn5 in Ω1. (5.43)

Taking the inner product in L2(Ω1) of (5.43) with wn2 and applying integration
by parts, we obtain

i ‖wn2‖
2
L2(Ω1) = −β1

ρ1
λ−1
n

[
− (∇∆wn1 ,∇wn2 )L2(Ω1)2 + (∂ν∆w

n
1 , w

n
2 )L2(I)

]
+ (fn2 , w

n
2 )L2(Ω1) −

α
ρ1
λ−1
n (∆wn5 , w

n
2 )L2(Ω1) .

(5.44)

Due to (5.42), we can write∣∣λ−1
n (∇∆wn1 ,∇wn2 )L2(Ω1)2

∣∣ ≤ λ−1
n ‖∇∆wn1‖L2(Ω1)2 ‖∇wn2‖L2(Ω1)2

≤ Cλ−1/2
n ‖wn1‖H3(Ω1) λ

−1/2
n ‖∇wn2‖L2(Ω1)2

≤ Cλ−1/2
n ‖∇wn2‖L2(Ω1)2 . (5.45)

The boundedness of the sequences (λ−1
n wn1 )n∈N in H4(Ω1) and (wn2 )n∈N in

L2(Ω1) together with Theorem 2.21, Corollary 2.22, Friedrichs inequality and
(5.42) allows us to write∣∣λ−1

n (∂ν∆w
n
1 , w

n
2 )L2(I)

∣∣ ≤ λ−1
n ‖∂ν∆wn1‖L2(I) ‖w

n
2‖L2(I)
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≤ C
‖wn1‖

1/2

H4(Ω1)

λ
1/2
n

‖wn1‖
1/2

H3(Ω1)

λ
1/4
n

‖wn2‖
1/2

H1(Ω1)

λ
1/4
n

‖wn2‖
1/2

L2(Ω1)

≤ Cλ−1/4
n ‖∇wn2‖

1/2

L2(Ω1)2 . (5.46)

The limit (5.38) together with (5.45) and (5.46) imply

λ−1
n (∇∆wn1 ,∇wn2 )L2(Ω1)2 → 0 and λ−1

n (∂ν∆w
n
1 , w

n
2 )L2(I) → 0. (5.47)

Because fn2 → 0 in L2(Ω1) and ‖wn2‖L2(Ω1) ≤ C for all n ∈ N,

(fn2 , w
n
2 )L2(Ω1) → 0. (5.48)

By (5.14), (5.20), (5.32) and (5.33),

λ−1
n (∆wn5 , w

n
2 )L2(Ω1) → 0. (5.49)

Because of (5.34), (5.44) and (5.47)-(5.49) we obtain the convergences

wn1 → 0 in H2(Ω1) and wn2 → 0 in L2(Ω1). (5.50)

Joining the limits (5.16), (5.23), (5.30) and (5.50) we get wn → 0 in H0, this
contradicts the first assertion in (5.1).

Remark 5.2. If λn < 0 for all n ∈ N, we multiply (5.13) by -1. From this
point on, the proof is similar to the one presented above with the difference
that some λn would now be −λn.

Corollary 5.3. If η = m1 = 0 and m2 > 0, then the analytic semigroup
(T0(t))t≥0 generated by A0 is exponentially stable. Thus, there exist constants
M > 0 and ω < 0 such that E(t) ≤ MeωtE(0) for all t ≥ 0, where E := E0

and E0 is as in (3.1).

Proof. By Remark 3.16, A0 is the infinitesimal generator of the C0-semigroup
of contractions (T0(t))t≥0. Due to Corollary 3.6 in [109, p. 11], we have that
ρ(A0) ⊃ {λ ∈ C : Reλ > 0} and as iR ⊂ ρ(A0), see Proposition 4.5, then

σ(A0) ⊂ Cr {λ ∈ C : Reλ ≥ 0}.

Now, Theorem 5.1 and Theorem 5.2 in [38] imply the exponential stability of
the semigroup (T0(t))t≥0.
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Another consequence of the analyticity of the solutions is the impossibility
of localization. That means that the only solution that can be identically zero
after a finite period of time is the null solution. This can be found in [20, p.
162].

Corollary 5.4. Let η = m1 = 0 and m2 > 0. Let us assume that w =
(u, ut, v, vt, θ) is a solution of the system (1.1)-(1.3) that satisfies (1.4)-(1.7)
with initial conditions (1.8) and (1.9) such that u = v = θ = 0 after a finite
time t0 > 0. Then, u = v = θ = 0 for every t ≥ 0.

Remark 5.5. In the proof of Theorem 4.16 it was shown that if we assume
condition (4.99) with η > 0, m1 > 0 and m2 = 0, then iR ⊂ ρ(Aη). On
the other hand, Theorem 4.15 implies that the C0-semigroup of contractions
(Tη(t))t≥0 generated by Aη does not have exponential stability. Consequently,
under the given conditions, we have that (Tη(t))t≥0 is not analytic.
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trodução à Análise Funcional. Eduem, 2011.

[33] S. Chai and B.-Z. Guo. Analyticity of a thermoelastic plate with vari-
able coefficients. Journal of Mathematical Analysis and Applications,
354(1):330–338, 2009.

[34] I. Chueshov. Remark on an elastic plate interacting with a gas in a
semi-infinite tube: Periodic solutions. Evolution Equations & Control
Theory, 5(4):561–566, 2016.

[35] I. Chueshov and I. Lasiecka. Von Karman Evolution Equations: Well-
posedness and Long-Time Dynamics. Springer Monographs in Mathe-
matics. Springer, 2010.

[36] I. Chueshov, I. Lasiecka, and J. T. Webster. Attractors for Delayed,
Nonrotational von Karman Plates with Applications to Flow-Structure
Interactions Without any Damping. Communications in Partial Dif-
ferential Equations, 39(11):1965–1997, 2014.

[37] E. R. S. Coelho, V. N. Domingos Cavalcanti, and V. A. Peralta.
Exponential stability for a transmission problem of a nonlinear vis-
coelastic wave equation. Communications on Pure & Applied Analysis,
20(5):1987–2020, 2021.

[38] M. Conti, F. Dell’Oro, L. Liverani, and V. Pata. Spectral Analysis and
Stability of the Moore–Gibson–Thompson–Fourier Model. Journal of
Dynamics and Differential Equations, 2022.

[39] M. Conti, V. Pata, M. Pellicer, and R. Quintanilla. On the analyt-
icity of the MGT-viscoelastic plate with heat conduction. Journal of
Differential Equations, 269(10):7862–7880, 2020.

106



Bibliography

[40] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical
Methods for Science and Technology: Volume 2 Functional and Varia-
tional Methods. Springer-Verlag Berlin Heidelberg, 2000.

[41] F. Dell’Oro and D. Seifert. A short elementary proof of the
Gearhart–Prüss theorem for bounded semigroups. arXiv e-prints, page
arXiv:2206.06078, Jun 2022.

[42] R. Denk and F. Kammerlander. Exponential stability for a coupled
system of damped-undamped plate equations. IMA Journal of Applied
Mathematics, 83(2):302–322, 2018.

[43] R. Denk, R. Racke, and Y. Shibata. Lp theory for the linear thermoe-
lastic plate equations in bounded and exterior domains. Advances in
Differential Equations, 14(7/8):685–715, 2009.
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