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Resumen

La rehabilitación es una herramienta esencial que ayuda a las personas a restaurar la movilidad en las extremidades afectadas
por diversas afecciones, como enfermedades neurológicas. Las terapias convencionales, que incluyen terapia ocupacional, fı́sica y
del habla, se han mejorado con nuevas tecnologı́as, como sistemas robóticos asistidos y juegos de realidad virtual y aumentada, para
aumentar la participación y, en consecuencia, la efectividad. Esta investigación se centra en la implementación de un dispositivo
portátil de sensores de electromiograma (EMG) de ocho canales, el brazalete Mindrove, para el reconocimiento de gestos. El
objetivo es desarrollar un modelo clasificador utilizando el algoritmo de Máquinas de Vectores de Soporte (SVM) para distinguir
ocho gestos diferentes de la mano y aplicarlo en un sistema de reconocimiento de gestos. El estudio demuestra la viabilidad de
este sistema de reconocimiento y explora la aplicación potencial de esta tecnologı́a en juegos interactivos de Unity para terapia de
rehabilitación. Los resultados muestran una precisión prometedora en la clasificación del modelo y se necesita más investigación
para abordar los desafı́os relacionados con la especificidad del usuario y la precisión del reconocimiento de gestos. El trabajo
futuro implica ampliar el repertorio de gestos reconocidos, incorporar datos adicionales del sensor y explorar técnicas de extracción
de caracterı́sticas más avanzadas para mejorar el rendimiento general del sistema de reconocimiento de gestos en terapias de
rehabilitación..
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Abstract

Rehabilitation is an essential tool that aids individuals in restoring mobility in limbs affected by various conditions, such as
neurological diseases. Conventional therapies, including occupational, physical, and speech therapy, have been improved by new
technologies, such as assistive robotic systems, along with virtual and augmented reality games, to enhance engagement and,
consequently, effectiveness. This research focuses on implementing an eight-channel electromyogram (EMG) wearable sensor
device, Mindrove armband, for gesture recognition. The objective is to develop a classifier model using the Support Vector Machine
(SVM) algorithm to distinguish eight different hand gestures and apply it in a gesture recognition system. The study demonstrates
the feasibility of this recognition system and explores the potential application of this technology in interactive Unity games for
rehabilitation therapy. The results show promising accuracy in model classification, and further research is needed to address
challenges related to user specificity and gesture recognition accuracy. Future work involves expanding the repertoire of recognized
gestures, incorporating additional sensor data, and exploring more advanced feature extraction techniques to enhance the overall
performance of the gesture recognition system in rehabilitation therapies.

Keywords: EMG, gesture recognition, ROS2, rehabilitation, assistive robotic systems, Support Vector Machine (SVM).
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1. Introduction

Rehabilitation plays a vital role in assisting individuals who
have experienced partial or complete loss of mobility in one
of their limbs. Neurological disease, stroke, Spinal Cord In-
jury (SCI), Traumatic Brain Injury (TBI), birth defects and limb
amputation are some of the most common conditions which of-
ten require rehabilitation therapy Londoño et al. (2017). The
primary objective of rehabilitation is to help patients reco-
ver from motor capacities and improve their overall mobility.
By implementing rehabilitation programs adapted to individual
needs, patients can make significant progress in their recovery
process ScienceDaily (2017).

Conventional therapy usually includes a combination of oc-
cupational, physical and speech therapy. However, in recent
years, new technologies have been incorporated alongside the-
se therapies, enhancing their effectiveness. One such advance
is the integration of assistive robotic systems, which provides
patient-specific and personalized physical trainingsBrewer et al.
(2007). These systems have also shown themselves to be more
economic in the long runLo et al. (2019). This will allow phy-
sical rehabilitation in reaching all the people that require of it,
one of the challenges described by the WHO WHO (2023). Ad-
ditionally, virtual and augmented reality games are commonly
included as part of the rehabilitation process, serving to keep
patients highly motivated [1]. These technologies, apart from
engaging and making rehabilitation interactive, include enhan-
ced results in rehabilitation due to specific patient needs tailo-
ring, which maximizes their potential for recovery.

Monitoring sensors are crucial to be integrated with these
systems in order to enable remote monitoring and control user
data, as well as to carry out personalized therapy programs.
These sensors can be categorized as invasive or non-invasive
sensors. For this particular research, electromyogram (EMG)
wearable non-invasive recording sensors were used.

EMG sensors are able to detect and record muscle activity
via semi-dry electrodes. They capture action potentials origina-
ted in the neurons of the Central Nervous System (CNS), in-
cluding both brain or spinal cord. These action potentials are
propagated through a series of interconnected neurons until
reaching the Peripheral Nervous System (PNS). At this stage,
the axon terminal of each neuron will branch out and interact
with a given set of skeletal muscle fibers at the neuromuscular
junction, aiding their contraction as soon as the electric impulse
reaches the muscle fibers.

These sensors have a wide range of applications, serving
as valuable tools for creating gesture classification algorithms.
They are able to accurately recognize and analyze a patient’s
movement, enabling their implementation to control and moni-
tor other rehabilitation systems.

Recently, there have been numerous research studies focu-
sing on gesture recognition using EMG sensors Sultana et al.
(2023). However, a significant challenge that persists in this
field is the lack of user specificity, which needs individualized
training for optimal performance. Therefore, further extensive
studies are still required to address this issue effectively. Besi-
des, enhancing the recognition accuracy is crucial for the ad-
vancement of gesture recognition technology.

In the present study, an 8 EMG channel sensor device, Min-
drove armband, will be used. The main objective is to develop a

classifier model able to distinguish 8 different gestures, shown
in Table 1. Subsequently, a real-time gesture recognition algo-
rithm will be implemented to detect and identify these gestures
in real-time as performed by the user wearing the EMG device.
The final objective of this approach is to integrate the gestu-
re recognition system into Gamified unity games, thereby en-
hancing interactivity, allowing users to control the game by the
gestures captured with the EMG sensor. By achieving this, the
study aims to demonstrate the feasibility and potential applica-
tions of EMG-based gesture recognition in novel rehabilitation
therapies.

The paper is organized as follows: Firstly, it covers some
mathematical prerequisites neccesary to the overall understan-
ding of the applied methods, followed by the algorithm emplo-
yed for generating the classification model. Subsequently, the
implementation of model within a ROS2 system will be des-
cribed in experiment section, for gesture recogntion. Finally, it
is explained how the recognized gestures are implemented in
Unity games. Lastly, the paper presents the results and conclu-
sions obtained from the experiments.

2. Mathematical Prerequisites

Machine learning, a subfield of Artificial Intelligence, is ba-
sed on learning from data, pattern recognition and decision-
making, with the highest automatization process as possible
Spiewak et al. (2018).

This project focuses on pattern recognition using machine
learning techniques. It aims to automatically interpret datasets,
pattern identification, and data classification. Specifically, the
project has the objective to recognize hand gestures based on
surface electromyography (sEMG) signals. By analyzing these
signals, a model, accurately classifying and interpreting diffe-
rent hand gestures, will be trained.

Figura 1: Support Vector Machine with linear kernel

Gesture recognition process requires a classifier model for
the gesture classification. Support Vector Machine (SVM), a
supervised machine learning algorithm, was employed for this
particular research. SVM is a statistical approach which looks
for a hyperplane accurately dividing different classes. It finds
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the maximum distances between different categories by figu-
ring out the maximum margin among hyperplanes, as shown
in Fig. 1. While it is true that the SVM algorithm is primarily
designed for binary classification, it can be extended to handle
multiclass problems by reducing to a series of binary problems.

This algorithm is based in Kernel approach, which simpli-
fies non-linear data set into a higher dimension linear one, in
order to distinguish different classes in the hyperplane, obser-
ved in Fig. 2.

Figura 2: Non-Linear Kernel approach in SVM

The most common Kernel functions, and the ones which
are tested for this project, are: linear kernel, Radial Basis Fun-
ction (RBF) kernel and Polynomial kernel; which can be seen
in Equation 1, 2, and 3.

Klin(x, y) = x⊤y (1)

Kpoly(x, y) = (1 + x⊤y)d (2)

KRBF(x, y) = e−
(x−y)2

σ2 (3)

One of the main advantages of SVM are its accuracy and
high prediction speed. Nevertheless, it is quite sensitive to the
type of kernel applied and loss of efficiency when dealing with
overlapping classes.

3. Algorithm

Generally, the steps to follow for machine learning classifi-
cation techniques are the following ones, acquisition of the data
to be trained and tested, preprocessing of the data including nor-
malization and noise and background reduction, feature extrac-
tion which will be the data applied for the classification model,
continuing with the proper data classification making use of a
machine learning algorithm. Finally, the evaluation of the clas-
sification will be carried out. A detailed overview of these steps
is shown in Fig. 3.

Figura 3: Steps for the classification

Datasets used for the classification of this study were ac-
quired from Eftimiu et al. (2022). It comprised of 5 different
datasets, of 5 healthy, male, right-handed volunteers within the
range of 25 and 35 years old, performing 3 repetitions for each
8 different gestures, shown in Table 1. The recordings were ac-
quired using the Mindrove armband device, which consists of
8 semidry electrode channels. Each dataset includes raw ADC
(analog-to-Digital) EMG signals from these 8 channels during
the execution of repetitions for all the gestures. Additionally,
there is a column indicating the task number associated with
the gesture being performed, in each of the samples. While the-
re are other values present in the datasets, will not be given
focus for this research. The gestures and their association to a
task number can be observed in Table 1.

Tabla 1: Gestures with corresponding task number
Gesture Classification

Task number Gesture
0 Idle
1 Thumb flexion (TF)
2 Index finger flexion (IFF)
3 Middle finger flexion (MFF)
4 Ring finger flexion (RFF)
5 Pinky finger flexion (PFF)
6 Wrist extension (outward) (WE)
7 Wrist flexion (inward) (WF)

For the pre-processing, data was converted to microvolts
multiplying it by 0.045, as specified in the SDK manual from
Mindrove. The armband device contains its own sinc low pass
filter of 131 Hz for antialiasing. Besides, a filter to eliminate
the power line noise of 50 Hz was applied. It must be mentio-
ned that no other filters were implemented for the classification.

Subsequently, due to the horizontal symmetry of the EMG
signals, a rectification which transforms all values in absolute
values was done. The next step consisted in a mix-man normali-
zation process for each individual channel from values from -1
to 1, in order to avoid a predominating feature which could lead
to adverse results. The obtained output after this preprocessing
can be observed in Fig. 4.

Figura 4: Results after pre-processing of one of the subjects

Before feature extraction, a rolling approach was perfor-
med, creating fragments each containing 10 samples with an
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advancing step of 8 values. These were fragments applied for
each of the feature extraction.

This is done in order to convert the data in each of the frag-
ments into a set of features, which will be the ones applied for
the classification. For this case, two time domain features we-
re selected, Mean Absolute Value (MAV) and Simple Square
Integral (SSI).

MAV =
1
N

N∑
i=1

|xi| (4)

SSI =
1
N

N∑
i=1

|xi|
2 (5)

Following this, the classification took place. As mentioned,
SVM was used. Linear Kernel, Polynomial Kernel and RBF
kernel approach were used independently so that a comparison
was done to select the best model. However, Linear Kernel sho-
wed outstanding poor outcomes, confirming the non-linearity
of the dataset; and thus, it was discarded and no further used in
subsequent processes.

The Python library Scikit-learn (sk-learn) provides its
own Support Vector Machine model system, which takes as in-
put the features previously created as and the corresponding
labels with the task number. It is needed to specify the ty-
pe of Kernel wanted to be used, as well as the percentage of
the data to use as testing data and as training data, together
with other specifications that depend on the selected Kernel ap-
proach, such as degree and C, which is a regulation parame-
ter, for polynomial kernel; and gamma, a Kernel coefficient, for
RBF approach. For this model, 80 % of the data was used for
training the model, and 20 % for testing.

Finally, evaluation of the saved model was performed. Ac-
curacy, F1 Score, Precision and Recall were compared for Poly-
nomial and RBF Kernel approach, shown in Table 2.

Tabla 2: Results from the classification
Polynomial Kernel RBF Kernel

Accuracy 86.62 % 95.57 %
F1 Score 84.14 % 95.49 %
Precision 87.10 % 95.50 %

Recall 86.62 % 95.57 %

Furthermore, results of the accuracy were able to be sfveen
in Confusion Matrix in 5 and 6.

It is needed to note the predominance of Task 0, which co-
rresponds to idle position, since this is, with significant differen-
ce, the most repeated gesture throughout the recordings, consu-
ming most of the data for training and testing. Furthermore, one
must bear in mind, that this gesture is the one which can lead to
greater confusion compared to the rest ones, in which evident
peaks can be distinguished. For those reasons, more data belon-
ging to idle position is applied for the classification model.

Figura 5: Confusion matrix for the SVM with Polynomial Kernel

Figura 6: Confusion matrix for the SVM with Radial Basis Function Kernel

4. Experiment

The classification model finally saved using the RBF kernel,
as it was clearly the one with better outputs.

Once the classification model was created and saved, the
following approach was to implement it in a real - time signal
recognition system, able to record the signals of the device and
create an instantaneous response giving the corresponding ges-
ture being performed by the user wearing it.

In order to carry this out, ROS2 and Ubuntu operating sys-
tems were used.

A publisher was created, able to record directly raw data
from the 8 channels from the armband device. This data was
sent to the topic, where a subscriber node was in charge of
acquiring that data from the topic. In the subscriber node, the
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data followed the same steps used for data preparation to in-
sert in the classification, which includes: creating fragments of
10 samples, rectification, normalization and feature extraction
(MAV and SSI). Next, that data was inserted in the previously
created classifier model, giving as output the task number asso-
ciated with the gesture. Data flow from the recording of the sig-
nals from the device until a gesture is recognized can be clearly
seen in the diagrams provided in Fig. 7 for a more specific view
of ROS2 system and more detailed in Fig. 8.

Figura 7: Simplified working diagram of ROS2

Figura 8: Diagram of data flow for classification model generation and gesture
recogntion

First, the created ROS2 system was tried with the datasets
used for the classifier model creation, giving an accuracy of
97 %. This was performed in order to ensure that the system
was correctly set up, for other incoming data.

Afterward, it was connected to the sensor, by a subscriber
node, which was adapted to receive signals from the Mindrove
Armband device. Once the data is acquired, the steps provided
by Fig 8 are followed, giving as output with the gesture recog-
nized for each of the input samples.

The last aim of the project consisted in the linkage of the re-
cognized gesture with Unity games. The subscriber node, which
outputs the gesture recognized per sample, was incorporated as
a publisher node sending results obtained from the gesture re-
cognition to Unity game engine, a cross-platform game engine
used for video games creation and development. Concretely, the
MYO-Gesture game, Arkanoid game and MYO-Space game,
were the games applied, seen in Fig. 9, 10, 11.

Figura 9: MYO-Gesture game

Figura 10: Arkanoid game

Figura 11: MYO-Space game

5. Results

The main objectives of the research, which consisted of the
development of an upper limb gestures classification model to-
gether with gesture recognition system via ROS 2 and incorpo-
ration of Unity games, were successfully achieved.

The final model, saved for further applications, involves a
Support Vector Machine based on Radial Basis Function Ker-
nel approach, using as feature inputs Mean Absolute Value and
Simple Square Integral.

Nevertheless, in order to achieve a more efficient gesture re-
cognition using the actual device intended for future real-time
recognition, a new model was created using the same parame-
ters. This new model incorporated a new set of gesture recor-
dings specifically collected for this purpose. The updated model
was then integrated into the gesture recognition system develo-
ped with ROS2.

The new model demonstrated improved performance,
achieving an accuracy of 92.12 %, precision of 91.72 %, F1
Score of 98.68 %, and recall of 92.12 %.

Furthermore, a Confusion Matrix was created in order to
analyze the occurrence of True Positives, True Negatives, Fal-
se Positives, and False Negatives among the different gestures,
as shown in Fig. 12. It is noteworthy, that the pinky finger fle-
xion gesture exhibited poor performance in the evaluation. This
can be attributed to the minimal muscle movement when perfor-
ming this gesture and consequently the weaker signal generated
compared to the other movements, being misclassified as Idle
position.

It is worth noting that in order to achieve even better results,
it is recommended to perform a fine-tuning process for each in-
dividual, with a reduced set of recordings. This ensures a better
fit with their specific signal values, resulting in improved accu-
racy and overall performance.
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Figura 12: Confusion Matrix from the new model

6. Conclusion and Future Work

Rehabilitation plays a crucial role in assisting individuals
with mobility loss. Recently, new technologies have enhan-
ced conventional therapies. This research focuses on gesture
recognition using surface electromyography (sEMG) signals.
The study aims to develop a classifier model using the Support
Vector Machine (SVM) algorithm to distinguish eight different
hand gestures together with a gesture recognition system using
ROS2. The integration of gesture recognition into Unity games
is explored to enhance interactivity in rehabilitation therapies.
The research highlights the potential of EMG-based gesture re-
cognition in novel rehabilitation therapies and emphasizes the
need for further studies to address challenges in user specificity
and recognition accuracy.

After good performance reached for the model classifica-
tion, gesture recognition system and association with Unity ga-
mes, the subsequent step to be followed involves the expanding
the repertoire of the gestures recognized, providing a broader
range of movement options. This advance aims to approach and
emulate the natural span of hand movements, allowing for mo-
re diverse and complex motions. As a result of increasing the
number of recognized gestures, the system will become more
versatile, enabling users to perform a greater variety of gestures
within the gaming or interactive environment, and thus, enhan-
cing the overall user engagement.

Mindrove armband, provides not only EMG signals, but al-
so Inertial Measurement Units (IMU), including values for ac-
celerometer and gyroscope in x, y and z axis. Making use of
this multisensorial system, incorporating dual data acquisition,
will efficiently benefit the classifier model. The incorporation
of IMU data together with EMG signals enables a more com-
prehensive and detailed understanding of the user’s movements

and gestures. The combination of data will significantly impro-
ve the accuracy and precision of the model, resulting in a better
recognition and classification performance. Furthermore, in this
manner, the system will efficiently acquire a broader range of
movements, with better results, providing a more reliable and
robust gesture recognition.

Moreover, for this particular research, Support Vector Ma-
chine (SVM) making use of two time domain features was ap-
plied for gesture recognition. Nevertheless, it must be mentio-
ned that the number of features introduced into the SVM could
be amplified, incorporating features from other domains, such
as features from frequency domain, or even time-frequency do-
main. In this way, the model could take advantage of a wider
data analysis and lead to an enhanced and more accurate classi-
fier model.

This gesture classification system developed in this research
has potential applications in several rehabilitation techniques,
including the control of prostheses for individuals with upper
limb amputations. Besides, it could be advantageous to inte-
grate it with the actual rehabilitation devices, facilitating the
interaction between patients and robotic systems.
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Eftimiu, N. J., Köllőd, C., Ulbert, I., Márton, G., Sep. 2022. A Surface Elec-
tromyography Dataset for Hand Gesture Recognition. In: 2022 IEEE 20th
Jubilee International Symposium on Intelligent Systems and Informatics
(SISY). pp. 000115–000120.
DOI: 10.1109/SISY56759.2022.10036305

Lo, K., Stephenson, M., Lockwood, C., Apr. 2019. The economic cost of robo-
tic rehabilitation for adult stroke patients: A systematic review. JBI Evidence
Synthesis 17 (4), 520.
DOI: 10.11124/JBISRIR-2017-003896

Londoño, J. A. A., Bravo, E. C., Garcı́a, J. F. C., Mar. 2017. Aplicación de
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