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A B S T R A C T   

Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it 
as a significant and reliable source of irrigation water. However, years of research indicate that if not managed 
adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human 
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Contaminants of emerging concern 
Wastewater treatment processes 
Policy and outreach 

and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers 
from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the 
benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in 
Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation 
for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic 
and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of 
emerging concern and pathogens). The work then presents solutions to address these challenges, including 
technological and agronomic management-based solutions as well as source control policies. The concluding 
section presents suggestions for the path forward, emphasizing the importance of improving links between 
research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a 
call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, 
environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to 
mitigate risks, and facilitate more sustainable use of TWW for food production in the future.   

1. Introduction 

Agriculture accounts for ~70 % of global freshwater consumption 
annually, with irrigated crops composing ~40 % of the cultivated lands 
globally (Pastor et al., 2019). The climate crisis and growing demand for 
food due to population growth have impacted freshwater availability, 
motivating the search for alternative water sources for agriculture, 
especially in arid and semi-arid regions (Assouline et al., 2015; Euro-
pean Commission 2020; Pastor et al., 2019). Reusing wastewater is 
emerging as a credible alternative to supply irrigation water, however 
only ~50 % of current wastewater production goes through treatment 
(Jones et al., 2021). In developing regions of the world, water stress 
leads to use of crude wastewater (i.e. raw sewage or lightly treated 
wastewater) for irrigation, resulting in detrimental public health and 
environmental consequences (Contreras et al., 2017; Qadir et al., 2010). 
Wastewater treatment circumvents many of these effects, and so irri-
gation with treated wastewater (TWW) can provide agriculture with 
multiple economic, environmental, and social advantages (Mannina 
et al., 2022; Tal, 2006; Thebo et al., 2021). 

Currently, only ~20 % of the global treated wastewater produced is 
reused (Jones et al., 2021), with the rest being discharged into the 
environment. The long term experience of countries such as Israel, 
where ~85 % of the generated TWW is reused for agricultural irrigation 
(Cohen et al., 2020), can promote widespread use of this untapped 
resource. Despite its advantages, it bears noting that widespread TWW 
irrigation poses challenges to agricultural production, the environment, 
and public health that need to be addressed (Levy et al., 2011; Ofori 
et al., 2021; Tal, 2016). The primary objective of this manuscript is to 
provide a roadmap for researchers, stakeholders, and policymakers to 
understand current and emerging challenges associated with agricul-
tural TWW use, drawing upon the vast experience gained in Israel, 
Europe and the US. By contextualizing present-day research, policy and 
practical experience, this publication aims to inspire the expansion of 
agricultural TWW reuse. This work was the product of a four day in-
ternational symposium (TreWAg 2022), supported by the United 
States-Israel Binational Agricultural Research and Development Fund, 
the European Union’s Horizon 2020 PRIMA program, and the US EPA 
Water Reuse Action Plan (WRAP Action 1.6), which brought together a 
multidisciplinary group of scientists, stakeholders and policymakers. 

The first two sections of this work highlight the potential detrimental 
agronomic and environmental impacts of TWW irrigation (Section 2), as 
well as potential public health risks arising from the transfer of chemical 
and microbial contaminants from TWW to irrigated produce (Section 3). 
Section 4 provides well established technological and management so-
lutions that can help circumvent these hazards. Section 5 discusses 
policy, outreach, education, and regulatory actions that can promote 
beneficial reuse of TWW as well as recommendations for future research. 
By integrating these topics, this paper provides a holistic perspective, 
which is essential for the sustainable use of TWW, especially in view of 
the complex interactions among the multiple stakeholders along the 
TWW use and supply chain. 

TWW quality is highly variable because of the different sources 
contributing to the wastewater (e.g., industrial sources vs municipal) 
and the types of treatments employed. Here, we focus on municipal 
TWW, because urban areas are the largest potential source of waste-
water for agricultural irrigation (Jones et al., 2021). The majority of 
studies covered in this work come from Israel, Europe and the US, 
referring to irrigation with secondary and tertiary TWW. Throughout 
the manuscript, the term freshwater refers to irrigation water sources 
that are not primarily composed of wastewater (i.e. groundwater or 
surface water). 

2. Agronomic and environmental challenges of TWW reuse 

While the quality of TWW can vary significantly depending on the 
level of treatment, it is typically characterized by elevated levels of 
inorganic and organic constituents as compared to freshwater (Table 1), 
which if not managed adequately may lead to unintended environ-
mental and agronomic outcomes, detailed below. 

2.1. Salinization and phytotoxicity 

Total dissolved solids (TDS) in municipal sewage are typically 
250–850 mg L− 1 (0.4–1.3 dS m − 1) higher than corresponding fresh-
water supplies (Muttamara, 1996), and may be higher in areas with 
elevated domestic water use-efficiency (Schwabe et al., 2020). These 
salts can pose a potential hazard to crops (Ayoub et al., 2016; Bernstein, 
2013; Jahany and Rezapour, 2020; Lado et al., 2012) even when irri-
gation water contains moderate salinity levels (Aragüés et al., 2015). 
Furthermore, these salts can be transported to groundwater below irri-
gation sites (Kurtzman et al., 2021; Mohanavelu et al., 2021). In 
developing contexts, it should be noted that freshwater sources may 
already be saline (e.g., Da’as and Walraevens, 2010), therefore TWW 
reuse requires careful planning as it could either compound the problem 
or provide a less-saline irrigation water source. 

When exposed to saline conditions, crops may experience both rapid 
(hours to days) osmotic stress, and slower (days to weeks) phytotoxic 
damage. Osmotic stress hinders plant water uptake, which harms seed 
germination and plant development, potentially resulting in yield loss 
and lower produce quality (Hopmans et al., 2021). The osmotic sensi-
tivity of plants significantly differs between species (Hanin et al., 2016; 
Zörb et al., 2019), with sensitive crops (such as beans, turnips, carrots, 
and strawberries) exhibiting yield losses at EC values of irrigation water 
exceeding 1.0 dS m − 1 (Maas, 1987). 

Particular TWW-derived elements, can accumulate in soils and 
plants, eventually leading to phytotoxic damage (Ayoub et al., 2016; 
Bedbabis et al., 2015; Bernstein, 2019; Kalavrouziotis et al., 2008; 
Pedrero and Alarcón, 2009; Raveh and Ben-Gal, 2016; Ravindran et al., 
2016). The primary elements of concern are Na and Cl, whose concen-
trations in treated effluents are typically 40 - 70 mg L− 1, and 20 - 50 mg 
L‑1, respectively higher in TWW than in local freshwater supplies (Fei-
gin et al., 1991), but can be almost twice as high (Muttamara, 1996). 

D. Yalin et al.                                                                                                                                                                                                                                    



Water Research X 21 (2023) 100203

3

Other elements of concern include B, Cu, Zn, Cd, Pb, Ni, and Co. 
Phytotoxic damage occurs primarily in woody perennials, such as trees 
and vines (Maas et al., 1982). Typical symptoms include growth inhi-
bition and necrosis, with frequent reduction in yield and produce quality 
(Grattan et al., 2015; Kisekka et al., 2023; Maas, 1987; Poustie et al., 
2020; Xu et al., 1999). Mechanistically, phytotoxic elements either 
directly interfere with essential physiological processes or indirectly 
affect plant-nutrient homeostasis through mechanisms such as compe-
tition between Na and K uptake (Arif et al., 2020; Kronzucker et al., 
2013). Although most phytotoxic damage is observed in plant leaves, 
there is evidence that accumulation of Na in trunk and root tissues can 
also have detrimental effects (Netzer et al., 2014; Yalin et al., 2017). 

Soil conditions, including oxygen availability, pH, redox potential, 
and organic matter (OM) content can drastically affect the potential for 
phytotoxicity (Barbieri, 2016; Barrett-Lennard and Shabala, 2013; Rai 
et al., 2019). For instance, Yermiyahu et al. (2001) reported that 
compost amendments reduced availability and uptake of B in bell pep-
per, due to adsorption to soil OM. Another study reported that enhanced 
soil aeration decreased citrus root Na concentrations, presumably due to 
improved root resistance to Na induced by elevated oxygen availability 
(Paudel et al., 2019). 

2.2. Deterioration of soil physical and hydraulic properties 

The presence of typically elevated sodium adsorption ratio (SAR) 
coupled with distinct forms of dissolved organic matter (DOM) in TWW, 
can deteriorate soil structure. Clay swelling and dispersion are the main 
cause of damage (Levy and Nachshon, 2022), but pore clogging (Vinten 
et al., 1983) and water repellency (Leuther et al., 2018) have also been 
reported following irrigation with TWW. These effects lead to unfavor-
able soil physical and hydraulic properties (Assouline and Narkis, 2011), 
reducing water and oxygen availability to plants, and ultimately 
harming crop performance. 

Degradation of soil structure is mainly driven by elevated SAR. 
However, the SAR threshold, above which degradation occurs, is also 
dictated by the soil ionic strength, texture, mineralogy, and DOM con-
tent (Assouline and Narkis, 2013; Lado and Ben-Hur, 2009). The effect of 
TWW-borne DOM on subsurface water flow has been estimated to be 
equivalent to an increase in SAR of two to three units (Assouline et al., 
2016; Suarez and Gonzalez-Rubio, 2017). Pore clogging can result from 
suspended solids in TWW (Vinten et al., 1983), increased microbial 
growth due to the presence of labile organic carbon (Vandevivere et al., 
1995), and accumulation of dispersed clay material (Shainberg and 
Letey, 1984). Alteration of the soil wetting properties and subsequent 
development of hydrophobicity has been associated with the coating of 
soil particles with TWW-derived DOM, which impedes hydraulic con-
ductivity and can lead to preferential flow (Adabembe et al., 2022; Liu 

et al., 2019). 
Despite decades of widespread TWW use in agriculture, only a few 

field studies have examined the long-term effects of irrigation with 
TWW on soil physical properties. These have revealed reduced soil 
infiltrability and aeration (Assouline and Narkis, 2013; Erel et al., 2019; 
Yalin et al., 2021), and non-uniform wetting of the soil at the field scale 
(Rahav et al., 2017). The capacity to remediate hydraulic properties of 
damaged soil at the field scale has only begun to be investigated 
(Assouline et al., 2020; Kramer et al., 2022; Ogunmokun and Wallach, 
2021). 

2.3. Nutrient availability 

Municipal effluents typically contain significant concentrations of 
essential inorganic plant nutrients (Elgallal et al., 2016; Shtull-Trauring 
et al., 2020). Treatment regulations in many countries require removal 
of a large portion of N (nitrogen) and P (phosphorus) from the effluents 
(e.g., Inbar, 2007), to prevent these elements from reaching ground and 
surface waters, where they can have detrimental environmental and 
public health ramifications (Shoushtarian and Negahban-Azar, 2020). 
Conversely, if considered and managed according to crop requirements, 
the presence of these elements in TWW can reduce fertilizer application 
rates, reducing the costs and environmental impacts of fertilizer pro-
duction. Recent research in Israel has shown that in most of the exam-
ined cases, TWW could provide at least 50 % of the required N, and all of 
the required P and K for low-demand crops such as citrus and avocado 
(Shtull-Trauring et al., 2022). The authors proposed that in watersheds 
with low eco-hydrological sensitivity, less stringent wastewater treat-
ment processes can be promoted to supply more of the crop N 
requirements. 

The phyto-availability of nutrients from TWW is generally equivalent 
to common mineral and organic fertilizers (Bar-Tal et al., 2010). How-
ever, supplying nutrients with TWW is challenging because TWW irri-
gation loads and scheduling regimes are principally dictated by crop 
water requirements rather than nutrient requirements. This may result 
in temporal imbalances between nutrient supply and plant requirements 
(Fig. 1), which can fluctuate between excess nutrient supply and defi-
ciency (necessitating fertilizer supplementation). 

2.4. Impact on soil microbial community structure and activity 

The physiochemical changes in the soil environment (i.e., soil pH, 
salinity, humidity, and carbon- and nutrient- availability) and intro-
duction of exogenous microbiota, may alter the soil microbiome 
(Becerra-Castro et al., 2015; Dang et al., 2019; Zolti et al., 2019). This 
facilitates complex interactions that affect soil microbial activity, di-
versity, and biomass, which can be crudely divided into positive 

Table 1 
Characteristics of treated municipal wastewater (TWW) used for irrigation in Israel. Range and median values of TWW quality includes reported data from 56 
wastewater treatment plants (WWTP), and the Dan region, “Shafdan” WWTP. Data is for the years 2017–2018 and includes only WWTP producing more than 106 m3 

effluent yr− 1 (overall with the Shafdan covering 97 % of the TWW produced in those years in Israel). “Range” describes the 2.5 - 97.5 percentiles. Data retrieved from 
Cohen et al. (2020).  

Parameter  Supply 
volume 

BOD5* pH N** P K Na Ca Mg Cl SAR*** EC**** 

Units  106 x m3 

yr− 1 
mg L− 1  mg L− 1 meq L −

0.5 
dS m − 1 

WWTP excluding 
Shafdan 

Range 1.2 – 31.4 1 – 78 6.1 – 
8.0 

2 - 79 1 - 17 10 - 
83 

70 - 
200 

37 - 
103 

5 - 58 111 - 
364 

1.9 - 5.4 0.6 - 1.6 

Median 
(n) 

3.1 (56) 8 (56) 7.5 
(30) 

19 
(45) 

4 
(52) 

32 
(41) 

112 
(55) 

62 (56) 16 
(56) 

168 
(55) 

3.5 (55) 0.9 (56) 

Shafdan WWTP – 145 5 7.4 6 1 22 146 58 20 205 4.2 1.1  

* - Biological oxygen demand after 5 days incubation at 20 ◦C. 
** - Kjeldahl total nitrogen. 
*** - Sodium adsorption ratio. 
**** - Calculated from the sum of major cations according to: EC [dS m − 1] x 10 = sum of cations [meq L− 1]. 
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(Bastida et al., 2017; Garcia and Hernandez, 1996); neutral (Frenk et al., 
2014; Ibekwe et al., 2018; Li et al., 2019), and mixed (Cui et al., 2018; 
García-Orenes et al., 2015; Guo et al., 2017) effects. Unraveling these 
complex interactions has begun recently through studies examining 
changes in specific microbial groups. 

Collectively, research has indicated that irrigating with TWW: (a) 
increases bacterial diversity and reduces fungal diversity in soil (Dang 
et al., 2019); (b) lowers the relative abundance of Actinomycetota 
(formerly Actinobacteria) and increases the relative abundance of Gam-
maproteobacteria and Bacteroidota (formerly Bacteroidetes) in root bac-
terial communities (Frenk et al., 2014; Wafula et al., 2015; Zolti et al., 
2019); (c) increases relative abundance of Gemmatimonadota (formely 
Gemmatimonadetes), Bacteroidota (formerly Bacteroidetes), and Pseudo-
monadota (formerly Proteobacteria) (Guo et al., 2018; Obayomi et al., 
2020); (d) facilitates shifts in the composition of ammonia-oxidizing 
bacteria, with Nitrosomonas detected in TWW-irrigated soils, but not in 
freshwater-irrigated soils (Frenk et al., 2014; Oved et al., 2001); and (e) 
increases Cyanobacteriota (formerly Cyanobacteria) abundance (Liu 
et al., 2018). These changes potentially have weighty implications on 
the ecology of microbial communities, for example, due to cyanobac-
teria’s ability to fix atmospheric nitrogen (Martins et al., 2011). Notably, 
some studies suggest that observed shifts in TWW-irrigated microbial 
communities are transient, with soil bacterial populations of 
TWW-irrigated soils indistinguishable from those under freshwater 
irrigation within one growing season following the rainy season when 
irrigation is not applied (Frenk et al., 2014). The revelation that TWW 
irrigation significantly stimulated root-associated bacterial genes asso-
ciated with salinity, pH, and oxygen stress, suggests that the 
root-associated microbiome can serve as a “barometer” for plant stress 
(Zolti et al., 2019). If further developed, the microbiome analysis could 
be utilized as a proxy in future research on TWW. 

3. Chemical and microbial hazards 

TWW may contain potentially harmful pathogens, chemical con-
taminants, and related issues of concern (e.g., antimicrobial resistance 
genes), with concentrations dependent on numerous factors, including 
upstream industrial waste discharges and treatment types employed by 
individual wastewater treatment plants. These contaminants can accu-
mulate in soils and edible crops, and be transferred to groundwater and 
surface water following irrigation (Christou et al., 2017; Fatta-Kassinos 
et al., 2011a). However, there is limited data regarding their presence, 

concentrations, plant uptake, and viability (microbes) in both the soil 
and crops irrigated with TWW, which is essential for risk assessment and 
recommended mitigation measures. Research is ongoing to assess risks 
of these contaminants. 

3.1. Contaminants of emerging concern 

Contaminants of emerging concern (CECs) are a constantly evolving 
category of anthropogenically derived constituents that includes 
amongst others, a diverse range of pharmaceutical compounds, personal 
care products, flame-retardants, microplastics (MP), and disinfectants 
(Sauvé and Desrosiers, 2014). 

Many studies have evaluated pharmaceuticals in TWW (Alygizakis 
et al., 2020; Beretsou et al., 2022; Moslah et al., 2018; Panthi et al., 
2019; Rapp-Wright et al., 2023; Rordriguez-Mozaz et al., 2020;); 
including those noting that TWW has higher prevalence and concen-
tration of antimicrobials than other irrigation water sources (Panthi 
et al., 2019). The uptake of pharmaceuticals and other CECs by plants 
results from passive diffusion through the cell membrane. The magni-
tude of this process, and the distribution of accumulated pharmaceuti-
cals within the plant depends on the soil properties and root lipid 
content (Ben Mordechay et al., 2022a; Filipović et al., 2020), the lip-
ophilicity and charge of the molecule (Briggs et al., 1982; Trapp, 2000), 
the transpiration rate and in-plant metabolism (Malchi et al., 2022; 
Miller et al., 2015). When considering irrigation with TWW, it is vital to 
identify and target the most recalcitrant CECs that can potentially persist 
in soil and accumulate in crops. Frequently, accumulation occurs in 
roots and leaves, which are the edible portion of many crops (Ben 
Mordechay et. al. 2022b; Garcia et. al. 2018). 

Highly recalcitrant CECs of interest in TWW include carbamazepine 
(anticonvulsant), diclofenac (non-steroidal anti-inflammatory drug) 
(Fatta-Kassinos et al., 2011b; Zhang et al., 2008), poly-and per-
fluoroalkyl substances (PFAS; Lenka et al., 2021), and microplastics 
(MPs) (Hu et al., 2022). In Israel, carbamazepine has been found more 
frequently and in higher concentrations in the urine of consumers of 
produce irrigated with secondary TWW, relative to consumers of 
freshwater-irrigated produce (Paltiel et al., 2016; Schapira et al., 2020). 
Ben Mordechay et al. (2022b) estimated that in extreme cases, human 
exposure to carbamazepine and epoxide-carbamazepine via consump-
tion of TWW irrigated produce in Israel may exceed the acceptable daily 
intake (ADI) for adults. MPs have been shown to accumulate in some 
edible plants, such as lettuce, wheat, rice, and carrots (Jiang et al., 2019; 

Fig. 1. Cumulative amount of nutrients and water in a TWW-irrigated orchard, showing irrigation water volume (grey bars). Actual nutrients supplied with TWW 
(solid line), as compared to the agronomic recommended nutrient requirements (broken lines). Study site: Avocado orchard in Acre, Israel. Data from the 2013 
irrigation season (courtesy of Anat Lowengart-Aycicegi). 
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Naziri et al., 2023). However, the effects of consuming MP-containing 
produce on human health are currently unknown and require further 
research (De-la-Torre, 2020; Smith et al., 2018) utilizing standardized 
methods to comprehensively understand the effect of plastic waste 
(Campanale et al., 2020). PFAS includes thousands of highly persistent, 
bio-accumulative, and potentially toxic substances (Cousins et al., 
2020). PFAS concentrations in TWW vary by location, and data on their 
levels in irrigated soils and crops are limited and conflicting (Mroczko 
et al., 2022; Shigei et al., 2020; Table 2), highlighting the need for 
further research and comprehensive evaluation on local scales. 

3.2. Pathogens in TWW 

Contamination of produce by pathogens in the TWW is a public 
health concern (Gurtler and Gibson, 2022); however, data are incon-
sistent. Predominantly, public health regulations rely on the enumera-
tion of standardized indicator microbes such as fecal coliforms, 

thermotolerant coliforms, or Escherichia coli (Blumenthal et al., 2000). 
However, numerous studies have established that E. coli levels are not 
consistently associated with the presence of other pathogen groups 
(Weller et al., 2020), particularly enteric parasites and viruses. 
Furthermore, pathogen levels are highly dependent on the level of 
wastewater treatment and the pathogen concentrations in the influent 
(Table 2). Thus, additional surveillance targets are required to establish 
health risks (Ofori et al., 2021). 

3.3. Antimicrobial resistance 

Antimicrobial resistance (AMR) poses a specific challenge when 
relating to microbial contamination. For routine monitoring of effluents 
and receiving environments, it is crucial to select antibiotic resistant 
gene (ARG) markers that are clinically relevant, common in TWW, occur 
in association with mobile genetic elements, are persistent in receiving 
environments, and for which testing equipment is market available 
(Manaia, 2023). Recent reviews have proposed ARG and antibiotic 
resistant bacterial (ARB) indicators that can be targeted for monitoring 
and regulation (Liguori et al., 2022; Manaia, 2023); however, bench-
mark levels for these indicators have not yet been established. The 
recent proposal for a directive of the European Union (EU) Parliament 
and Council concerning urban wastewater treatment (COM/2022/541 
final) dictates that by 2025 large WWTPs need to periodically monitor 
AMR indicators. It is therefore conceivable that future criteria for irri-
gation with TWW could require monitoring for target levels of specific 
AMR indicators in the EU and beyond. However, there are currently no 
standardized methods or regulatory guidelines for AMR in TWW or 
irrigated produce. 

3.4. Risk assessment 

Risk assessment is applied to quantify human health risks for both 
hazardous chemicals and pathogens in situations where effect sizes are 
small and logistically challenging to measure using epidemiological 
studies (Ofori et al., 2021). It utilizes a range of assessments, modeling, 
and statistical analyses to make inferences regarding risk (Haas et al., 
2014; WHO, 2016; National Research Council (US) Committee on the 
Institutional Means for Assessment of Risks to Public Health, 1983). 

Chemical risk assessment can potentially rely on sentinel chemicals 
(Revitt et al., 2021). However, CEC persistence, as well as accumulation 
in edible portions, is highly variable, requiring routine monitoring (Ben 
Mordechay et al., 2022B; Delli Compagni et al., 2020; Shi et al., 2022). 
Some notable challenges in chemical risk assessments are the breadth of 
chemicals (studies often range from dozens to hundreds of chemical 
targets), plant-specific risks, the occurrence of metabolites (which can 
potentially be more hazardous than parent materials), the impact of 
mixtures, and the impact of long-term sub-clinical exposure (Egli et al., 
2021; Goldstein et al., 2018; Malchi et al., 2014; Paz et al., 2016). 

Quantitative microbial risk assessment (QMRA) of TWW has typi-
cally focused on risk-based monitoring targets, specific risk benchmarks 
that have been defined through multiple research studies (e.g., 36 
gastrointestinal illnesses per 1000 recreators for swimming), and 
ranking risks and associated tradeoffs (Foster et al., 2021; Hamilton 
et al., 2019; Hultquist, 2016; NRMMC et al., 2006; Petterson et al., 2021; 
SWRCB, 2016; USEPA, 2012; WHO, 2013; Zhang et al., 2019). 
Numerous QMRA models have focused on TWW for irrigation, often 
using lettuce as an index crop due to its uptake and raw consumption 
practices (Beaudequin et al., 2016; Amha et al., 2015; Kouamé et al., 
2017; Silverman et al., 2013; Hamadieh et al., 2021; Mara et al., 2007). 
While historically QMRA has focused on fecal-associated pathogens, 
monitoring approaches are expanding to incorporate opportunistic res-
piratory pathogens (i.e., Legionella pneumophila), ARBs, and ARGs 
(Schoen et al., 2021; Hamilton et al., 2018). However, this expansion is 
limited by a relative lack of research providing direct comparisons of 
TWW with freshwater and other irrigation water sources. Holistic QMRA 

Table 2 
A selection of literature regarding the presence, concentration, and/or persis-
tence of chemical contaminants of emerging concern (CECs) and pathogenic 
contaminants in treated municipal wastewater (TWW) intended for irrigation.  

Contaminant Country Did the contaminant 
persist in soil/crops 
after irrigation OR 
were levels higher in 
TWW than other 
sources? 

Reference 

Chemical contaminants 
PFAS * USA Yes - Persistence after 

irrigation 
Mroczko et al., 2022 

PFAS Jordan No - No persistence Shigei et al., 2020 
Carbamazepine, 

other epilepsy 
drugs 

Israel Yes - Persistence after 
irrigation 

Ben Mordechay 
et al., 2022a; Paltiel 
et al., 2016;  
Schapira et al., 2020 

Antimicrobials USA Yes - TWW higher 
than other irrigation 
sources, with 
exception of 
ciprofloxacin 

Panthi et al., 2019 

Antimicrobials Germany Yes - Persistence after 
irrigation 

Kampouris et al., 
2022 

Bacterial and viral contaminants 
Enteric viruses Spain Yes - TWW higher 

than other irrigation 
sources 

López-Gálvez et al., 
2016 

E. coli Palestine TWW not consistently 
different than other 
irrigation water 
sources 

Craddock et al., 2020 

Vibrio spp. USA TWW not consistently 
higher than other 
irrigation water 
sources 

Malayil et al., 2021 

Salmonella enterica 
and Listeria 
monocytogenes 

USA No - Surface water had 
higher levels than 
TWW 

Acheamfour et al., 
2021 

ARGs ** USA Yes - TWW higher 
than other irrigation 
sources 

Malayil et al., 2022 

Resistant 
Enterococcus 

USA No - TWW had no 
impact on ARB in 
sludge 

McLain and 
Williams, 2014 

ARGs Israel No - TWW had no 
impact on food surface 

Seyoum et al., 2022 

ARBs *** /ARGs Israel Mixed effects, 
dependent on soil 
factors, enrichment 
capability 

Marano et al., 2021, 
2019  

* - poly-and perfluoroalkyl substances. 
** - Antimicrobial Resistance Genes. 
*** - Antibiotic Resistant Bacteria. 

D. Yalin et al.                                                                                                                                                                                                                                    



Water Research X 21 (2023) 100203

6

that includes CECs is critical for decision-making for TWW reuse, as it 
can inform regulations and guidance (Rock et al., 2019), the utility of 
"barrier criteria" interventions (Ofori et al., 2021), or inform which crops 
are irrigated with TWW. Looking forward, expansion of the QMRA 
paradigm to integrate findings more holistically with chemical risk as-
sessments and to expand pathogens of focus will be beneficial for 
informing decision-making around TWW use for irrigation purposes. 

4. Technological and management solutions for safe and 
sustainable irrigation with treated wastewater 

Sections 2 and 3 underline the need to eliminate organic and inor-
ganic constituents, and specifically recalcitrant chemical and microbial 
pollutants when considering the reuse of municipal wastewater for 
irrigation. Designing processes and policies to improve water quality for 
irrigation can be complicated by local regulatory disparities, differences 
in exposure pathways between crops (e.g., use as animal feed, peeling or 
cooking before eating), and public acceptance. Furthermore, concerns 
about emerging (i.e., CECs and ARGs) and yet-to-be-discovered con-
taminants of health concern necessitate flexible technological and reg-
ulatory solutions. 

4.1. Source control 

Two strategies can be employed by stakeholders and policymakers to 
reduce the transfer of undesired constituents from TWW to soil and 
crops: (1) regulatory policies that restrict the use of specific materials, or 
(2) implementation of more stringent treatment processes when indus-
trial or high-risk (e.g., hospital) effluents are released to the sewer shed 
(Harris-Lovett and Sedlak, 2020). 

4.1.1. Policy-based source control 
Most, but not all, CECs enter municipal wastewater facilities through 

consumer use. The majority of these compounds degrade during sec-
ondary and advanced wastewater treatment, but as described in Section 
3, certain CECs are highly recalcitrant and can potentially accumulate in 
TWW-irrigated produce. Stewardship programs aimed at reducing the 
use and disposal of these CECs are impetrative (Daughton, 2003), 
especially in cases where alternatives that do not pose risks to the food 
supply are available. Additionally, biodegradability and cytotoxicity 
should be considered during the registration and introduction of new 
products (Kümmerer et al., 2018). For example, the risk of boron 
phytotoxicity (see Section 2.1) can be evaded by replacing boron based 
detergents with appropriate substitutes (Tal, 2006). Likewise, policies 
that discourage the use of Na-based ion exchange water softening de-
vices can lower salinity in TWW. 

4.1.2. Industrial/commercial source control 
Water reuse schemes that implement risk-averse strategies to 

monitor contaminants may target specific compounds relevant to agri-
cultural wastewater reuse. Because the illegal discharge of pollutants is 
unpredictable, "real-time" monitoring approaches that apply remote 
sensing or on-line monitoring of indicator parameters such as electrical 
conductivity (EC), pH, redox potential, organic matter (OM), tempera-
ture, and turbidity, enable the detection of anomalies caused by key 
pollutants such as salts, acids, and selected nutrients. In contrast, anal-
ysis for hazardous pollutants such as heavy metals, persistent organic 
compounds, and pharmaceutical contaminants currently require 
analytical laboratories (Bertanza et al., 2022). Integrating continuous 
data acquisition platforms from sewage collection systems with accurate 
and reliable data management and predictive analytics can ensure 
high-quality TWW for irrigation, significantly reducing post-treatment 
costs. These networks can be enhanced with application of novel 
online-monitoring technologies, including sensors that detect and 
quantify hazardous metals, CECs, bacterial pathogens, and ARGs 
(Manny, 2023). Fluorescence spectroscopy is one technology currently 

used to detect OM in different water sources (Yu et al., al.,2015; Carstea 
et al., 2019), or organic contaminants in irrigation water (Sinitsa et al., 
al.,2022). Such spectroscopic methods are increasingly supported by 
machine learning tools to enhance on-line monitoring platforms for 
detection of various organic contaminants (Khamis et al., 2015, Hansen 
et al., 2020, Sinitsa et al., at.,2023). 

4.2. Engineered treatment processes 

Two primary non-potable wastewater reuse models exist: centralized 
systems that transport treated effluents from municipal wastewater 
treatment plants to agricultural hubs for irrigation, and decentralized 
systems, where effluents are treated and applied locally for irrigation 
(Angelakis and Snyder, 2015). Decentralized systems substantially 
reduce storage and transport infrastructure costs and are considered 
more environmentally sustainable, but operating and monitoring these 
systems to meet regulatory criteria can be logistically challenging. 
Implementation of advanced treatment and specific technologies, 
beyond traditional secondary treatment, strongly depends on the local 
infrastructure, regulatory requirements, irrigation method, available 
resources, the TWW quality and the type of crops (i.e., 
edible/non-edible). We summarize the capabilities and limitations of 
such technologies in Table 3. 

Disinfection processes are frequently applied following secondary 
wastewater treatment to remove microbial pathogens (viruses, bacteria, 
and protozoa). Chlorination, the most prevalent disinfection process, 
involves adding chlorine gas or hypochlorite to TWW, and normally 
results in the formation of combined chlorine in the water. However, 
chlorination can produce disinfection by-products (DBPs) such as tri-
halomethanes that are potentially carcinogenic (Mezzanotte et al., 

Table 3 
Capacity of technologies for removing salts, pathogens and contaminants of 
emerging concern (CECs) from secondary wastewater effluents intended for 
irrigation.  

Treatment type Removal capacity Comments 

Salinity Pathogens CECs  

Nanofiltration 1 + +++++ +++ 1 Requires solutions for 
treating brine; 2 

Energetically expensive; 
3 Needs draw solution & 
correlation between 
irrigation volume and 
fertilization quantity 

Reverse osmosis 
1, 2 

+++++ +++++ +++++

Forward osmosis 
1, 3 

+++++ +++++ +++++

Chlorination No ++++ No Relatively cheap; 
potentially creates toxic 
byproducts 

Peracetic Acid No +++ No No disinfection 
products; more 
expensive/less available 
than chlorine 

UV-C radiation No ++++ No No byproducts; 
relatively easily 
implemented; requires 
pre-treatment 

Ozonation No +++++ +++++ Can be expensive to 
implement and operate; 
potentially forms toxic 
byproducts and 
therefore requires post- 
treatment 

Homogeneous 
solar-based 

No ++++ ++++ Technology not fully 
mature; more suitable 
for small-scale systems 

UV-C/H2O2 No +++++ +++ Energetically expensive 
Activated carbon 

(AC) 
No No +++

Effluent 
stabilization 
reservoirs 

No +++ No Very low operational 
costs; enables better 
effluent management  
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2007). If supported by risk assessment outcomes, DBPs might be 
restricted according to the EU regulation (EU, 2020), and therefore 
chlorination is increasingly replaced by alternative disinfection pro-
cesses such as UV-C radiation and Peracetic Acid (PAA, Rizzo, 2022). 
While slightly less effective than chlorination, PAA does not generate 
DBPs when low doses are used (<5–10 mg L − 1). It therefore may be 
advantageous in decentralized systems (Freitas et al., 2021; Mezzanotte 
et al., 2007), as previously shown (Bell and Wylie, 2016; Di Cesare et al., 
2016; Formisano et al., 2016; Manoli et al., 2019; Santoro et al., 2007; 
Stewart et al., 2018). UV-C radiation has been shown to be more efficient 
in removal of viruses, protozoa, and bacterial pathogens than chlori-
nation, ozonation and PAA treatment (Mezzanotte et al., 2007), pro-
ducing effluents suitable for unrestricted irrigation of food crops (Nasser 
et al., 2006). Since turbidity and suspended solids drastically reduce 
inactivation efficiency, conventional activated sludge effluents used for 
irrigation typically require pre-treatment using sand filtration to enable 
effective UV disinfection (Ghernaout and Elboughdiri, 2020). Addi-
tionally, UV disinfection can be energy intensive (Bailey et al., 2020). 
Ozonation has been widely applied for TWW disinfection and, more 
recently, for quaternary treatment because unlike other disinfection 
processes (e.g., chlorination) it also effectively degrades CECs (von 
Gunten, 2018; Rizzo et al., 2020). Moreover, ozonation is efficient 
against a broad array of pathogens including chlorine-resistant Crypto-
sporidium parvum oocysts and Giardia cysts (Morrison et al., 2022; Rizzo 
et al., 2020). A pitfall of ozonation is the potential formation of toxic 
DBPs such as bromate and NDMA (Lim et al., 2016), which can accu-
mulate in irrigated crops (Calderón-Preciado et al., 2011). These can be 
removed by post-treatments such as biofiltration and activated carbon 
(Rizzo et al., 2020). Specific ozone doses in the range of 0.4–0.6 g O3 
gDOC
− 1 (DOC, dissolved organic carbon) can ensure high-quality TWW for 

irrigation (Rizzo et al., 2020). 
Activated carbon (AC) adsorbs a broad spectrum of organics due to 

its large surface area and high degree of surface interactions. Conse-
quently, powdered and granular activated carbon (PAC and GAC, 
respectively) are applied to remove recalcitrant CECs in WWTP effluents 
(Mestre et al., 2022). PAC is generally more efficient than GAC, because 
its smaller size enables dosing it (10–20 mg L − 1) into biological 
treatment processes (Gutiérrez et al., 2021). However, post-treatment is 
required for separation of residual PAC (Kosek et al., 2020). The low cost 
and wide availability of materials required for AC treatment (e.g., 
Steigerwald and Ray, 2021) mark it as a possible solution for 
low-resource environments. 

Photo Homogeneous Advanced Oxidation Processes (AOPs, e.g., 
UVC/H2O2, photo-Fenton) are increasingly investigated for the simul-
taneous removal of CECs and microbial contaminants in TWW (Rizzo, 
2022). UVC/H2O2 is a consolidated technology with a cost dependent on 
the UV lamp intensity and replacement frequency, but the recent 
development of UV-LED lamps shows promise (Soro et al., 2023). The 
application of this technology is especially of interest as a tail-end 
technology for TWW (applying 5–10 mg H2O2 L − 1). Photo-Fenton is 
a promising process in view of its technological readiness (Rodri-
guez-Mozaz et al., 2020), especially when applied at neutral pH thanks 
to the use of iron complexing agents for maintaining iron in solution, as 
well as the possibility of being powered by solar irradiation (Zhan and 
Zhou, 2019). Amortization costs of photoreactors can be high, but these 
can be significantly reduced when using raceway pond open solar 
photoreactors that are simple to manufacture (Malato et al., 2020). 

Membrane processes that remove organic contaminants, pathogens 
and salts are increasingly applied in different wastewater treatment 
scenarios (Ezugbe and Rathilal, 2020). Nanofiltration (NF; membrane 
pore size of 0.01–0.001 µm) removes organics, a selection of inorganic 
ions, and most pathogens. In contrast, under optimal transmembrane 
pressure, reverse osmosis (RO, pore size of 0.001–0.0001 µm) removes 
almost all constituents except water molecules (Naimah et al., 2021). 
Currently, the high-energy consumption and the susceptibility of 
membranes to fouling make RO unsuitable for treatment of irrigation 

water. An obstacle for the use of membrane technologies is the need to 
find a solution for the concentrate or brine produced (Capocelli et al., 
2019), which can be a significant issue in inland systems. Additionally, 
membrane processes are more energy intensive than conventional 
wastewater treatment (Bailey et al., 2020). 

Effluent storage reservoirs (alternatively known as stabilization 
reservoirs) modulate between relatively constant sewage production 
and generally irregular (seasonal) irrigation water demand. They are 
unique relative to sewage stabilization ponds in their non-steady-state 
hydraulic regimes, and higher depth (up to 20 m) and volume 
(Juanicó and Dor, 2011). Retention times of at least three months, 
coupled with disinfection, ensures water quality that meets Israeli mi-
crobial standards for unlimited TWW reuse (Inbar, 2007) and decreases 
certain metals and recalcitrant organic compounds (Juanicó and Dor, 
2011; Marano et al., 2019; Friedler et al., 2003; Kfir et al., 2012). Dual 
reservoir configurations (where one basin is constantly being filled and 
the other emptied) enable balancing between influent and effluent flows 
while maintaining the required retention times. The capacity of stabi-
lization reservoirs is attributed to their robust biota, which along with 
abiotic processes facilitates "ecosystem functioning" (Shuval and Fattal, 
1999). However, these microorganisms (especially photosynthetic mi-
croorganisms) produce extra-polymeric substances that can clog distri-
bution and irrigation pipes (Katz et al., 2014). 

4.3. Agronomic management mitigation and remediation strategies 

Preventing the buildup of salinity in the root-zone soil can be ach-
ieved by leaching practices (Ben-Gal et al., 2008; Minhas et al., 2020), 
which need to consider crop sensitivity to salt, soil properties, chemical 
composition and salinity of irrigation water, climate, and evapotrans-
piration (Dudley et al., 2008; Letey et al., 2011; Shani et al., 2007). 
Decision support systems (e.g., https://app.agri.gov.il/AnswerApp/) 
can aid in developing irrigation-leaching strategies, crop selection, and 
evaluating the sensitivity of various parameters that affect the 
water-soil-crop system (Kaner et al., 2019). To divert salts and nitrates 
leached from the root-zone from reaching groundwater, drainage solu-
tions such as tile drains and capillary barriers may be employed (Russo, 
2017; Singh, 2019). 

Various agro-technical measures have been suggested to mitigate 
and remediate TWW-induced damage to soil hydraulic properties, 
including: alternating between TWW and fresh-water, diluting TWW 
with freshwater (Assouline et al., 2020; Nemera et al., 2020), applying 
gypsum (Ghafoor et al., 2012; Mamedov et al., 2009), and using sur-
factants (Ogunmokun and Wallach, 2021). However, these treatments 
have not yet been tested on a commercial scale and there is uncertainty 
as to whether full remediation is possible (Kramer et al., 2022). 

Optimizing plant nutrient utilization, while reducing the risk of 
groundwater contamination from TWW-borne nitrogen and phosphorus, 
can be achieved by defining site-specific treatment regulations 
(Shtull-Trauring et al., 2022) that allow for more lenient removal levels 
in basins with low eco-hydrological risk. As a result, TWW nutrient use 
efficiency can be optimized through continuous monitoring systems that 
inform farmers of real-time nutrient conditions, allowing them to sup-
plement TWW with fertilizers only when needed (Erel et al., 2019; 
Vazquez-Montiel et al., 1996; Vivaldi et al., 2022). 

5. Looking to the future 

5.1. From policy to practice 

Recurring drought in Israel during the 1980s facilitated adminis-
tration of major freshwater restrictions for agriculture. This was a major 
driver for farmers to transition to TWW, which was unrestricted and 
relatively cheap (Marin et al., 2017). The wide adoption of TWW irri-
gation in Israel is further attributed to comprehensive research, coupled 
to feedback networks between farmers, scientists, regulators, and 
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centralized water suppliers that translate insights into practice and 
policy. These feedback networks need to be dynamic to adapt to 
emerging challenges and changing conditions. For example, Israeli re-
gions supplied with relatively saline TWW generally refrain from 
growing crops sensitive to salinity stress, especially in clay soils where 
oxygen limitation makes plants more prone to salt damage. 

Expanding agricultural water shortages in the US, especially in re-
gions supplied by the Colorado River, present the need for wider inte-
gration of TWW in agriculture. U.S. farmers have expressed interest in 
supplementing traditional irrigation water (typically freshwater) sour-
ces with TWW for on-farm water applications (Dery et al., 2019). 
However, only two percent of farms report using TWW, representing an 
opportunity to expand TWW for agricultural purposes (USDA NASS, 
2019; Sheikh, B. 2019). The twenty-eight U.S. states that have regula-
tions for the reuse of TWW in agriculture (food crops) generally have 
stricter treatment requirements than those required by Israel (US EPA 
REUSExplorer, 2023; US Food and Drug Administration, 2023), how-
ever these regulations generally do not address agronomic, environ-
mental and emerging public health parameters discussed in this review. 

Within the EU, about one billion cubic meters of TWW are reused 
annually for irrigation and there is an estimated potential to expand 
reuse by six times (European Comission, 2023). In 2020, the EU adopted 
Regulation (EU) 2020/741 on minimum requirements for water reuse, 
implemented in June 2023, which harmonized minimum water quality, 
monitoring, and permitting requirements for the reuse of TWW in 
agricultural irrigation within all EU Member States (EU, 2020). Prior to 
this, TWW was reused for agricultural irrigation in several EU Member 
States (e.g., Cyprus, Italy and Spain), following different water quality 
criteria set in national legislations that complied with Regulation (EC) 
852/2004 on hygiene of foodstuffs (EU, 2004). The new regulation 
stipulates a water reuse risk management plan to ensure protection of 
human and animal health and the environment (EU, 2020). In the 
future, minimum water quality and monitoring requirements may be 
expanded to include DBPs, CECs, MPs and AMR, depending on the 
outcome of site-specific risk assessment related to the use of TWW (EU, 
2020). Technical guidance on developing risk management plans for 
wastewater reuse, including methodologies for evaluating environ-
mental and emerging public health parameters, was recently published 
to support the implementation of the regulation (Maffettone and Gaw-
lik, 2022). The guidance’s approach on risk management has been 
developed on globally established recommendations and criteria (ISO, 
2018; ISO, 2020; NRMMC-EPHC-AHMC, 2006; WHO, 2015). Although 
the EU uses a wider risk management framework for water reuse in 
agriculture, landscape irrigation and other application, it does not 
possess an analogue setting on general requirements regarding irrigation 
water quality. This constitutes a significant obstacle to promote a sys-
tematic direct reuse approach. 

5.2. Outreach and education 

Though it is clear that the utilization of TWW for crop irrigation is 
growing worldwide, the potential for opposition remains. This is not 
necessarily due to issues with technology; instead, the principal barriers 
can be farmer hesitancy, which can stem from concerns with safety and 
quality (Dare and Mohtar, 2018; Dery et al., 2019; Ghanem et al., 2010), 
concerns regarding lack of public acceptance and perception that crops 
could be considered unsafe or inferior in quality (Craddock et al., 2021), 
or concerns regarding cost of implementation (Deh-Haghi et al., 2020). 

Farmers’ individual characteristics such as production types, moti-
vations and trust levels impact their behaviors, and therefore different 
strategies and policy interventions for promoting TWW irrigation may 
appeal to different farmer types (Upadhaya et al., 2021). While optimal 
outreach strategies for farmers must account for this considerable di-
versity, information and dedicated workshops addressing environ-
mental and public health concerns are generally key to farmer outreach 
(Gerdes et al., 2020; Suri et al., 2019). Participatory research 

frameworks involving extensive bi-directional communication between 
researchers and farmers are another important tool, which can uncover 
regionally-specific quality issues, challenges with TWW use, and farmer 
concerns and knowledge gaps (Konradsen et al., 2009). Establishing and 
developing trust from the source of information as well as the data is 
critical to adoption. Recent studies have reflected the importance of 
presenting the consumers of recycled water with more information 
rather than less, stating that detailed and credible information is capable 
of changing perceptions (Tennyson et al., 2015) and informed, accepting 
consumers allay the fears and concerns of many farmers globally (Dare 
and Mohtar, 2018; Gerdes et al., 2020). In the EU, Member States are 
required to develop information and awareness-raising campaigns (EU, 
2020), to encourage TWW reuse and ensure that stakeholders and the 
public are aware of the benefits of such practices. Surprisingly, studies in 
Israel have found low levels of support and awareness regarding 
TWW-irrigated agriculture, despite this practice being in regular use for 
decades (Craddock et al., 2021; Friedler et al., 2006). Overall, when 
designing consumer and farmer outreach, an understanding of what a 
community knows and thinks about TWW and which factors are influ-
encing acceptance is critical for its success and utilization (Hartley, 
2006; Miller and Buys, 2008; Morgan and Grant-Smith, 2015; Rozin 
et al., 2015). 

5.3. Knowledge gaps 

Approximately 50 % of globally produced wastewater is untreated 
(Jones et al., 2021), and there is an urgent need for development and 
implementation of cheap, simple, and attainable collection and treat-
ment solutions (e.g., Brix et al., 2007) to increase safe water availability 
for irrigation in diverse circumstance (i.e., decentralized agriculture, 
low capacity regions). In developed regions, despite cumulative scien-
tific understanding there are still several knowledge gaps that need to be 
addressed to ensure long-term sustainability of TWW-irrigation. Agro-
nomic research should transition from studying the impact of specific 
TWW constituents to investigating the complex interactions between 
different constituents (such as the effects of joint effect of DOM and SAR 
on hydraulic properties), and focus more on developing mitigation and 
remediation approaches for agriculturally-sustainable TWW irrigation 
(Assouline et al., 2020; Kramer et al., 2022; Nemera et al., 2020; 
Ogunmokun and Wallach, 2021). Furthermore, it is essential to establish 
long-term research and monitoring programs because detrimental 
agronomic and environmental effects often manifest after several years 
of consecutive TWW irrigation (Assouline et al., 2015; Tal, 2016). The 
influence of TWW on public health is still not consolidated, with many 
gaps in knowledge, including the fate of CECs and ARGs along the 
soil-plant-consumer continuum, and their possible effects on public 
health. To assess and understand public health risks, standardized 
methods of detecting and quantifying monitoring targets (i.e. ARGs, 
CECs) in water, soil, and crops need to be agreed upon within the sci-
entific community. 

There is a great need to address the current challenges of TWW 
irrigation on a global level, and subsequently, we propose to establish a 
harmonized data sharing system that will promote integration of find-
ings from global research on known and emerging contaminants. This 
data management platform can be accompanied by more accurate risk 
assessment models to estimate short- and long-term public health, 
environmental and agronomic effects, as well as synergistic impacts, 
which can be translated into regulatory criteria. Another topic of pri-
ority is the development of real-time monitoring systems in effluents 
used for irrigation that can provide stakeholders with on-line notifica-
tion of risk factors (i.e. pathogens), and potentially be combined with 
treatment systems to improve water quality (i.e. dilution to reduce 
salinity below critical levels). Finally, it is important to consistently and 
broadly evaluate indirect environmental impacts, such as greenhouse 
gas (GHG) emissions from WWTP and TWW irrigation (Gómez-Llanos 
et al., 2020), as well as the indirect leaching of contaminants from 
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TWW-irrigated lands into natural habitats such as estuaries (e.g., Topaz 
et al., 2020). By addressing these research areas in a unified manner, we 
can enhance our understanding of TWW irrigation and facilitate the 
development of effective strategies and policies for its sustainable use. 

5.4. Key messages 

▒  

• As freshwater availability for agriculture decreases globally, TWW 
has emerged as a significant and reliable source of irrigation water, 
particularly when water stressed agricultural areas are adjacent to 
urban areas producing an abundant and consistent TWW supply.  

• While numerous organic and inorganic constituents in wastewater 
are degraded or excluded during treatment, some remain in the 
TWW used for irrigation. Such materials may deleteriously affect soil 
health and plant productivity and pose a hazard to human health, if 
not addressed appropriately by further treatment or agronomic 
solutions.  

• TWW salinity should be monitored and reported due to its effect on 
soil health and structure as well as phytotoxic effect on growth.  

• Irrigation with TWW contributes nutrients that can reduce fertilizer 
requirements; however, nutrient concentrations are not controlled 
by farmers and may not be adequate for plant needs.  

• Public health risk assessment can be especially challenging for CECs. 
Standardized methods, broader monitoring of CECs, and expanding 
QMRA methodologies to include CECs (especially ARGs) can help to 
improve our understanding of the relative risk of these contaminants.  

• Decentralized wastewater treatment systems can provide water 
locally or onsite for irrigation. Still, the choice of these systems and 
specific tertiary configurations (i.e., selection of disinfection plat-
forms) depend on local requirements and regulations and the cost of 
implementation.  

• New monitoring technologies, including on-line sensors that detect 
and quantify hazardous metals, CECs, bacterial pathogens, and ARGs 
show great promise and can also optimize TWW nutrient use effi-
ciency by informing farmers of real-time nutrient conditions, 
allowing them to supplement TWW with fertilizers only when 
needed.  

• Research, education and feedback networks need to be dynamic and 
holistic to adapt to emerging challenges and changing conditions and 
to allow the translation of research into practice, and of practice into 
policy. 
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Juanicó, M., Dor, I., 2011. Hypertrophic Reservoirs for Wastewater Storage and Reuse, 
1st ed, Environmental Science and Engineering. Springer Berlin, Heidelberg.  

Kümmerer, K., Dionysiou, D.D., Olsson, O., Fatta-Kassinos, D., 2018. A path to clean 
water. Science 361, 222–224. https://doi.org/10.1126/science.aau2405. 

Kalavrouziotis, I.K., Robolas, P., Koukoulakis, P.H., Papadopoulos, A.H., 2008. Effects of 
municipal reclaimed wastewater on the macro- and micro-elements status of soil and 
of Brassica oleracea var. Italica, and B. oleracea var. Gemmifera. Agric. Water. 
Manag 95, 419–426. https://doi.org/10.1016/j.agwat.2007.11.004. 

Kampouris, I.D., Alygizakis, N., Klümper, U., Agrawal, S., Lackner, S., Cacace, D., 
Kunze, S., Thomaidis, N.S., Slobdonik, J., Berendonk, T.U., 2022. Elevated levels of 
antibiotic resistance in groundwater during treated wastewater irrigation associated 
with infiltration and accumulation of antibiotic residues. J. Hazard. Mater 423, 
127155. https://doi.org/10.1016/j.jhazmat.2021.127155. 

Kaner, A., Tripler, E., Hadas, E., Ben-Gal, A., 2019. Agronomic-economic coupled 
decision support application for irrigation with water containing salts. Bridg. 
Among. Discip. by. Synth. Soil. Plant. Process. 8, 223–235. https://doi.org/10.2134/ 
advagricsystmodel8.2017.0013. 

Katz, S., Dosoretz, C., Chen, Y., Tarchitzky, J., 2014. Fouling formation and chemical 
control in drip irrigation systems using treated wastewater. Irrig. Sci. 32, 459–469. 
https://doi.org/10.1007/s00271-014-0442-4. 

Kfir, O., Tal, A., Gross, A., Adar, E., 2012. The effect of reservoir operational features on 
recycled wastewater quality. Resour. Conserv. Recycl. 68, 76–87. https://doi.org/ 
10.1016/j.resconrec.2012.08.002. 

Khamis, K., Sorensen, J.P.R., Bradley, C., Hannah, D.M., Lapworth, D.J., Stevens, R., 
2015. In situ tryptophan-like fluorometers: assessing turbidity and temperature 
effects for freshwater applications. Environ. Sci. Process Impacts 17 (4), 740–752. 

Kisekka, I., Grattan, S.R., Salcedo, F.P., Gan, J., Partyka, M., Nirit, B., Adin, A., 2023. 
Assessing the state of knowledge and impacts of recycled water reuse for irrigation 
on agricultural crops and soils. report for project WRF 4964. 

Konradsen, B.K., Drechsel, Pay, Seidu, Razak, Amerasinghe, Priyanie, Olufunke, O., 
Cofie, Flemming., 2009. Harnessing farmers’ knowledge and perceptions for health- 
risk reduction in wastewater-irrigated agriculture. Wastewater Irrigation and Health. 
Routledge. 
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