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Abstract 

 
 
This dissertation aims to test whether the use of machine learning (ML) techniques can improve 

volatility forecasting accuracy. More specifically, if it can beat the best econometric model, the 

Heterogeneous Autoregressive model of Realized Volatility (HAR-RV). Using S&P 500 Index 

data from May-2007 to August-2022, the superiority of the HAR-RV was tested and attested 

against competing econometric models EWMA and GARCH(1,1). Next, the performance of 

the ML Artificial Neural Network algorithms Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) are compared to the performance of the econometric models. Five 

different variable sets are tested for the ML models. It is found that while both ML models are 

able to beat the EWMA and GARCH(1,1) models by a significant margin, the HAR-RV model 

still outperforms LSTM and GRU. 

Moreover, an analysis is conduced on the models’ predictions on the period corresponding to 

the Covid-19 crisis. The results did not show any evidence suggesting that ML methods have 

a particular advantage at predicting during high volatility events.  

Finally, a plausible cause that could undermine the remarkable qualities of the ML methods in 

the aim of volatility forecasting is discussed. It is found that the rigorous set of conditions 

needed to be met for the proper setup of ML models are very difficult to be met using financial 

data, which hinders the aptitude of ML for this purpose. 
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Resumo 
 

Esta tese visa testar se o uso de técnicas de Machine Learning (ML) pode melhorar a precisão 

da previsão da volatilidade. Mais especificamente, se estes algoritmos conseguem superar o 

melhor modelo econométrico, o Heterogeneous Autoregressive model of Realized Volatility 

(HAR-RV). Usando dados do Índice S&P 500 de Maio-2007 a Agosto-2022, a superioridade 

do HAR-RV perante os modelos econométricos concorrentes EWMA e GARCH(1,1), foi 

testada e confirmada. Em seguida, o desempenho dos algoritmos ML de redes neurais artificiais 

de Long Short-Term Memory (LSTM) e Gated Recurrent Unit (GRU) são comparados com o 

desempenho dos modelos econométricos tradicionais. Cinco conjuntos diferentes de variáveis 

são testados para os modelos ML. Verifica-se que enquanto ambos os modelos ML são capazes 

de superar os modelos EWMA e GARCH(1,1) por uma margem significante, o modelo HAR-

RV ainda tem um desempenho superior ao LSTM e ao GRU.  

É ainda feita uma análise das previsões dos modelos durante o período correspondente à crise 

do Covid-19. Os resultados não mostram qualquer evidência que sugira que os métodos ML 

têm uma particular vantagem durante eventos de alta volatilidade.  

Finalmente, é discutida uma possível causa que poderá debilitar as sofisticadas qualidades dos 

métodos ML para a finalidade de previsão de volatilidade. Verifica-se que o conjunto rigoroso 

de condições necessárias para a correcta configuração dos modelos ML é muito difícil de se 

cumprir utilizando series temporais de volatilidade de mercado, o que prejudica a aptidão dos 

modelos ML para esta finalidade. 

 

 

Palavras-chave: Previsão de Volatilidade; Modelos Heterogéneos AutoRegressivos; Machine 

Learning; Redes Neurais Artificiais; Long Short-Term Memory; Gated Recurrent Unit. 

Título: Market Volatility: Can Machine Learning Methods Enhance Volatility Forecasting?  

Autor: Afonso Maria Nabeto Valentim Xavier Batista   



 
 

3 

Table of Contents 
 
1. Introduction ........................................................................................................................ 5 

2. Volatility ............................................................................................................................ 8 

2.1 Defining and Measuring Volatility .................................................................................. 8 

2.2 Volatility Stylized Facts ................................................................................................. 11 

3. Econometric Models ........................................................................................................ 14 

3.1. Early Econometric Approaches Literature Review ...................................................... 14 

3.2. Heterogeneous Autoregressive for Realized Volatility (HAR-RV) ............................. 17 

3.3. Competing Econometric Models .................................................................................. 18 

3.3.1. Exponentially Weighted Moving Average (EWMA) ............................................ 18 

3.3.2. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) ............... 19 

3.4. Experimental Setup ....................................................................................................... 21 

3.4.1. Data ........................................................................................................................ 21 

3.4.2. Evaluation Metrics ................................................................................................. 22 

3.5. Results ........................................................................................................................... 23 

4. Machine Learning Models ............................................................................................... 25 

4.1. Machine Learning Approaches Literature Review ....................................................... 25 

4.2. Machine Learning Theory............................................................................................. 27 

4.2.1. Artificial Neural Networks (ANN) ........................................................................ 27 

4.2.2. Long Short-Term Memory (LSTM) ...................................................................... 30 

4.2.3. Gated Recurrent Unit (GRU) ................................................................................. 31 

4.3. Experimental Setup ....................................................................................................... 33 

4.3.1. Dataset Split ........................................................................................................... 33 

4.3.2. Model Optimization & Hyperparameter Tuning ................................................... 34 

4.4. Models and Results ....................................................................................................... 36 

4.4.1. Model Performance Analysis and Comparison ..................................................... 36 

4.4.2. Crisis Scenario ....................................................................................................... 38 

4.4.3. Results Discussion ................................................................................................. 40 

5. Conclusion ....................................................................................................................... 41 

References ................................................................................................................................ 43 

 
  



 
 

4 

List of Figures 
Figure 2.2.1 - Volatility mean-reverting behaviour graph ....................................................... 11 
Figure 2.2 - Volatility Clustering behaviour graph. ................................................................. 12 
Figure 2.3 – Realized Volatility Correlogram. ........................................................................ 12 
Figure 2.4 - Daily realized volatility distribution. ................................................................... 12 
Figure 2.5 – Negative correlation between realized volatility and returns. ............................. 13 
Figure 3.1 - Exponential weights conditional to decay factor. ................................................ 19 
Figure 3.2 - HAR vs. EWMA vs. GARCH prediction plot against Actual RV for the year of 
2021.......................................................................................................................................... 24 
Figure 4.1 - Perceptron - representation how a single neuron works. ..................................... 27 
Figure 4.2 - Single hidden layer Feedforward Neural Network diagram. ............................... 28 
Figure 4.3 - Commonly used activation functions: (a) Sigmoid, (b) Tanh and (c) ReLU. ...... 28 
Figure 4.4 - Recurrent Neural Network mechanism diagram. ................................................. 29 
Figure 4.5 - LSTM mechanism diagram. ................................................................................. 30 
Figure 4.6 - LSTM vs. GRU architecture diagrams................................................................. 31 
Figure 4.7 - GRU mechanism diagram. ................................................................................... 32 
Figure 4.8 - Cross-validation diagram ..................................................................................... 33 
Figure 4.9 - Cross Validation testing sets plot ......................................................................... 34 
Figure 4.10 – Covid-19 Period HAR-RV, LSTM and GRU Predicted Volatility vs. Actual 
Realized Volatility. .................................................................................................................. 39 

 
 
 
List of Tables 
 
Table 3.1 - Dataset descriptive statistics .................................................................................. 22 
Table 3.2 – Econometric models performance metrics results. ............................................... 24 
Table 4.1 - Realized volatility descriptive statistics for each cross-validation test set. ........... 34 
Table 4.2 – Table of LSTM and GRU grid search hyperparameters. ...................................... 35 
Table 4.3 – LSTM and GRU models performance metrics results vs. econometric models. .. 36 
Table 4.4 – Performance Metrics (In- and Out-of-Sample) ..................................................... 38 
Table 4.5 - List of variables for each variable set. ................................................................... 38 
Table 4.6 – Covid-19 Period Performance Metrics (Out-of-Sample)...................................... 39 
Table 4.8 - Performance metrics with validation-only in-sample performances. .................... 40 
 
 
 
 
 
 
 
 
 
 
 
 
 

file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558297
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558298
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558299
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558300
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558301
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558302
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558303
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558303
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558304
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558305
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558306
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558307
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558308
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558309
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558310
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558312
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558313
file://///Users/utilizador/Documents/Aston%20Uni/DISSERTATION/ENTREGA%20TESE/CLSBEDiss_2.1.docx%23_Toc131558313


 
 

5 

1. Introduction 
 
 
 Volatility is a topic of major relevance in the financial world. It bears a great importance 

in many fields in finance such as investments, risk management, security valuation and 

monetary policy making (Poon, 2003).  

 Volatility is not synonym to risk however, it can be interpreted as uncertainty. As noted 

by Campbell et al. (1997), uncertainty is what distinguishes financial economics since, in its 

absence, all financial economics problems would be reduced to basic microeconomics. 

Interpreted as uncertainty, volatility is a key component to evaluate investments and manage 

portfolios. In fact, volatility is at the heart of Markowitz’s Modern Portfolio Theory. Portfolios 

are balanced for set levels of risk, in which for higher uncertainty (volatility), a higher return 

is expected. Following a similar rationale, volatility is fundamental for the pricing of many 

financial instruments in which the uncertainty of future values is accounted for, such as option 

contracts.  

 In the past decades, the regulatory landscape on financial institutions has tightened and, 

nowadays, very strict regulations have to be followed. In particular, there are important 

regulations imposed on capital reserves that lending institutions need to hold. These reserves 

regulations are most often based on a metric that is nowadays a mainstay of risk exposure 

control, called Value at Risk (VaR). This metric measures the possible financial loss of value 

of a product over a period of time, and uses volatility as its main computation input. 

 Highly volatile financial market periods can spill over to the real economy, resulting in 

major impacts in people’s lives. For this reason, market volatility indexes are of interest to 

governments and policy makers, to act as a barometer of financial markets vulnerability and 

support monetary policy decisions. 

 Given its importance in all these areas of the financial sector and relevance for the 

economy, it is clear that volatility forecasting is a very valuable and influential topic of 

research. An accurate volatility forecast adds value to many agents, institutions and 

governments. Furthermore, even though extensive literature has proved stock market returns 

to be extremely difficult to forecast, volatility, on the other hand, has showed to be rather 

predictable, to some extent. This makes the research of the topic more worthwhile, as there is 

a higher change of achieving more meaningful and impactful progress.  

So far, great progress has been made in the development of econometric models to 

forecast volatility. However, econometric methods tend to struggle with nonlinearity in data, 
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which is present in volatility timeseries. Machine learning methods, that have been becoming 

increasingly more prominent in financial applications, have the characteristic of exceling at 

assimilating and modelling nonlinear relationships. Given machine learning techniques 

seemingly great abilities and high rate of innovation and improvements, these constitute a great 

prospect that is worthy of exploring as they could lead to an immense advance on the quest for 

the best volatility forecasting model. Ergo, in the most recent decades some machine learning 

approaches have been proposed to forecast volatility. 

In this context, the main objective of this research is to ascertain whether machine learning 

models can beat the current best econometric models, by making a thorough analysis of best 

prospective ML models for volatility forecasting and comparing its features and performance 

to the best and most famous traditional econometric approaches. This work sought to answer 

the following research questions: 

1) Can machine learning methods achieve high accuracy in forecasting volatility? 

2) Can machine learning methods outperform the best traditional econometric 

approaches? 

3) Can machine learning methods better predict and forecast volatility in times of crisis? 

 

Firstly, to infer on econometric model’s performance and confirm which is the best one, 

the HAR-RV, EWMA and GARCH(1,1) are tested. Using S&P 500 Index data from May-2007 

to August-2022 and a one year rolling window, we confirm that, as expected from the literature 

(Padovani et al., 2016), HAR-RV is the far superior model with an out-of-sample RSME of 

3,97%. 

Advancing for the ML models, the study focused on the Artificial Neural Networks 

algorithms: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). Using the 

same dataset, the two models are setup using a 5-fold time-series cross-validation technique to 

split the dataset, and a grid search for hyperparameter optimization. Given ML models’ ability 

of taking in multiple inputs, multiple exogenous variables were tested to improve performance, 

resulting in five different input sets, including variables such as daily log returns, daily RV, 

weekly and monthly aggregated RV, VIX and the HAR-RV prediction. The best performing 

variable set, which was the kitchen sink including all the mentioned variables, scored an out-

of-sample RMSE of 5,37% and 5,41% for GRU and LSTM, respectively. These results, though 

clearly better than GARCH(1,1) and EWMA, are inferior to HAR-RV. The two machine 

learning algorithms showed to be competent at forecasting volatility, achieving results that are 
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up to par with other traditional techniques. However, they were not able to beat the best 

econometric model, the HAR-RV.  

Machine leaning models are famously known for their ability to capture complex non-

linear relationships and uncover unknown trends in data. To test if these methods are indeed 

able to uncover any hidden patterns that precede high volatility periods, the performances of 

the models are analysed during the Covid-19 pandemic crisis period, from the 1st of February 

2020 to the 1st of May 2020. The results for this period show a similar performance hierarchy 

as before. No evidence is found that suggests that ML methods have a particular advantage 

during high volatility events.  

This paper is structured into four main sections. First, Chapter 2, focuses on establishing a 

foundation about volatility: its definition, measures and stylized facts. After that, Chapter 3, 

has a literature review of the volatility forecasting methods using econometric approaches, an 

explanation of the theory behind the HAR-RV and two competing econometric models, and an 

application of the models to test and attest HAR-RV’s superiority. Chapter 4 addresses the 

literature of machine learning approaches, presents the mechanisms of the LSTM and GRU 

algorithms, establishes the experimental setup and tests the use of the two ML models for 

volatility forecasting. The results obtained are presented and discussed, comparing them to 

those of HAR-RV. Lastly, Chapter 5 concludes on the main findings, answers the three research 

questions proposed and addresses possible limitations and suggestions for further research. 
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2. Volatility 
 
2.1 Defining and Measuring Volatility 
 

Volatility, usually denoted by , is a statistical measure of dispersion of a security’s 

returns from their mean. It expresses the rate at which a security's price rises or falls for a given 

set of returns. There are three types of volatility: historical, realized and implied.  

In finance, the simplest measure is historical volatility, which is measured by the 

standard deviation of logarithmic returns. For a given set of observations, 

 

𝜎 = √
1

𝑁
∑(𝑟𝑡 − 𝜇)2

𝑁

𝑡=1

 

 

where 𝑟𝑡 = log (
𝑆𝑡

𝑆𝑡−1
) is the log returns at time 𝑡, 𝑆𝑡 is the price at time 𝑡, 𝜇 is the mean return 

for the set of observations, and N is the number of observations. The standard deviation is a 

meaningful measure of dispersion only if returns follow a gaussian distribution, hence log 

returns are used instead of daily close prices, as the later do not meet this requirement 

(Andersen et al., 2001). When computing the historical volatility of a population from a sample, 

it is important to account for the bias due to finite sample size. Bessel’s correction factor helps 

reducing this bias and can be introduced in equation (2.1) by applying the multiplicative factor 

N/(N-1) inside the square root, resulting in 

                                  

𝜎 = √
1

𝑁 − 1
∑(𝑟𝑡 − 𝜇)2

𝑁

𝑡=1

. 

 

However, even though the Bessel’s correction allows for an unbiased estimation of variance 

(𝜎2) it cannot not fully correct its square root, which results in a still biased (although less) 

estimate of volatility (𝜎), especially for small samples.  

 To compute the historical volatility, there is the need of calculating the mean returns. 

The current process, though unbiased, can be result in very noisy estimates, especially for 

smaller samples. Moreover, the occurrence of negative average returns goes against previously 

set non-negativity constraints (Merton, 1980). For these reasons, the realized volatility 

(2.1) 

(2.2) 
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technique, which sets the mean returns to zero, is the most often the preferred method of 

estimating volatility in the literature. 

Theoretically, volatility is an instantaneous variable and therefore should be treated in 

a continuous-time diffusive setting. In such setting, over a given interval [0, T], we have 

                     

𝑑𝑠(𝑡) =  𝜇(𝑡)𝑑𝑡 +  𝜎(𝑡)𝑑𝑊 (𝑡)           , 0 ≤  𝑡 ≤  𝑇 

 

where 𝑠(𝑡) is the logarithmic asset price at time t, μ(𝑡) is the drift term, W is a standard 

Brownian motion process, σ(t) is the instantaneous volatility that inflates the change in price 

relative to dW(t). The terms μ(t) and σ(t) can also be interpreted as the instantaneous 

conditional mean and volatility of the return. The continuously compounded return (𝑟) over 

the interval [𝑡 –  𝑘, 𝑡], with 0 <  𝑘 ≤  𝑡, is therefore  

 

𝑟(𝑡, 𝑘) =  𝑠(𝑡) −  𝑠(𝑡 −  𝑘) = ∫ 𝜇(𝜏)𝑑𝜏 + 
𝑡

𝑡−𝑘
∫ 𝜇(𝜏)𝑑𝑊(𝜏)

𝑡

𝑡−𝑘
 . 

 

The best way of modelling volatility would be an integral over time, which would result in the 

integrated volatility however, due to the discrete nature of the financial system this is not 

possible. Instead, a good approximation can be achieved using quadratic variation (QV) theory, 

which following the previous setting and applying it to the returns defined in (2.4), we have  

                                     

𝑄𝑉 (𝑡, 𝑘) =  ∫ 𝜎2(𝜏)
𝑡

𝑡−𝑘

𝑑𝜏 

 

In order to make this applicable to the financial market, the interval [𝑡 –  𝑘, 𝑡] is partitioned 

in the discrete series {𝑡 –  𝑘 +
𝑗

𝑛
,   𝑤𝑖𝑡ℎ  𝑗 =  1, …   𝑛 ·  𝑘}. Then the realized volatility (RV) 

is  

𝑅𝑉 (𝑡, 𝑘;  𝑛) =  √∑ 𝑟2 (𝑡 − 𝑘 +
𝑗

𝑛
,
1

𝑛
)

𝑛∙𝑘

𝑗=1

 

Because semimartingale theory applies, the square of the realized volatility measure converges 

in probability to the return quadratic variation QV when the sampling frequency 𝑛 increases: 

                       

 𝑅𝑉2(𝑡, 𝛿; 𝑛) → 𝑄𝑉(𝑡, 𝛿),             𝑎𝑠 𝑛 → ∞  

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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A very high sampling frequency allows for the better approximation of the continuous price 

over time, however with high frequency the data is very noisy due to many market 

microstructures. Hence, when choosing sampling frequency, there is a trade-off between 

continuous prices and less noisy data. In practice, the choice of 𝑛 is many times influenced and 

restricted by the liquidity of the market and availability of data, however literature suggests 5 

to 15-minute intervals to achieve the best balance (Andersen et al., 2001). The huge 

improvement in data access has had a big impact on the volatility measurement literature. The 

availability of high-frequency data for most financial products has led the realized volatility 

measure to be one of the most prevalent measures of volatility in the literature, as it produces 

a very accurate proxy of actual volatility using a model-free approach (Barndorff‐Nielsen et 

al., 2002). 

 One different approach to volatility is implied volatility (IV). While the 

aforementioned approaches look to measure the volatility that happened in a past period of 

time given the security’s price history, the implied volatility looks to find the market outlook 

of future volatility. Implied volatility uses the options pricing model Black-Scholes to calculate 

backwards the volatility that is implied in an options contract price. This volatility can be 

considered an efficient expectation of future volatility by the market given the fact that these 

option prices are set by the market, which in turn operates according to the efficient market 

hypothesis.  
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2.2 Volatility Stylized Facts        
 

 To understand what makes up a good volatility forecasting model, one should first 

understand very well volatility and its behaviour. Volatility, as a measure of dispersion of a 

security’s market returns, is very hard to predict given the uncertainty and unpredictability 

linked with the stock market. Although it is very hard to fully comprehend, there are some 

tendencies that can be detected and used to summarize broad characteristics of volatility 

behaviour. These tendencies are often called stylized facts. Extensive literature has proved 

stock market returns to be extremely difficult to forecast however, on the other hand, volatility 

has showed to have characteristics that are predictable to some extent. Many stylized facts have 

been discovered and make it reasonable to believe it is possible to model volatility’s 

behavioural dynamics. The graphs, tables and calculations used to illustrate and exemplify the 

stylized facts below, are built using S&P 500 daily realized volatility data from 30-04-2007 to 

12-08-2022. 

 First of all, volatility is not constant. This is a long-known fact with much evidence of 

its veracity, such as Fama (1965), Officer (1973), among others. Though it is not constant, it 

displays a clear mean-reverting behaviour (Fouque et al. 2000). It can be seen that volatility 

always tends to slowly go back to its mean. Even when it suffers large shocks that make it rise 

to abnormally high values, in the long run volatility always reverts back to its mean. Figure 2.1 

below shows the one-month evolution of the daily volatility mean of the observations that are 

on the first and tenth deciles of volatility, as well as its mean, where the mean-reverting 

behaviour is clearly seen. 
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Figure 2.2.1 - Volatility mean-reverting behaviour graph 
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 Another stylized fact is that volatility tends to cluster. This fact was first noted by 

Mandelbrot (1963) and it refers to the fact that high volatility is likely to be followed by high 

volatility and low volatility is likely to be followed by low volatility.  

Moreover, volatility exhibits serial autocorrelation (LeBaron, 1992) which is in line with 

volatility clustering. This autocorrelation decays for farther lags, but still holds for very long 

lags, thus the reason why volatility is said to have long-term memory. Because of this 

characteristic, shocks in volatility tend to have very long-lasting impact. 

 Analysing the volatility distribution and comparing it with a normal distribution, one 

can see that it is heavily skewed to the right, as it can easily be observed in Figure 2.4. This 
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Figure 2.3 – Realized Volatility Correlogram. 

Figure 2.4 - Daily realized volatility distribution. 
Obs.: for visualization purposes, values above 0.8 were grouped in the same bin. 



 
 

13 

means that periods of high volatility are more likely than what would be expected from a 

normal distribution.  

 Another stylized fact, that is often times challenging for models to capture, is the 

Leverage Effect. This effect refers to the tendency of a volatility to be negatively correlated 

with the underlying asset’s returns. This effect, also known as the asymmetric volatility 

phenomenon, was first studied by Black (1976) which suggested that the explanation for this 

behaviour was the fact that when the market price of a firm decreases, the firm’s relative value 

of debt increases relative to its equity and, because the company becomes more leveraged, it is 

perceived as risker and thus is more volatile. This relationship is in fact asymmetric, everything 

else constant, when returns are negative, volatility increases rapidly, but when returns are 

positive, volatility decreases but to a much lesser extent. Overall, negative shocks tend to have 

a bigger impact on conditional volatility than positive ones.  

Lastly, it has also been shown that volatility measured at different frequencies, has 

different information content. Müller et al. (1997) discovered that the “diversity of agents in a 

heterogeneous market makes volatilities of different time resolutions behave differently”. 

Changes in low-frequency volatility have a higher impact in subsequent high-frequency 

volatility than vice-versa. The rationale is that some market participants have different 

investment horizons, but regardless if they are short, medium or long-term, they are all 

influenced by the long-term market movements. 
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Figure 2.5 – Negative correlation between realized volatility and returns. 
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3. Econometric Models 
 
3.1. Early Econometric Approaches Literature Review 
 

Given the importance of volatility in financial markets, literature on volatility 

forecasting dates back to over half a century ago. In the last few decades, the topic of volatility 

has been one of the most active in the economic forecasting field and has achieved great 

progress in this period. Many approaches and tentative models have been put forward to 

formulate volatility forecasts using historical information or even option contracts information. 

Before machine learning was ever introduced, econometric models were proposed using both 

parametric and non-parametric methods. In this literature review, non-parametric methods will 

not be considered as they have been proved to perform poorly out-of-sample (Pagan et al., 

1990). 

Time series models make up the bulk of the volatility forecasting literature. Pure time 

series models are not based on economic theory, instead they seek to capture the stock returns 

volatility features observed in the actual market. The most rudimentary form of a time series 

model is the Random Walk model. According to this model, in every period, volatility takes a 

random step away from its previous value. These steps are independently and identically 

distributed in size. However, this model is obviously very deficient at taking into account any 

of the known stylized facts. Expanding on the idea of using historical volatility to predict future 

volatility, there is the Historical Average (HA) method which always predicts volatility in the 

next period to be the average of all of the historical data available. An upgrade of the previous, 

is the simple Moving Average (MA), which takes the average of a set rolling window behind 

the current value of volatility. This makes the estimate more current and relevant by disposing 

of the older values and reflects a trade-off between using more data in the estimate and using 

data closer to time t. To make recent values more prominent, one can use an exponential 

function to place greater weights on the more recent volatility values. Following this 

exponential logic, similarly to the HA and MA methods, there is the Exponential Smoothing 

method (ES), which takes all historical data, and the Exponential Weighted Moving Average 

(EWMA), which uses a rolling window. The later model (EWMA) was made popular by the 

famous J.P. Morgan's set of techniques to measure market risks - RiskMetricsTM model (1996).  

Another branch of methods to model volatility are the autoregressive (AR) models, 

which use a simple regression to express volatility as a function of past volatility and an error 

term. If the autoregressive model also includes past volatility errors, then it is an Autoregressive 
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Moving Average (ARMA) model. This is, ARMA tries to model how unexpected external 

factors that caused past impacts can still be affecting the current volatility. A significant 

downfall of these models is that they do not take under consideration that volatility has long 

term memory. A good way of caring for the long-term memory is the use of an integrated 

process (Nielsen et al., 2005). In 1976, Box and Jenkins published the Autoregressive 

Integrated Moving Average (ARIMA) model for the first time which added an Integrated 

factor, i.e. a differencing factor, to the ARMA model. The basic ARIMA has a differencing 

factor of order one, if the factor is of order smaller than one it is an Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) model (Granger et al., 1980).  

A more sophisticated family of time series models offered a new toolset to the volatility 

forecast issue. Proposed by Engle, in 1982, the Autoregressive Conditional Heteroskedasticity 

(ARCH) model can capture the volatility clustering and long-term mean reversion 

characteristics. The ARCH model, does not use past standard deviations, instead it formulates 

conditional variance as a linear function of the past squared errors, with a set number of lags. 

This model, however, lacks in modelling the persistence of volatility shocks and usually 

presents very “bursty” results. To address this shortfall, the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) (Bollerslev, 1986) was developed, in which 

conditional variance does not only depend on squared errors but also on a set number of lags 

of past conditional variance. The GARCH model is then able to account for long term memory, 

volatility clustering and fat tails returns.  

The GARCH model is an influential landmark method and inspired many other 

variations and adaptations in a quest to overcome weaknesses and make improvements on the 

GARCH model. One of these GARCH-family models is the Exponential GARCH (EGARCH) 

model (Nelson, 1991). This model formulates conditional variance logarithmically and thus 

ensures that volatility is never negative without the need of imposing estimation constraints. 

Furthermore, EGARCH captures the size and sign of past residuals and because of that is able 

to model the “leverage effect” stylized fact. Other approaches also seek to incorporate the 

leverage effect in the model, one of them is the GJR-GARCH (Glosten et al., 1993), which 

uses a dummy variable to incorporate the information on whether shocks are positive or 

negative. Using a similar approach to the GJR-GARCH, the Threshold GARCH (TGARCH) 

(Zakoian, 1994) also models the leverage effect, tough it uses standard deviations instead of 

the variance. The GARCH model’s volatility persistence is also not perfect, this is because the 

autocorrelation of the conditional variance is exponentially decaying, unlike the serial 

correlations of securities’ realized volatility that have a very slow decay. To improve 
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GARCH’s long-term memory, the Integrated GARCH (IGARCH) model (Engle et al., 1986) 

and subsequently the Fractionally Integrated GARCH (FIGARCH) (Bailie et al., 1996) models 

were proposed. Similar to what ARIMA and ARFIMA had done with and ARMA, these 

models added an Integrated factor to ARCH which represented volatility persistence more 

accurately. However, it has been showed that a positive Integrated process results in a positive 

drift which is not true in reality (Hwang et al., 1998), which is a big theoretical shortcoming of 

the FIGARCH. The GARCH-type models’ family is very numerous. In order to see if the all 

the extensions of GARCH were useful, Hansen and Lund compared 330 ARCH-type models 

in terms of their performance at modelling conditional variance (Hansen et al., 2005). They 

found that, to forecast exchange rates volatility, no model outperformed the simple 

GARCH(1,1), but that using an equity security returns (IBM stock) the GARCH(1,1) was 

outperformed by models that could accommodate for the leverage effect. 

 Long-memory volatility models usually use fractional integration to parsimoniously 

achieve long memory. However, though it is a clever mathematical technique, fractional 

integration lacks economical interpretability and is thought to create an artificial mixing of the 

long and short-term volatility features (Comte et al., 1998). Inspired by the asymmetric 

propagation of volatility in short and long horizons, Corsi proposed the Heterogeneous 

Autoregressive model of Realized Volatility (HAR-RV) (Corsi, 2009). The HAR-RV is an 

additive cascade model that combines different volatility components at different frequencies 

with the aim of capturing the different types of market participants. The model, that results in 

a simple AR-type model, performs incredibly well at modelling volatility persistence and other 

known volatility stylized facts, even though it is not formally a long-memory model (Corsi, 

2009). Nowadays, the HAR-RV model is often regarded as the best econometric models for 

realized volatility forecasting. 
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3.2. Heterogeneous Autoregressive for Realized Volatility (HAR-RV) 
 
 The Heterogeneous Autoregressive for Realized Volatility (Corsi, 2009) model builds 

on the heterogeneous market hypothesis and asymmetric propagation of volatility in short and 

long horizons. To capture the different types of market participants, the model combines 

realized volatility at three different frequencies, i.e., is computed using three different time 

horizons: daily, weekly (5 trading days) and monthly (22 trading days). The main formulation 

of the HAR-RV model can be expressed as 

 

 𝑅𝑉𝑡
(𝑑)

 =  𝑐 + 𝛽(𝑑)𝑅𝑉𝑡−1
(𝑑)

 + 𝛽(𝑤)𝑅𝑉𝑡−1
(𝑤)

 + 𝛽(𝑚)𝑅𝑉𝑡−1
(𝑚)

 + 𝑢(𝑑) 

 

where 𝑢(𝑑) accounts for estimation errors and latent volatility, 𝑅𝑉𝑡
(𝑑) is the daily realized 

volatility being forecasted and 𝑅𝑉𝑡−1
(𝑑) , 𝑅𝑉𝑡−1

(𝑤), 𝑅𝑉𝑡−1
(𝑚)

 are the last day, week and month’s 

realized volatility, respectively. Given its simplicity, this model can easily be estimated by 

an Ordinary Least Squares (OLS) regression. In order to allow direct comparison among 

the volatilities defined over various time horizons, the 𝑅𝑉𝑡−1
(𝑤)

 and  𝑅𝑉𝑡−1
(𝑚)

 are normalized 

as one-period realized volatilities by a simple average of the daily volatilities expressed 

as 

𝑅𝑉𝑡
(𝑤)

 =  
1

5
(∑ 𝑅𝑉𝑡−𝑖

(𝑑)

5

𝑖=1

) 

 

𝑅𝑉𝑡
(𝑚)

 =  
1

22
(∑ 𝑅𝑉𝑡−𝑖

(𝑑)

22

𝑖=1

) 

 

Therefore, to forecast the one day ahead volatility, the HAR-RV model needs the last 22 days’ 

daily realized volatilities.  

 The HAR-RV model, with the use of the three different time horizons, is able to 

reproduce the volatility’s long memory, fat tails and time persistence characteristics, even 

though it is not a true long-memory model. Also, it is able to do it in a very simple and 

parsimonious way while, at the same time, achieving an exceptionally good forecasting 

performance.  

 

(3.1) 

(3.3) 

(3.2) 
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3.3. Competing Econometric Models 
To use as benchmark to compare HAR-RV’s performance, we use two of the most 

prominent econometric models for volatility forecasting: the EWMA and the GARCH. 

 

3.3.1. Exponentially Weighted Moving Average (EWMA) 
 The Exponentially Weighted Moving Average, originally outlined in Riskmetrics 

Technical Document (1996), is a model that explores the volatility tendency to cluster. As 

previously discussed, volatility exhibits high and significant autocorrelation, that is decaying 

the more distant the lags are. With this in mind, the EWMA model makes use of the past 

squared returns to forecast variance, using an exponential weighting to attribute more weight 

to the most recent returns, thus implying that older returns are less informative than more recent 

ones. According to this model, conditional variance at time 𝑡 is given by 

𝜎𝑡
2 = (1 − 𝜆) ∑  𝜆𝑖−1𝜖𝑡−𝑖

2

∞

𝑖=1

           , 0 <  𝜆 <  1 

 

where 𝜖𝑡−1
 =  𝑟𝑡−1 − 𝜇𝑡−1 ,  𝑟𝑡 is the return at time 𝑡, 𝜇𝑡 is the mean return at time 𝑡 and 𝜆 is 

the decay factor. Additionally, for the reasons previously explained in section 2.1, mean returns 

are set to zero and thus we get 𝜖𝑡
 =  𝑟𝑡 . With this in mind, it is possible to rearrange equation 

(3.4) into a much simpler formula which is usually the most commonly used. 

 

𝜎𝑡
2 = (1 − 𝜆) 𝑟𝑡−1

2  +  𝜆𝜎𝑡−1
2            , 0 <  𝜆 <  1 

 

This equation is indeed very appealing as, to forecast volatility, one only needs two values: the 

current estimate of variance and the latest market return. 

The decay factor (𝜆) determines the depth of memory of the EWMA. The lower the 

decay factor, the higher the importance the model gives to recent observations and the lower it 

gives to farther observations, thus putting more emphasis on the more informative recent 

returns. On the other hand, the higher the decay factor, the lower the importance of the most 

recent observations and higher the importance of the older ones, which means that the EWMA 

will have a deeper memory by giving significant weight to the more distant returns. 

(3.4) 

(3.5) 
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In Figure 3.1, one can see that using a high factor of  𝜆 = 0.99, EWMA assigns low 

weights to the first lags but that it lasts very long in time, with a very slow decay, only reaching 

a weight of under 0.5% on the 70th lag. Contrarily, a factor of 𝜆 = 0.90 values highly the first 

lags, but weights quickly diminish, reaching a weight of under 0.5% on the 30th lag.  

The RiskMetrics 1996 document by JP Morgan, which popularized the EWMA 

method, tested different values of 𝜆 over several financial products and suggested an optimal 

decay factor of 0.94 for daily data and 0.97 for monthly data. 

 
3.3.2. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 
 

 The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) (Bollerslev, 

1986) method was derived from an extension of the ARCH model. The ARCH model, besides 

also being able to capture the volatility clustering, it is able to model the volatility’s mean 

reversion characteristic. The model does this by formulating conditional variance as a linear 

function of past squared errors. The ARCH(q) model can be expressed as 

 

𝜎𝑡
2 =  𝜔 +  ∑ 𝛼𝑖

𝑞

𝑖=1

𝑟𝑡−𝑖
2             , 𝜔, 𝛼𝑖 > 0          

 

where q is the number of past returns included, i.e., the number of lagged returns, and ∑ 𝛼𝑖
𝑞
𝑖=1  

< 1. However, to achieve a good fit, the ARCH model requires a relatively high number of lags 

and therefore the estimation of a high number of parameters. Moreover, the model has a weak 

capacity to model the persistence of shocks and the asymmetric volatility phenomenon. 
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Figure 3.1 - Exponential weights conditional to decay factor. 
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 The GARCH model brings a solution to the difficulty of modelling the persistence of 

shocks by introducing the lagged variance in the conditional variance equation. The 

GARCH(p,q) model can be expressed as 

 

𝜎𝑡
2 =  𝜔 + ∑ 𝛼𝑖

𝑞

𝑖=1

𝑟𝑡−𝑖
2  +  ∑ 𝛽𝑖

𝑝

𝑖=1

𝜎𝑡−𝑖
2             , 𝜔, 𝛼𝑖 , 𝛽𝑖 > 0          

 

following the same assumptions made for the ARCH(q) model, where p is the number of lagged 

variances included and  ∑ 𝛽𝑖
𝑞
𝑖=1  < 1. With the addition of the lagged variance, the model can 

better prolongate volatility shocks in time, thus losing the “bursty” aspect present in ARCH.  

In fact, the particular setting of GARCH(1,1) can be shown to be equivalent to the ARCH(∞), 

i.e., the ARCH model with infinite lags. The ARCH(∞) needs infinite estimates, while the 

GARCH(1,1) only needs three parameters to be estimated. This showcases one of the main 

advantages of GARCH, this model needs very few parameters to be estimated. In fact, the 

GARCH(1,1) is usually enough for fitting financial data (Hansen et al., 2005), thus we will use 

this setting of the GARCH model. 
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3.4. Experimental Setup 
 
3.4.1. Data 
 
 The main objective of this research is to test whether the use of ML techniques can 

improve volatility forecasting accuracy and beat the best econometric models. For that purpose, 

it is necessary to collect market price data on a security. In this research, we use high frequency 

5-min market price data for the S&P 500 Index, from the 30th of April 2007 to the 12th of 

August 2022. The dataset was purchased from “FirstRate Data”, a leading provider of high-

resolution intraday stock market, crypto, futures and FX data. This timeline was chosen in order 

to include a long enough period to conduct a thorough analysis. This timeline includes periods 

of both high and low volatility in the US markets, which the S&P 500 Index aims to track. It is 

important to expose the predictive models to different market conditions to demonstrate its 

resilience. Following the analysis of Andersen et al. (1997), the daily realized volatility is going 

to be computed based on 5-minute returns. This frequency is chosen because the 5-minutes 

horizon reveals to be short enough that “the accuracy of the continuous record asymptotics 

underlying our realized volatility measures work well”, and long enough that the “confounding 

influences from market microstructure frictions are not overwhelming” (Anderson et al. 2001). 

 The returns and realized volatility at day t, 𝑟𝑡 and 𝑅𝑉𝑡 respectively, were computed 

following the formulas: 

𝑟𝑡 = ∑ 𝑟𝑖,𝑡
 

𝑛

𝑖=1

 

 

𝑅𝑉𝑡 = √252 ∗ ∑ 𝑟𝑖,𝑡
2

𝑛

𝑖=1

 

 

where 𝑟𝑖,𝑡
 = log (𝑟𝑖,𝑡

 /𝑟𝑖−1,𝑡
 ) is the ith 5-minute logarithmic return of day t, and n is the number 

of 5-minute intraday intervals within that day. 

After computing all the variables, from a total of 307.042 intraday high-frequency S&P 

500 market prices, the final dataset is composed of 3.849 daily returns and realized volatilities. 

The following table presents the descriptive statistics of the dataset. 

 

(3.9) 

(3.8) 
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Table 3.1 - Dataset descriptive statistics 

A notable observation is the fact that daily realized volatility and daily log returns do 

not have a unit root. Unit roots can cause unpredictable results in a time series analysis, 

therefore variables containing a unit root have to be differenced prior to analysis. Since the 

Augmented Dickey-Fuller Test for daily RV and daily log returns rejects the presence of unit 

root at the 1% level, we can proceed without differencing. 

 

 

3.4.2. Evaluation Metrics 
 
 
 Model evaluation is very important as it helps to understand the performance of a model 

and provide a comparable metric to contrast with other models. Following Corsi (2009), for 

this research, the two main metrics chosen to evaluate forecast accuracy in and out-of-sample 

were the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). 

The MAE is an absolute measure of the goodness of fit of the model. As the name 

suggests, it calculates the equal-weighted average of the absolute errors between actual and 

predicted values. 

𝑀𝐴𝐸 =
1

𝑛
∗ ∑|𝑅𝑉𝑖 − 𝑅𝑉̂𝑖|

𝑛

𝑖=1

 

 The Mean Square Error (MSE) measure also takes the average error, however, instead 

of using the absolute value of errors it takes the squared value of errors. Taking the square of 

errors will affect the weights attributed to each error and thus giving and higher penalisation 

  
5-minute           

Close Price 
5-minute             

log Returns Daily RV Daily          
log Returns 

         
Count 307042 307041 3849 3849 
Mean 2151,09 0,0003% 14,98% 0,03% 
Median 1980,88 0,0007% 11,64% 0,07% 
St. Deviation 991,13 0,1361% 12,16% 1,31% 
Minimum 667,04 -8,49% 1,86% -12,77% 
Maximum 4817,67 6,00% 168,55% 10,96% 
Kurtosis -0,08 215,71 24,79 12,15 
Skewness 0,87 -2,00 3,76 -0,54 
Aug. Dickey-Fuller 0,52 -58,93* -7,367* -15,06* 

* indicates significance at the 1% level 

(3.10) 
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for larger prediction errors.  Due to MSE values sometimes being too large for proper 

comparison and not easy for interpretation because of errors being squared, more commonly 

the RMSE is used. The RMSE is nothing more than the square root of the MSE, keeping the 

same properties relative to penalising more heavily larger errors. 

 

𝑅𝑆𝑀𝐸 = √
1

𝑛
∗ ∑(𝑅𝑉𝑖 − 𝑅𝑉̂𝑖)

2
𝑛

𝑖=1

 

    
Besides the two metrics of error magnitude, a directional criterion was also used. This 

criterion measures, in percentage, how many times the direction (first difference) of the 

predicted values match the direction of the actual realized volatility. The directional criterion 

can be defined as: 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
1

𝑛
∗ ∑ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖

𝑛

𝑖=1

 

                                  with       𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖 = {
1,      𝑖𝑓 𝑠𝑖𝑔𝑛(𝑅𝑉𝑖) = 𝑠𝑖𝑔𝑛(𝑅𝑉̂𝑖)

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   
 

 

where 𝑅𝑉𝑖 =  𝑅𝑉𝑖 − 𝑅𝑉𝑖−1 and 𝑅𝑉̂𝑖 =  𝑅𝑉̂𝑖 − 𝑅𝑉̂𝑖−1. 

 
 
 
 
 
3.5. Results 
 

In the literature, HAR is often considered as one of the best models there is for volatility 

forecasting. In this research, after computing the HAR, GARCH and EWMA, the results can 

now be analysed and the actuality of HAR’s superiority attested. All the models were estimated 

using a 1 year rolling window, resulting in estimates for the interval between 30-05-2008 and 

11-08-2022. All the computations to setup and optimize all the models were performed in 

Python. The EWMA and HAR-RV were built using tools from the python library Statsmodels 

and the GARCH(1,1) using the library Garch.  

 

(3.11) 

(3.12) 
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The results show a very clear performance hierarchy, that is in consonance among all 

evaluation metrics, in and out-of-sample. As expected, the results indicate a much higher 

prediction accuracy for the HAR model. The GARCH(1,1) model had the worst performance 

with an out-of-sample RMSE of 7,86%, followed by EWMA with an out-of-sample RMSE of 

6,96%. Clearly set apart, for the period analysed, the HAR-RV model scored an out-of-sample 

RMSE of only 3,97%, thus displaying a 42.96% improvement over the second-best model 

(GARCH). In regards to the directional criterion, HAR-RV also stands out with over double 

the directional accuracy of the second-best model. The long-memory capacity given by the 

aggregation of RV at different horizons’ seems to really differentiate HAR from the competing 

econometric models that do not have long-memory.  
 

Table 3.2 – Econometric models performance metrics results. 

 
Despite performance differences, none of the three models show signs of overfitting 

with the highest relative difference between in- and out-of-sample results being 2.38%, 

corresponding to the GARCH model.  

 

  

RMSE          
in-sample 

RMSE           
out-of-sample 

MAE             
in-sample 

MAE.             
out-of-sample 

Direction             
in-sample 

Direction             
out-of-sample 

EWMA (1Yr-RW) 6,88% 6,96% 4,18% 4,21% 32,14% 32,34% 
GARCH (1Yr-RW) 7,67% 7,86% 5,19% 5,36% 42,94% 43,27% 
HAR (1Yr-RW) 3,90% 3,97% 2,31% 2,41% 90,99% 89,76% 

Figure 3.2 - HAR vs. EWMA vs. GARCH prediction plot against Actual RV for the year of 2021 
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4. Machine Learning Models 
 
4.1. Machine Learning Approaches Literature Review 
 
 The literature of classical econometric models for volatility forecasting is very 

extensive, dates back many decades and has achieved great progress in dealing with the 

challenging dynamics of volatility. However, market volatility has intrinsic properties such as 

high autocorrelation, low signal-to-noise ratio and nonlinearity of the underlying structure that 

will always be problematic for many econometric models. Machine learning techniques are 

able to overcome all of these properties (Varian, 2014). Machine leaning techniques are 

famously know to excel at capturing complex non-linear relationships and uncovering 

unknown trends in data. Finance is undoubtedly a key area in which these techniques can be 

applied, especially with the huge upsurge of access to big amounts of data. However, the 

literature on the application of ML on the forecasting of volatility is quite limited. It was only 

in the past decade that more approaches have been proposed and explored, with some families 

of ML algorithms being the most popular for this purpose. For the sake of clarity, this literature 

review will be organized by ML algorithm family, rather than chronologically.  

One ML approach explored was the component-wise boosting method, by Mittnik et 

al. (2015). This method is capable of building a parsimonious model that can take a high 

number of predictors and, unlike other models, allows for the straightforward interpretation of 

its parameter estimates. Considering a wide range of potential risk drivers, the authors show 

that the component-wise boosting method is able to substantially improve the out-of-sample 

volatility forecast relative to the GARCH and EGARCH methods, for both the short and long-

term. 

Many different ML approaches were studied and some with relative success, however, 

when it comes to using a ML method to forecast volatility, the Artificial Neural Networks 

(ANNs) methods dominates the literature. Neural Networks are some of the best machine 

learning models to uncover and model complex latent interactions between variables, as these 

are able to approximate rather well many linear and non-linear functions without knowing the 

generating process behind the data (Bucci, 2020). Indeed, ANNs have been discovered to be 

very suitable to forecast volatile financial products that present a nonlinear dependence, such 

as stock prices, realized volatility or exchange rates (Donaldson et al., 1996). Many authors 

used Neural Networks in combination with the known econometric models. Donaldson et al. 

(1997), combined simple ANNs with the GARCH model and was able to demonstrate that the 
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ANN model captures dynamics overlooked by other GARCH-family models, as well as it 

outperforms their out-of-sample volatility forecasts. Similarly, Hajizadeh et al. (2012) reached 

the same conclusion using EGARCH estimates to feedforward to a neural network 

complemented with explanatory variables. More studies were published supporting ANN-

based GARCH-like models as opposed to the basic parametric GARCH, such as Schittenkopf 

et al. (2000), Taylor (2000), Dunis et al. (2002) and Kristjanpoller et al. (2014).  

Nevertheless, the traditional ANN algorithm has some shortcomings, it needs a very 

substantial number of controlling parameters, it struggles at reaching a final solution and is 

prone to overfitting (Tay et al., 2001). Therefore, some researchers employed a Support-Vector 

Machines (SVM) method, a model with a similar concept to ANNs, though are not classified 

as a neural network. The SVM model can keep the same advantages of the ANN, but is able to 

easily reach a unique global solution using quadratic programming and implements structural, 

rather than empirical, risk minimization principle which helps to prevent overfitting, hence 

SVM should result in better forecasts (Gunn, 1998). Chen et al. (2010) constructed and tested 

an SVM-GARCH model for volatility forecasting. The SVM-GARCH model significantly 

outperformed the simple GARCH, EGARCH and ANN-GARCH model, thus confirming the 

theoretical advantage of SVM.  

Inside the ANNs, depending on the neurons organization, the ANNs can be 

Feedforward Neural Networks (FNNs) or Recurrent Neural Networks (RNNs). In FNNs the 

information moves in only one direction and, from inputs nodes to hidden nodes to output 

nodes, without ever forming a cycle between nodes. The RNNs allow neural connections with 

neurons in the same our previous layers, thus enabling cycles of information and the 

incorporation of temporal dynamic behaviours. However, the vanilla RNN can usually only 

hold short-term information (Hochreiter et al., 2001). Withing the RNNs, more advanced 

extensions were developed that were competent at holding long-term information, being the 

main one the Long Short-Term Memory (LSTM) network (Hochreiter et al., 1997). Recently, 

Xiong et al. (2015) used a LSTM network incorporated with Google domestic trends as 

explanatory variables to forecast S&P 500 volatility, being capable to clearly outperform the 

linear Ridge/Lasso and GARCH benchmarks. Bucci (2020) compared the predictive 

performance of FNNs, the LSTM network and the NARX network (another RNN) with 

advanced econometric ARFIMA-family approaches. Bucci’s study shows that both RNNs 

(LSTM and NARX) are able to outperform the econometric methods, as well as that the long 

memory seems to also enhance the forecasting accuracy in highly volatile conditions. 
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4.2. Machine Learning Theory 
 
4.2.1. Artificial Neural Networks (ANN) 
 

Artificial Neural Networks (ANN), commonly called just Neural Networks, are 

mathematical models inspired in the way information is processed in the biological neural 

networks of the brain. The Neural Network system has been a matter of study for almost 80 

years (McCulloch et al., 1943), but it is its application in machine learning that have made them 

a very exciting topic from a technological perspective. 

ANNs are made up of artificial neurons which are organized in layers. Artificial 

neurons are the elementary processing unit of ANNs, and are interconnected between them to 

create a network. Neurons receive information from one or more inputs and turn them into a 

signal. The inputs of a neuron can be external data or output signals from other neurons. 

Neurons transform the input information by computing a weighted sum of all inputs using the 

weights assigned to each input connection. Following this, a bias term of constant value equal 

to 1 is added to the result of the weighted sum, acting like the constant term in a regression and 

ensuring that even if all inputs are zeros, the neuron is going to be activated. After, the resulting 

value will be run through an activation function which will introduce non-linearity into the 

neural network. The activation function will transform the information in such a way that it 

will decide if the information in that neuron is relevant or not to the process. There are many  

different activation functions that can be used, but the three most prominent non-linear 

functions are the Sigmoid function, the Tanh function and the Rectified Linear Unit (ReLU) 

function, which are chosen depending on the problem being modelled. The final output of the 

neuron is then passed onwards to the next neuron. 
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Figure 4.1 - Perceptron - representation how a single neuron works. 
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Neurons can be grouped into three main types of layers: input layers, hidden layers and 

output layers. Input layers takes the raw input and directs the information to the hidden layer, 

without performing any calculation. The hidden layer, as the name suggests, is not an exposed 

layer in the ANN’s architecture. This type of layer is responsible for all the computations done 

on the features introduced through the input layer. The output layer is the last layer of the ANN, 

it groups all the information that was computed throughout the network and delivers a final 

result value. 

Artificial Neural Networks can have a structure with only one or, more commonly, 

multiple hidden layers in which case it is be considered a Deep Neural Network (DNN). 

Neurons of one layer can only connect to neurons of the layers adjacent to it, i.e., the layer 

immediately before and after itself. Depending on the organization of the ANN, the flow of 

information along the network can be different from one model to the other. If the information 

flows in a single direction from input layer, to hidden layers, to output layer, without ever 
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Figure 4.3 - Commonly used activation functions: (a) Sigmoid, (b) Tanh and (c) ReLU. 

Figure 4.2 - Single hidden layer Feedforward Neural Network diagram. 
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looping between two hidden layers, the network has a forward architecture. These types of 

ANNs, in which a neuron only feeds information to the layer after itself, are called Feed-

Forward Neural Networks (FNNs).  

However, these ANNs are not very useful for time-series forecasting as they make 

decision based only on current inputs and therefore have no memory. For example, imagine an 

ANN that was trained to predict tomorrow’s volatility, it would use the information available 

today and tune its setting to try to make the best prediction. If tomorrow we wanted the model 

to predict volatility of the day after, it would once again use the data available tomorrow and 

re-tune itself all over again, without keeping any insights from the previous prediction and 

without the sense of a sequential order. To solve these shortcomings, Elman (1990) proposed 

the Recurrent Neural Network (RNN) architecture. These neural networks allow information 

to flow not only from input to output, but also between hidden layers of previous experiences. 

This way RNNs are capable of remembering what they have learned in the past and use it for 

future predictions, thus they are very fit for timeseries forecasting. In this model, inputs are fed 

to the model organized in a vector of sequential data. Sequential data points inputted run 

through the network, each resulting in an output. The hidden layer(s), usually called hidden 

state in the context of RNNs, are fed back to the model at the passing of each datapoint, thus 

allowing the model to keep memory. Each hidden state can be understood by the following 

equation 

ℎ𝑡 = 𝑓𝑤(ℎ𝑡−1, 𝑋𝑡) 

 

where ℎ𝑡 is the current hidden state, 𝑓𝑤 is some function with parameters w, ℎ𝑡−1 is the old 

hidden state and 𝑋𝑡 is the datapoint of the input vector for time t. 

RNNs are oftentimes trained using the Gradient Descent and the Backpropagation 

optimization algorithms, which aim to adjust the neural network weights (depicted in Figure 

4.2) such that errors are minimized. However, with deep RNN these algorithms tend to be very 
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Figure 4.4 - Recurrent Neural Network mechanism diagram. 
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faulty and often suffer from vanishing gradients in which the weights become very small and 

the model stops learning, or exploding gradients in which the weights increase a lot making the 

model very unstable. These complications, prevent long-term dependencies from being 

captured by RNNs, limiting the model to a very short-term memory. In a timeseries setting, 

this is a major flaw of the model. It is critical that RNNs are able to keep long-term memory 

for a better timeseries forecasting ability.  

 

4.2.2. Long Short-Term Memory (LSTM) 
 
 Given these limitations, Hochreiter et al. (1997) proposed the Long Short-Term 

Memory (LSTM) model, a more advanced type of RNN. LSTMs are renowned for being very 

effective at modelling both short and long-term dependencies, thus being more appropriate for 

volatility forecasting since volatility has shown to exhibit long memory itself. To achieve this 

long-term memory the model uses a group of gate systems to monitor the information stored 

in the hidden state. At each time-step of the model training, it is able to choose which past 

information to forget, which new one to add and what result to output. The system function 

with three gates: the forget gate, the input gate and the output gate.  

To better understand the mechanism of the LSTM, lets refer to Figure 4.5. The main 

component of the LSTM model is the cell state, represented above by the top horizontal straight 

line. It acts as a conveyor belt where all the relevant information flows. The first action by the 

model is choosing which information to forget using the forget gate. The forget gate takes xn 

(nth value of the input vector, corresponding to time t) and ht-1 (t-1’s hidden state) and using a 

sigmoid function outputs a number ( ft ) between 0 and 1 for each value in the cell state, 

representing the fraction of information to be kept. The ft  factor is applied by multiplying it by 
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Figure 4.5 - LSTM mechanism diagram. 



 
 

31 

the old state (Ct-1). The next action is selecting which new information to add to the cell state 

using the input gate. Using a sigmoid function, the gate first decides on the information it will 

want to keep, in a similar manner to the forget gate using xn and ht-1. This decision is kept in in. 

Then, using a tanh function, the gate creates a vector (𝐶̂t ) with all the new potential values 

from xn and ht-1 that could be added to the cell state. After that, both in and 𝐶̂t are combined by 

multiplying both, creating an update factor with all the values scaled by the amount by which 

the sigmoid function decided to update each state value. This factor is then added to the cell 

state. Lastly, the LSTM model will select its output using the output gate. This gate will first 

take xn and ht-1 and apply them a sigmoid function, resulting in a factor (ot) containing the 

information on which information to output. Then, it takes the cell state already updated with 

the forget and input gates, runs it through a tanh function, to force the values between -1 and 

1, and multiplies the result by the ot , resulting in only the portion of information it chose to 

output.  

 

4.2.3. Gated Recurrent Unit (GRU) 
 

The LSTM model is indeed well qualified to model long term dependencies, thus the 

reason why it has been one of the most used models for that purpose. Nonetheless, more 

recently, a variation of this model was proposed by Chung et al. (2014), the Gated Recurrent 

Unit (GRU). This model, that has been gaining increasing popularity, presents a simpler 

version of LSTM in which the forget and input gates are combined, the cell state and hidden 

state are merged together, and that can produce a performance comparable to the LSTM. 

By having only two gates and combining long and short-term memory in its hidden state, the 

GRU is computationally lighter to run than LSTM. 
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Figure 4.6 - LSTM vs. GRU architecture diagrams. 
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Let’s use the graphical representation in Figure 4.7 to guide us through the GRU 

mechanism. First xn and ht-1 are fed to both of its gates: the reset gate and the update gate. 

Similarly to what happened in LSTM, the reset gate takes the xn and ht-1 values and feeds them 

to a sigmoid function, getting rt containing the information which should be kept from the 

previous hidden state. The rt will then be multiplied by ht-1 to have control on how much of the 

hidden state from the previous step should be fed in to make the prediction. Since we want to 

use this information to predict an actual output, the piece resulting from this multiplication will 

then be ran through a tanh function, creating a hidden state candidate (ℎ̃t). The update gate can 

be seen as a replacement for the duties of the forget and input gate on LSTM. This gate also 

feeds xn and ht-1 to a sigmoid function getting the zt value determining how much information 

is taken in from the new input. This value is used for two purposes hence we see it following 

two branches. First zt passes through the block represented with the “1-” where one minus zt 

represents the amount we do not want to keep. This 1- zt argument is then used to update ht-1 

by multiplication, forming what can be seen as the “past component” of the hidden state 

computations. Secondly, zt is also used to multiply by the “hidden state candidate” (ℎ̃t) to 

produce the “new component” of the hidden state. Lastly, the new and old components are 

added to make up the hidden state to be used in the next prediction. 
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4.3. Experimental Setup 
 

For the setup and application of the machine learning models, the dataset and evaluation 

metrics used are the same as for the previous models. 
 

4.3.1. Dataset Split 
 
 In order to train and evaluate machine learning models, the dataset needs to be split into 

training, validation and testing sets. The training set is used by the neural network to learn the 

patterns present in the data and the validation set is used to tune the model’s hyperparameters 

(parameters that define the model’s architecture, more on this ahead) in order to optimise them. 

The testing set is used to test the optimised model’s performance on data it has never seen 

before. These three subsets should be homogenous between them and representative of the 

whole dataset, which can be very challenging considering a 15-year horizon. There would be 

a great risk of the testing set being characterized by one type of market, e.g. a very 

volatile/stable period. Evaluating the performance of a model on a non-representative test set 

will introduce bias and not accurately depict the models’ real prediction capacity. To tackle 

this issue, we use a 5-fold time-series cross-validation technique, in which almost all of the 

dataset is used as a testing set at least once. In a timeseries context, the cross-validation is setup 

in a time-ordered way with an expanding training set, as represented in the diagram below. 

 

CV 1 Training Valid Test 
        

CV 2 Training  Valid Test 
      

CV 3 Training  Valid Test 
    

CV 4 Training  Valid Test 
  

CV 5 Training Valid Test 

 

 

For each fold, the models are trained and tuned on the train and validation sets and the 

prediction error evaluated on the test set. By averaging the prediction errors achieved on each 

fold it is possible to obtain an “almost unbiased estimate of the error” (Varma and Simon, 

2006), and therefore a good estimate of the overall performance of the model. 
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Figure 4.8 - Cross-validation diagram 
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Machine learning models’ hyperparameters are not meant to be re-optimized on a 

rolling basis just like the previous econometric models were. ML models are built to learn from 

past data and be able adapt to make predictions in any scenario. Nonetheless, there could be 

models that are better in low volatility scenarios and others in high volatility scenarios. The 5-

fold cross validation also allows for testing this hypothesis, given that it allows for some 

differentiation between periods, resulting in 5 different test sets with different levels of 

volatility.  The table below summarizes the descriptive statistics on the realized volatility of 

each testing set.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 Daily Realized Volatility 
  mean stdev min max 
CV 1 9,87% 4,29% 2,07% 31,32% 
CV 2 12,10% 7,84% 3,02% 104,65% 
CV 3 8,39% 5,13% 2,24% 43,76% 
CV 4 17,13% 17,81% 1,86% 168,55% 
CV 5 15,30% 8,50% 3,39% 60,58% 

Table 4.1 - Realized volatility descriptive statistics for each cross-validation test set. 

Figure 4.9 - Cross Validation testing sets plot 
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4.3.2. Model Optimization & Hyperparameter Tuning 
  

 To setup the LSTM and GRU models, one needs to perform an hyperparameter tuning. 

Hyperparameters are the parameters which define the ML models architecture. So before fitting 

the model to the data, one needs to first set the hyperparameters that define the model. Because 

the LSTM and GRU models differ only in their internal architecture, but the great majority of 

its hyperparameters are the same for both models, the tuning process and values used were the 

same for both models. The hyperparameters relative to functions were not left to be tuned, 

instead the appropriate value was chosen for each. As activation functions, the tanh was chosen 

for the hidden layers and a linear function was chosen for the output layer. The model optimizer 

was set to be the Adaptive Moment Estimation method. Because volatility sometimes have big 

jumps and thus big forecasting errors are especially undesirable, MSE was set as the models’ 

loss function. MSE is used over RMSE also for reasons of computational efficiency of the 

machine learning models. To optimally tune the remaining hyperparameters for volatility 

prediction, a grid search technique was used. The grid search technique consists of choosing a 

set of values for each hyperparameter, testing every possible combination of the set values, and 

evaluating their performance on the validation set, in order to find the optimal hyperparameters. 

The table below contains the ranges of values chosen for each of the hyperparameter left to 

tune.  
 

Window size [2,5,11,22] 

# Hidden layers [1,2] 

# Neurons per layer [4,6,10] 

Batch size [8, 32 ,128] 

# Epochs [0 - 2000] 

Table 4.2 – Table of LSTM and GRU grid search hyperparameters. 

 

Theoretically, with neural networks, one hidden layer should be capable to approximate 

any continuous function. Kaastra and Boyd (1996) found that, for financial timeseries, one 

should not use more than 2 hidden-layers as both theory and empirical work show that a higher 

number of layers will not improve results. For this reason, the hidden layers were set to take 

the values of 1 or 2. The number of neurons per layer, despite its relevance, can only be found 
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by experimentation (Kaastra and Boyd, 1996) and thus were left to tune between a sensible 

range of values which are common practice in literature. The windows size, i.e., the number of 

lags to include are a very important parameter to be tuned to achieve a good accuracy. To give 

the models the chance of getting as much information as the HAR model that takes into account 

the past month data, we let this hyperparameter take the values of 2-, 5-, 11- and 22-day lags.  

Lastly, there is the batch size and the number of epochs. Even though a little more 

complex to explain, the batch size can be thought as the number of days of the timeseries data 

(inputs + realized volatility) that the model would work through before updating the internal 

parameters, while the number of epochs is the number of times the algorithm would run through 

the entire training dataset. The batch size was set to the most common values used in the 

literature. To tune the number of epochs, we set every model to allow a maximum of 2000 

epochs, but with an early stopping mechanism to stop the learning process if the model does 

not improve for 100 consecutive epochs. 

 
 
4.4. Models and Results 
 
4.4.1. Model Performance Analysis and Comparison 
 

After the experimental settings are setup, models can now be tested and evaluated. The 

ML models were implemented using the python library Keras, with a seed set for 

reproducibility purposes. Firstly, the LSTM and GRU models were tested using the same base 

input variables that were used for the econometric models - the daily log returns and daily 

realized volatility. The results achieved are summarized in the table below. 
 

  

RMSE          
in-sample 

RMSE           
out-of-sample 

MAE             
in-sample 

MAE.             
out-of-sample 

Direction             
in-sample 

Direction             
out-of-sample 

EWMA (1Yr-RW) 6,88% 6,96% 4,18% 4,21% 32,14% 32,34% 
GARCH (1Yr-RW) 7,67% 7,86% 5,19% 5,36% 42,94% 43,27% 
HAR (1Yr-RW) 3,90% 3,97% 2,31% 2,41% 90,99% 89,76% 
LSTM (LogRet & RV) 6,08% 5,63% 4,07% 3,56% 48,14% 45,12% 
GRU (LogRet & RV) 6,08% 5,70% 4,06% 3,57% 48,51% 45,82% 

Table 4.3 – LSTM and GRU models performance metrics results vs. econometric models. 

The machine learning models were able to beat the EWMA and GARCH models by a 

clear margin. However, the LSTM and GRU out-of-sample RMSE scores of 5.63% and 5.70%, 
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respectively, still fell short of HAR-RV’s error of only 3.97%.  The HAR shows to be superior 

not only in terms of error magnitude, but also in the prediction direction accuracy. 

One aspect that distinguishes HAR-RV from the two other econometric models is the 

aggregation of volatility over different time horizons. Indeed, the explanatory power of these 

aggregated variables could be what gives HAR the hedge over the others. For that reason, a 

second variable set was tested, adding the weekly RV and monthly RV to the previous variable 

set. The addition of the aggregated variables only marginally improved the ML models’ 

performances, with out-of-sample (oos) RMSE scores of 5,61% and 5,66%, for LSTM and 

GRU, respectively.  

In financial literature, when trying to achieve better models, it is often common practice 

to combine different models with the ambition of the combined model yielding a better 

performance than any of the constituent ones. In fact, it has been shown that “forecast accuracy 

can be substantially improved through the combination of multiple individual forecasts” 

(Clemen, 1989). Adapting this approach to our problem, we added the HAR-RV prediction as 

an input variable to the ML models, in addition to the base variables daily Log Returns and 

daily RV. The combined model performed well and was able to outperform the previous ML 

models, but not the HAR. The LSTM achieved and oos RSME of 5,43%, while the GRU 

5,60%. 

As mentioned in part 2.1., Implied Volatility (IV) is derived from option prices and 

encapsulates investor’s expectations of future economic conditions. It can be interpreted as the 

market's forecast of future volatility and thus can contain information content that may be very 

useful in predicting volatility. Indeed, it is argued that, if options markets are efficient, IV 

should be the only variable needed to predict future volatility (Christensen et al., 1998). 

Although, in practice, IV is not a competitive standalone predictor, some evidence suggests 

that its incorporation into other volatility models improves the accuracy of forecasts (Frijns et 

al., 2010; Kambouroudis et al., 2016; Blair et al., 2001). In the pursuit of improving the ML 

models’ performances, the Chicago Board Options Exchange’s Volatility Index (VIX) – a 

measure of the S&P 500’s IV for the next 30 days – was tested as an input variable with the 

aim of benefiting from IV’s information content. The use of VIX in addition to the base variable 

set (daily log returns and daily RV), improved the ML models accuracy relative to their 

performance with the base variable set alone. However, it couldn’t match the performance of 

variable set including HAR prediction, let alone the performance of the HAR-RV model itself.  

Lastly, we tried a “kitchen sink” approach to the ML models, i.e., we ran the models 

with all the variables discussed so far. This technique is usually used when the goal is simply 
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predictive modelling, without much concern about which particular predictors go into the 

model as long as the final model yields the best possible predictions. This variable set produced 

the most accurate results so far. The “kitchen sink” LSTM and GRU scored an oos RMSE of 

5,41% and 5,37%, respectively. However, once again, even though it is better than the 

previously tried ML iterations, these cannot reach the accuracy of the simple HAR-RV model. 
 

  

RMSE          
in-sample 

RMSE           
out-of-sample 

MAE             
in-sample 

MAE.             
out-of-sample 

Direction             
in-sample 

Direction             
out-of-sample 

EWMA (1Yr-RW) 6,88% 6,96% 4,18% 4,21% 32,14% 32,34% 
GARCH (1Yr-RW) 7,67% 7,86% 5,19% 5,36% 42,94% 43,27% 
HAR (1Yr-RW) 3,90% 3,97% 2,31% 2,41% 90,99% 89,76% 
LSTM (LogRet & RV) 6,08% 5,63% 4,07% 3,56% 48,14% 45,12% 
GRU (LogRet & RV) 6,08% 5,70% 4,06% 3,57% 48,51% 45,82% 
LSTM (Aggregeted RVs) 6,19% 5,61% 4,03% 3,43% 48,75% 46,79% 
GRU (Aggregeted RVs) 6,01% 5,66% 3,93% 3,45% 49,28% 46,50% 
LSTM (HAR) 6,12% 5,43% 3,93% 3,36% 47,06% 44,85% 
GRU (HAR) 5,96% 5,60% 3,87% 3,46% 50,34% 47,40% 
LSTM (VIX) 5,95% 5,62% 3,85% 3,41% 49,77% 48,30% 
GRU (VIX) 6,17% 5,58% 3,97% 3,44% 49,59% 48,58% 
LSTM (Kitchen Sink) 5,77% 5,41% 3,76% 3,38% 50,43% 48,41% 
GRU (Kitchen Sink) 6,00% 5,37% 3,88% 3,36% 50,85% 49,45% 

Table 4.4 – Performance Metrics (In- and Out-of-Sample) 
 

 

 

 

 

 

4.4.2. Crisis Scenario  
 

Machine leaning models are famously known for their ability to capture complex non-

linear relationships and uncover unknown trends in data. As proposed, it is valuable to test if 

these methods are indeed able to uncover any hidden patterns that precede high volatility 

periods such as crisis. For this purpose, the performance metrics are computed for the period 

  Variable List 
LogRet & RV LogRet, Daily RV 

Aggregated RVs LogRet, Daily RV, Weekly RV, Monthly RV 

HAR LogRet, Daily RV, HAR-RV Prediction 

VIX LogRet, Daily RV, VIX 

Kitchen Sink LogRet, Daily RV, Weekly RV, Monthly RV, HAR Prediction, VIX 

Table 4.5 - List of variables for each variable set. 
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of the Covid-19 pandemic crisis. We use as a crisis window the period from the 1st of February 

2020 to the 1st of May 2020.  

 

 

 

 

 

 

 

 

 

 

 

 
 

The ML approaches ranked similarly, relative to the econometric ones, in their accuracy 

at predicting volatility during the Covid-19 crisis period. Most ML models outperformed 

EWMA and GARCH, and HAR-RV clearly beat any other model by a considerable margin. 

No evidence is found that suggests that ML methods have a particular edge during high 

volatility events. Below we can see the plot of the predictions of HAR-RV and the best 

performing LSTM and GRU models, which during covid are, for both, the simpler variable set 

with daily log returns and daily RV. 

 

  RMSE        
out-of-sample 

MAE          
out-of-sample 

Direction          
out-of-sample 

EWMA (1Yr-RW) 22,85% 15,25% 38,71% 
GARCH (1Yr-RW) 25,02% 17,38% 48,39% 
HAR (1Yr-RW) 15,51% 9,95% 79,03% 
LSTM (LogRet & RV) 20,58% 13,24% 46,77% 
GRU (LogRet & RV) 21,35% 13,51% 41,94% 
LSTM (Aggregeted RVs) 21,75% 13,79% 40,32% 
GRU (Aggregeted RVs) 23,14% 14,61% 46,77% 
LSTM (HAR) 20,89% 12,88% 48,39% 
GRU (HAR) 22,83% 14,04% 43,55% 
LSTM (VIX) 21,90% 13,38% 50,00% 
GRU (VIX) 21,75% 13,69% 45,16% 
LSTM (Kitchen Sink) 23,17% 15,25% 45,16% 
GRU (Kitchen Sink) 22,21% 14,05% 40,32% 

Table 4.6 – Covid-19 Period Performance Metrics (Out-of-Sample) 

Figure 4.10 – Covid-19 Period HAR-RV, LSTM and GRU Predicted Volatility vs. Actual Realized Volatility. 
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4.4.3. Results Discussion 
 

The machine leaning methods were able to beat the GARCH and EWMA by a good 

margin, but have performed considerably worse than the HAR-RV model. This relative 

performance hierarchy is constant for every variable set across all performance metrics used.  

 Both machine learning models performed similarly and improved with the introduction 

of more variables. The two algorithms achieved their best oos performance with the same 

variable set – the kitchen sink-, that included all the variables discussed, which may suggest 

that the models can benefit from being fed more information. 

The in-sample performances of the ML models were worse than out-of-sample, 

however, this can be misleading as they are measured for the whole training and validation set, 

but the model architecture was optimized for the validation set only. In fact, if instead we look 

at the in-sample performance only on the validation set, we are able to get a more telling 

estimate.  

  

RMSE          
validation 

RMSE           
out-of-sample 

MAE             
validation 

MAE.             
out-of-sample 

Direction             
validation 

Direction             
out-of-sample 

EWMA (1Yr-RW) 6,88% 6,96% 4,18% 4,21% 32,14% 32,34% 
GARCH (1Yr-RW) 7,67% 7,86% 5,19% 5,36% 42,94% 43,27% 
HAR (1Yr-RW) 3,90% 3,97% 2,31% 2,41% 90,99% 89,76% 
LSTM (LogRet & RV) 4,80% 5,63% 3,26% 3,56% 47,85% 45,12% 
GRU (LogRet & RV) 5,02% 5,70% 3,36% 3,57% 46,42% 45,82% 
LSTM (Aggregeted RVs) 4,95% 5,61% 3,18% 3,43% 47,61% 46,79% 
GRU (Aggregeted RVs) 5,18% 5,66% 3,31% 3,45% 46,58% 46,50% 
LSTM (HAR) 4,89% 5,43% 3,21% 3,36% 48,65% 44,85% 
GRU (HAR) 5,01% 5,60% 3,19% 3,46% 48,11% 47,40% 
LSTM (VIX) 4,88% 5,62% 3,22% 3,41% 49,20% 48,30% 
GRU (VIX) 4,97% 5,58% 3,24% 3,44% 45,19% 48,58% 
LSTM (Kitchen Sink) 4,77% 5,41% 3,18% 3,38% 49,57% 48,41% 
GRU (Kitchen Sink) 4,63% 5,37% 3,08% 3,36% 50,26% 49,45% 

Table 4.7 - Performance metrics with validation-only in-sample performances. 

 

Indeed, looking at the in-sample performances for the validation set only, we see that 

they are better than the out-of-sample ones. Furthermore, they display some overfitting with 

performances approximately 12% and 14% worse out-of-sample than for the in-sample 

validation periods, for the kitchen sink LSTM and GRU respectively. For comparison, the same 

difference for the HAR model is less than 2%. This overfitting can be caused by a training-

validation-testing splits that results in heterogeneous periods of volatility. 
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One plausible reason for the advanced features and capabilities of the machine learning 

methods not being able to accomplish a better performance are the possible non-optimal 

conditions to setup the model. As mentioned above, the training-validation-testing split is a 

very important step that heavily influences how the models is going to learn. A split in the 

validation dataset in which the three resulting datasets are not accurately homogeneous will 

hinder the model’s learning ability or even incite the model to be optimized for the 

characteristics of a non-representative period. This is very difficult to achieve in the real word, 

using timeseries financial data, which represents a substantial pitfall of the application of 

machine leaning methods in the forecast of market volatility. 

 

 

5. Conclusion 
 
 With the purpose of bridging the gap between the literature of machine learning 

methods for volatility forecasting and the traditional econometric models, this research had the 

aim to explore the ML methods for volatility forecasting, testing their performance and 

comparing it to the performance of traditional models. More specifically, this study proposed 

to answer the question whether: 1) machine leaning methods can achieve high accuracy in 

forecasting volatility; 2) machine learning methods can outperform the best traditional 

econometric approaches; 3) machine learning methods can better predict and forecast volatility 

in times of crisis. 

In regard to the first question, the two machine learning algorithms that were tested 

showed to be competent enough at forecasting volatility. The models achieved results that are 

up to par with other traditional techniques. More specifically, with the kitchen-sink variable 

set, the LSTM and GRU models yielded an out-of-sample RMSE of 5,41% and 5,37%, 

respectively, which can be considered a good accuracy.  

Relative to the second question, the answer is no. The ML algorithms could not 

outperform the econometric model regarded as the best for RV prediction - the HAR-RV. The 

HAR-RV’s ability to reproduce the volatility’s long memory, fat tails and time persistence 

characteristics proved to be very powerful and efficient at forecasting volatility, while being 

greatly less computationally expensive than the ML models. Nonetheless, tough they could not 

beat HAR-RV, the ML models were able comfortably outperform the EWMA and 

GARCH(1,1) models. The best ML algorithm scored an RMSE 29,68% and 46,39% lower than 



 
 

42 

those of EWMA and GARCH(1,1) respectively, but HAR-RV still scored 26,03% lower than 

it. During the COVID-19 crisis, the models’ relative performance hierarchy were similar to the 

ones of the whole period. The ML methods did not show the capacity to uncover crisis-

preceding trends in data nor to have a particular advantage during high volatility events, thus 

answering the third research question.  

Lastly, it is relevant to reflect on the limitations found and suggestions for further 

research. The main limitation found was that machine learning methods require that a rigorous 

set of conditions are met for the proper setup and deployment of the models. In practice, these 

conditions are very difficult to be met using financial data, which greatly undermines the 

remarkable qualities of the machine learning methods.  

The data splitting procedure should be explored in further researches, with the goal of 

finding a method to split the data in three representative and homogeneous datasets, for a better 

learning process. Furthermore, this research focused on directly predicting daily RV from 

historical daily RV. It could be interesting to explore the use of intraday frequencies to predict 

intraday volatilities and subsequently aggregate them. High-frequency data tends to be noisy 

due to market microstructures, however these could be assimilated by the model and actually 

help the model. It could be that the ML algorithms are better at a high-frequency level. Another 

field in which improvement is most likely achievable is the input variable set. The algorithms 

showed to benefit from larger input sets, therefore there is a lot of room for further exploration 

here that can effectively change the best model verdict. 
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