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Resumen

La inspección de la porosidad de piezas fabricadas se ha realizado tradicionalmente mediante el uso de microscopı́a manipulada
por parte de un técnico humano. Sin embargo, la persona involucrada necesita experiencia en esta tarea, y la cantidad de piezas
que se pueden inspeccionar por unidad de tiempo es limitada. La presencia de porosidad en el material es crı́tica, ya que puede
afectar negativamente a las propiedades mecánicas y la calidad de la pieza. En este trabajo se propone automatizar la clasificación
de los defectos de porosidad que aparecen en el interior de las piezas fabricadas por fundición. En primer lugar, adquirimos
imágenes a partir de piezas de aluminio fabricadas por dos métodos de fundición: uno tradicional usando molde de arena y otro más
moderno con la técnica de fabricación aditiva Binder Jetting (BJ). Luego, recortamos regiones con y sin poros, que posteriormente
caracterizamos usando descriptores SIFT codificados en caracterı́sticas de BoVW para alimentar y entrenar dos clasificadores SVM:
uno para predecir si la imagen contiene poro o no, y el otro para indicar si el poro detectado es debido al efecto de gases o por
contracción durante la solificación.

Palabras clave: Vision por computador, Clasificación de imágenes, BoW, SVM, Control de Calidad, Clasificación de porosidad,
Fabricación aditiva

Automatic classification of pores in aluminum castings using machine learning

Abstract

Porosity inspection of manufactured parts has traditionally been performed using microscopy manipulated by a human techni-
cian. However, the person involved needs experience in this task, and the number of parts that can be inspected per unit of time is
limited. The presence of porosity in the material is critical, as it can negatively affect the mechanical properties and the quality of
the part. In this paper, we propose to automate the classification of the porosity defects that appear inside the parts manufactured
by casting. First, we acquire images from aluminum parts manufactured by two casting methods: a traditional one using sand
molding and a more modern one with the Binder Jetting (BJ) additive manufacturing technique. Then, we crop regions with and
without pores we later describe using SIFT descriptors encoded into BoVW features to feed and train two SVM classifiers: one for
predicting if the image contains a pore or not, and the other for also indicating if the pore detected is due to the effect of gases or by
shrinkage during solidification.

Keywords: Computer Vision, Image Classification, BoW, SVM, Quality control, Surface Inspection, Pore classification, Additive
manufacturing

1. Introduction

Casting is a manufacturing process widely used to produce
complex parts for different industrial sectors. The importance

of obtaining castings is their versatility since they can be pro-
duced in large quantities, sizes and shapes that would be dif-
ficult to achieve with other manufacturing processes. How-
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ever, during the casting process, various defects can arise in
the parts, which can compromise their quality and mechani-
cal strength. The main defects in parts obtained by casting are
porosity, cracks, inclusions, underfilling and segregation Camp-
bell (2018).

Among these defects, porosity is particularly important be-
cause it can negatively affect the mechanical behavior of the
part. Porosity is the presence of small voids within the part,
which can reduce its strength and increase the probability of
part failure Li et al. (2021). Porosity defects can be caused
by different reasons, and the most common is the presence of
gas and shrinkage during the solidification of the material. Gas
porosity is caused by the entrapment of gases within the liquid
metal during the casting process. This can occur due to im-
proper degassing of the molten metal, inadequate venting of the
mold or high pouring temperatures. Gas porosity can reduce
the mechanical strength of the casted part and make it more
susceptible to corrosion Cao et al. (2015). Shrinkage porosity
is caused by the solidification of the molten metal, which can
create voids due to the contraction of the material as it cools.
Shrinkage porosity is more common in thicker sections of the
casting and it can be minimized by controlling the cooling rate
and the design of the mold Dong et al. (2016).

The different types of porosity have different morphology.
For example, gas porosity is characterized by a round shape
with smooth walls, while shrinkage porosity has an elongated
shape with rough walls Chen et al. (2022) (see Figure 1). The
fact of presenting different morphology allows us to differenti-
ate the type of pore and to know the cause that produces it.

The inspection of porosity defects in castings is a crucial
step in ensuring their quality and performance. Traditionally,
this inspection has been carried out visually by trained person-
nel, which can be time-consuming and subject to human error.
In recent years, there has been an increasing interest in devel-
oping automated inspection systems that can improve the effi-
ciency and accuracy of porosity detection in castings Jiang and
Zhou (2022).

Automated inspection systems can analyze the images of
the castings and classify the detected porosity defects based on
various characteristics such as circular equivalent diameter, as-
pect ratio and roundness Lyu et al. (2019). This classification
can provide valuable information about the type of porosity de-
fects in the castings and the potential cause, which can be used
to improve the casting production process and reduce the occur-
rence of defects in the future. Another advantage of automated
inspection systems is their speed and consistency. These sys-
tems can inspect a large number of castings in a short period of
time, reducing the need for manual inspection and increasing
productivity.

In this work, we propose a method for the automatic classi-
fication of porosity defects in aluminum alloy parts obtained by
casting, like the ones present in Figure 1. Our approach, based
on Computer Vision and Supervised Machine Learning using
traditional descriptors, can predict if an input image contains a
pore and can also distinguish between porosity due to gases or
shrinkage.

Figure 1: An example of pores that can appear in a part manufactured by cast-
ing in a ceramic mold

The rest of the paper is organized as follows. First, works
related to the problem addressed in this paper are presented in
Section 2. Second, section 3 describes the proposed pore classi-
fication strategy. Third, experimental results are presented and
discussed in Section 4. Finally, conclusions are drawn in Sec-
tion 5.

2. Related Work

Mehran et al. (2009), presented a strategy based on fuzzy
logic for detecting pores in aluminum alloys. First, input im-
ages are binarized and redundant objects (noise) are removed.
After that, a reference image is used to identify the area of
interest in each binary image. Finally, visual features are ex-
tracted and clustered using the c-means algorithm to detect the
pores. The proposed strategy was evaluated using 105 images
(70 images with pores and 35 images without pores), and it cor-
rectly identified 93.36% of the pores. Besides, in Al-Mousa and
Al-Dweik (2019), a fuzzy technique to detect and characterize
pores is also proposed using Atomic Force Microscopy (AFM)
images. This technique splits the input image above and below
the surface, then individually analyses each image to character-
ize pores and structures. Finally, a statistical method is used to
calculate the surface height of the researched part, and a fuzzy
algorithm is used for characterization. The proposed technique
successfully characterizes pores, detecting minor defects and
anomalies.

Patrick Fuchs and Garbe (2019) evaluated three methods
for detecting pores in aluminum parts through 3D computed
tomography. The first method is a fast slice-based approach
that performs pore prediction without the full 3D context. The
second method is an encoder-decoder model with an additional
refinement step, which acquires context by reducing the spa-
tial resolution of the 3D data. The third method is a simple
convolutional neural network with dilated convolutions for con-
text aggregation. The results show that the three methods can
be used for image segmentation, achieving a practically iden-
tical accuracy (85%). However, regarding detection probabil-
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ity, the encoder-decoder-based method suffers from the insuffi-
cient depth and channel information, failing to detect minor de-
fects. On the other hand, for small defects, the slice-based and
the convolutional-neural-based methods yield similar results.
Finally, for more extensive defects, the convolutional-neural-
based method benefits slightly from the 3D context obtaining
better results than the slice-based method.

Yu et al. (2020) designed a system based on computer vi-
sion and the k-means algorithm to accurately and quantitatively
determine parameters such as porosity, diameter and distance of
pores in magnesium alloys. Pores are analyzed using scanning
electron microscopy, which provides a faster and more efficient
way to calculate porosity than manual analysis. In particular,
ImageJ, an open-source software, was used to manually mea-
sure porosity, pore diameter, and spacing to create a testing set.
Results show that the system can quickly process many sam-
ples, speeding up the overall process of pore analysis.

The reviewed works addressed the pore detection and clas-
sification using strategies based on Fuzzy logic Mehran et al.
(2009); Al-Mousa and Al-Dweik (2019), K-means Yu et al.
(2020) and deep learning Patrick Fuchs and Garbe (2019). In
all the cases, the pore detection and classification accuracy is
comparable to the one obtained on the manual inspection with
the benefices of a considerable time reduction. However, to
the best of our knowledge, the BoVW method employed in this
study has not been explored to analyze the pores on aluminum
parts.

3. Methodology

Figure 2 presents a graphical abstract of the proposed
method. To support the development of this methodology for
detecting and classifying pores, we used parts manufactured by
casting using two types of molds: (i) a conventional sand mold
and (ii) a mold made with the Binder Jetting additive manu-
facturing technique. In this way, it is possible to identify and
quantify the pores produced by both processes. The material
used for casting was the EN-AC 4600 aluminum alloy. The
castings were cut in half to capture images of the sectioned sur-
faces arranged in a grid pattern, Figure 3. Through this cut, we
obtained 204 images using a metallographic Tecmicro micro-
scope (OLYMPUS BHM).

Figure 3: Sectioned surfaces of castings with the grid pattern

We proposed a four-step strategy based on the Bag of Vi-
sual Words (BoVW) Csurka et al. (2004); Avila et al. (2011)
using scale-invariant feature transform (SIFT) Mortensen et al.
(2005); Fidalgo et al. (2018, 2019) as a descriptor to classify
automatically the pores on surface images cropped from those
taken in the sectioned surfaces (Figure 3. We choose a BoVW
representation because it allows us to analyze region images of
different dimensions without rescaling them, which may repre-
sent more accurately the features of pores that vary in size. Be-
sides, the BoVW representation was used successfully to clas-
sify charcoal particles Chaves et al. (2015), which have similar
visual patterns to the ones observed in the pores found in the
part surfaces subject of this research.

First, given an input image, a vector describing key points
is extracted using the SIFT descriptor Mortensen et al. (2005).
Second, using the SIFT descriptors, we build a visual vocabu-
lary or dictionary by grouping the SIFT descriptors into “visual
words”, which are also “vectors”, as Figure 4 depicts.

Figure 4: Creation of the visual vocabulary or dictionary

Third, using the visual vocabulary, the input image is rep-
resented by BoVW feature vectors through the created visual
words. Each image will be represented by a histogram com-
prising the frequency of occurrence of each visual word in the
dictionary; see Figure 5.

Figure 5: Creation of BoVW image representations

Fourth, after representing each image by a BoVW vector,
these representations are used to train a supervised model and
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Figure 2: Proposed pore classification workflow on images of aluminum casting parts.

predict whether a new image contains pores or not and their
type, see Figure 6. For this, the new images are represented
using a BoVW vector via the created visual vocabulary before
feeding them to the trained model to predict the presence of
pores or classify their type.

Figure 6: Image classification using BoVW representations

In this work, we use Support Vector Machine (SVM) Cortes
and Vapnik (1995), which builds a classification model from the
set of BoVW vectors by selecting the best hyperplane that cat-
egorizes image regions. The hyperplane with the most signifi-
cant distance to any class’s nearest training data points achieves
a good class separation. A regularization parameter C controls
the trade-off between maximizing the margin distance and min-
imizing the training error.

Moreover, we selected as candidate classes the two types
of pores previously described (i.e., shrinkage pores or gaseous
pores) which are observed on the surface of the aluminum parts.
The shrinkage pores are irregularly shaped, while the gaseous
pores are regular and circular, as can be observed in Figure 7.

Figure 7: Type of pores to classify on aluminum parts surface

Additionally, we considered regions on the parts’ surface
without pores since the system must be able to identify areas
without defects. Some examples of these crops are depicted in
Figure 8.

Figure 8: Regions without pores to classify on aluminum parts surface.
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4. Experimental results

For the training and testing of the proposed strategy, we
manually built a dataset with cropped images with and with-
out pores. The dataset for this experimentation comprises 1765
crops extracted from images of aluminum alloy parts casted
both in sand mold and Binder Jetting mold. In particular, 1106
images correspond to parts made in the sand mold, and the re-
maining 659 were cropped from images of the part manufac-
tured in the Binder Jetting mold. All images have been labeled
with shrinkage pores or gaseous pores. Besides, considering
the locations of the regions with pores, regions without pores
were generated automatically. Moreover, we split the data into
training and test sets, using a 80/20 ratio.

We evaluated the performance of our classification strategy
the accuracy (Acc.) and considering two scenarios: a general
classification with two classes (i.e., pore and non-pore); and
a refined classification with three types (i.e., shrinkage pore,
gaseous pore and non-pore). Also, we performed a grid search
to select the parameters that optimize our strategy per classi-
fication scenario. For this purpose, several experiments were
conducted varying the following parameters:

• Num. of words: number of words in the BoVW dictio-
nary.

• SIFT Step: number of pixels used to extract the SIFT de-
scriptor.

• SIFT Size: of the spatial bin of the SIFT descriptor. A
value of 5 was set experimentally.

• C: regularization value of the SVM classifier. A value of
1 was set experimentally.

Table 1 shows the accuracy values obtained for the per-
formed experiments.

Table 1: Evaluation of the classification strategy of image regions on aluminum
parts surface. The best results are highlighted in bold.

Classes Num. of words SIFT Step Acc. (%)

2

50 5 93,00
100 5 94,50
150 5 94,59
200 5 95,00
50 10 91,50
100 10 95,00
200 10 91,50

3

50 5 83,93
100 5 85,37
150 5 86,36
200 5 85,83
50 10 82,55
100 10 82,90
150 10 84,01
200 10 84,59

The best results (Acc. of 95,00 %) for the binary classifica-
tion, i.e., pore and non-pore, are obtained using a BoVW dic-
tionary of 200 words. While the best results (Acc. of 86,36 %)

for the multi-class classification, i.e., shrinkage pore, gaseous
pore and non-pore, are achieved using a BoVW dictionary of
150 words. In both cases, a SIFT step of 5 is used. As can be
observed, our strategy works better when the two existing types
of pores (shrinkage and gaseous) are joined in a single class
because the information of the pores is similar. In this way,
the model generalizes better than the classification considering
three categories.

5. Conclusion

Castings can have different types of porosity, and their mor-
phology can significantly affect the mechanical properties and
surface quality of the parts. Understanding the causes of the
different porosity types and applying effective methods to mini-
mize their occurrence is crucial for producing high-quality cast-
ings. For this reason, porosity detection and classification is
a fundamental task to ensure the quality of the parts. In this
scenario, the development of automated classification systems
helps to improve the efficiency in the identification and analysis
of these defects, reducing the time and effort required to classify
porosity defects with respect to a manual identification.

This work proposes a method to classify images automati-
cally into multiple categories depending on their content. Using
SIFT descriptors with the Bag of Visual Words framework and
an SVM classifier, we worked with a dataset of 1765 images to
train two different models using supervised learning. The first
trained model is a binary one that can predict if an input im-
age contains a pore or not, while the second trained model can
detect if detected pores are due to shrinkage or gases.

Experimental results showed that our approach obtained the
best accuracy (95, 00%) for pore and non-pore classes with a
BoVW dictionary of 200 words. The best accuracy (86, 36%)
for shrinkage pore, gaseous pore and non-pore types was with
a BoVW dictionary of 150 words. Therefore, we can conclude
that our approach can be considered an agile and efficient op-
tion to support aluminum castings inspection, as an alternative
to the traditional process which is conducted manually.

In future work, robust visual descriptors will be evaluated
to improve the accuracy during multi-class pore classification.
It would be worth to compare traditional visual descriptors with
deep learning features extracted from pre-trained architectures
in larger datasets (ImageNet) using Convolutional Neural Net-
works Liu et al. (2022); Tan and Le (2019) and Visual Trans-
formers Yuan et al. (2021).
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