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Abstract 

 

Introduction 

Cancer is the second leading cause of death in the United States and cancer screening is a 

primary tool to reduce mortality. However, not all who are recommended to be screened actually 

follow through. This study investigates whether electronic medical record and geographic data is 

suitable to predict which patients are at risk of missing recommended screenings. The goal of 

this investigation is to design a data informed system that can automate the prediction of those at 

risk for missing screenings and provide insights into underlying reasons. This will enable 

resources to be focused to increase cancer screening adherence, with the overall goal of reducing 

mortality from cancer.  

Methods 

Data for this study was sourced from de-identified electronic medical records from the Medical 

University of South Carolina’s patient population and publicly available geographic datasets. 

This data was used to train a series of machine learning models to predict which patients would 

follow through with cancer screening tests, and describe underlying associations to diagnoses 

data, cancer histories and social determinants of health.   

Results 

This study found that it was possible to systematically identify small groups of female patients 

that are unlikely to follow through with mammogram screening.  However, similar results were 

not found predicting lung cancer screening follow-though. Additionally, patterns associating 

social determinants at the county level cannot be used to make accurate predictions about 

individual patient follow through. It was also demonstrated that the core relationship between 

screening and mortality does not hold in high proportion minority areas.   

Conclusion 

 This study successfully shows that an automated system for identifying small groups of patients 

unlikely to complete mammogram screening is achievable and sets forth a methodology to 

development. It also provides valuable insights into the nature of social determinants associated 

with patients and their limits when geographically attributed.    
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1. Introduction 

1.1. Increasing cancer screening uptake is a key strategy to reduce the overall mortality from 

cancer from the U.S. Preventive Services Task Force (USPSTF).  Of the types of cancer, 

breast cancer has the highest overall incidence rate, and lung cancer is the top contributor 

to overall deaths due to cancer. Screening recommendations for breast and lung cancer put 

together by the USPSTF are based on reductions in the relative risk of mortality by 

detecting cancers at early stages when more treatment options are available(1). However, 

only 76% of female patients recommended for breast cancer screening report having one 

in the prior two years(2)  Less than 6% of those recommended for lung cancer screening 

report having recent screenings(3). There are many social and economic barriers to 

increasing uptake(4). There is a substantial body of research focused on surveying patients 

to investigate reasons for hesitation in cancer screening(4–6). This provides insights into 

barriers to screening, however, does not always translate into predictions about future 

patient behavior, and is reliant on self-reported data. There is currently very little research 

utilizing Electronic Health Record (EHR) data to identify those at risk for failing to follow 

through with screening. This may improve accuracy and level of detailed information 

about a patient and allow for automated predictions about future patient behavior to be 

inferred.   

1.2. Hypothesis 

This study hypothesizes that EHR data and machine learning can provide the basis for 

predicting which patients will follow through with cancer screening tests. 

1.3. Research Aims 

1.3.1. Research Aim 1 

Design a classification system that predicts which patients will complete a 

mammogram cancer screening test within 180 days after it was first ordered by a 

health care provider. This prediction will be based on demographics, clinical, visit 

data, insurance coverage, and geographic data after a breast cancer test has been 

ordered. 

1.3.2. Research Aim2  

Design a system that can identify patients that are unlikely to ever complete a lung 

cancer screening test, following an order from a health care provider. 

Demographics, clinical, visit data, insurance coverage, and geographic linked data 

will provide the basis for prediction. 

1.3.3. Research Aim3 

Design an explanatory system that accounts for and visualizes the barriers to breast 

cancer screening uptake that considers the complex network of factors and 

potentially causal social determinants, and comorbidities. 

 

1.4. Rationale 

Lung, colorectal cancer and female breast cancer were chosen for study, given that they 

comprise 3 of the top 4 cancers in terms of total number of cancer deaths in United 

States in 2020, and their mortality may be reduced by increased screening(7). Early 

detection of pre-cancerous lesions or cancers in local stages, before the cancer becomes 

distant, allows for therapies with better patient outcomes. If cancer is not diagnosed until 

clinical symptoms are present, typically a later stage cancer is diagnosed with a worse 
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prognosis for the patient(8). There are well documented racial and economic disparities 

in both screening uptake as well as late-stage cancer diagnoses(9). Increasing cancer 

screening uptake among patients is a key element in strategies to reduce cancer deaths in 

the United States. During outpatient encounters, when a provider orders a screening test, 

there is a unique opportunity for the patient and the provider to discuss addressing 

barriers that might prevent follow-through on the screening test. This study proposes to 

investigate the extent to which lack of screening test follow-through can be predicted in 

an automated way with EHR data. Should sufficient data and patterns exist in the EHR 

that patients who are likely to miss their ordered cancer screenings can be predicted in 

advance, a clinical decision support tool can be constructed that leverages the predictions 

and characterizes contributing factors to healthcare providers at the point of care, leading 

to discussions directly addressing barriers to cancer screening uptake. Such interventions 

might include referral to free screening services, arranging transportation, or mobility 

assistance for physically disabled patients.        

 

1.5. Innovation 

This project takes a novel approach to the problem of cancer screening uptake. Past 

approaches typically used patient interviews, education mailers, and incentives to increase 

screening uptake. This study uses new data sources from EHR and CDC and applies new 

machine learning statistical methods to discover risk factors and predicts screening test 

follow through for individual patients.   Should this approach prove to be successful, it can 

enable automated predictions to be integrated into healthcare settings. This study will 

increase the body of knowledge about barriers to cancer screening and provide a 

systematic way to extract them that can be scaled up and tailored to inform patient 

provider discussions.    

 

1.6. Overview of research document  

This document is organized in the following manor.  Chapter one contains the 

introduction, hypothesis, and aims of this dissertation. Chapter two contains the literature 

review and contributions of the dissertation in light of current research. Chapter three 

addresses the overall idea proposed in the dissertation that cancer screening uptake can be 

predicted in an automated fashion using machine learning and EHR data.   Chapters 4-7 

addresses testing this theory in different contexts.  Chapter eight contains the evaluation 

of the impact of the work.  A summary of the research is found in chapter 9 with 

references and the appendix following.    
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2.  Background and Connections to Prior Work 

2.1. Literature Review  

2.1.1. Breast Cancer Screening  

Several approaches have been published to increase screening uptake. In particular, 

a randomized control trial (RCT) conducted using the State of Georgia’s cancer 

registry showed that first degree relatives (FDRs) of cancer survivors could be 

identified, and high intensity interventions lead to a substantial increase in the rate 

of mammography(10). High intensity interventions used a combination of 

counseling phone calls, mailed brochures, and direct outreach to the subjects’ 

primary care provider to encourage screening. This was compared to a ‘low 

intensity control’ where patients were only mailed a brochure(10). A population 

wide study from Northern Ireland linking reducing breast cancer screening uptake to 

disabilities(11). The study showed patients to be 7% less likely to be screened if that 

had at least one disability. In the population used for the study, 35.8% of the women 

self-reported having at least one disability(11).  

A large-scale randomized control trial conducted in France published in 2018 tested 

four interventions to increase screening uptake(12). The interventions included 

various modifications to letter logos and wording as well as adding information 

about screening uptake amongst their pier group in the same department. The 

treatments in the trial were based around three behavioral economic principals, The 

social-norm effect where a person is more likely to do something if it is considered 

a norm of their social group. The messenger effect where the way the message is 

presented is altered, and the saliency effect where logos were redesigned to draw 

attention. What is most compelling about this trial is that it tested these interventions 

across a large cohort 26,465 women and failed to find any treatment that increased 

mammography rates. One of the primary limitations of this study was that the 

design could only detect effect sizes over 2.7%, so any small increases may be lost. 

Also, the study was not about to determine whether letters sent to participants were 

received. This suggests there is little to be gained by trying to make existing breast 

cancer screening information mailers more persuasive(12). A systematic analysis 

published in 2019 based on 13 studies conducted in the 28 European Union 

countries found statistically significant evidence in 10 of the studies that showed 

lower breast cancer screening uptake in areas that are economically deprived (13). 

This effect contributed to finding that prevalence of breast cancer is lower for 

people living in the most deprived areas. However, people living in the most 

deprived areas also experience a higher mortality rate. This phenomenon is known 

as the “Breast Cancer Paradox” where lower screening uptake gives the appearance 

of lower prevalence, however the disease is more often fatal in deprived areas. The 

reasons for the increase mortality are often attributed to diagnoses at a later stage in 

area with low screening uptake, as well as comorbidities and limited treatment 

options. Also, in the findings,  8 of the studies show a gradient with a negative 

association between living in increasingly deprived area and screening uptake(13). 

This study suggests that efforts to increase screening uptake should be focused on 

economically deprived areas, so that the disease could be diagnosed at an earlier 

stage and henceforth be less fatal. There have been numerous studies as to the 

reasons women report for not getting screen. A systematic review of this research 
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published in 2021 looked  at qualitative studies across Africa, Asian, Europe, 

Australia and the Middle East of subjects aging from 18 to 75 years old(14). The 

study grouped the barriers to breast cancer screening into three themes. Systematic 

barriers including lack of access or insurance, or attitudes of healthcare professional 

against screening. Personal barriers included fear, embarrassment, lack of 

motivation, negative experiences, or perceptions of breast cancer. The final theme 

was social barriers which included negative stigma around breast cancer diagnoses, 

or screenings or fatalisms about a cancer diagnosis, as well as cultural barriers like 

needing and not having a husband’s approval to have male healthcare provider see 

the women’s breast during an exam. The study found that the three themes of 

barriers to screening, Systematic, personal and cultural, were generalizable to 

women living in very different countries and cultures. Fear was prevalent as a 

barrier to screening across cultures. The study suggests that interventions be 

designed to address fear of cancer, stigma and fatalism to increase breast cancer 

screening uptake. 

The landmark million women study in the United Kingdom quantified the increased 

risk for breast cancer due to Hormone Replacement Therapy (HRT), a common 

therapy given to women to relieve post-menopausal symptoms(15). The study was 

able to clearly show estrogen- 4rogestogen HRT combination users had a higher 

cumulative incidence of breast cancer, over estrogen only users, both of which were 

higher than never users of HRT. The study was unique in scale, using 1,084,110 

women(15). It collected information on HRT usage, and menopause, and was able 

to link the results to UK National Health Service Central Registries where ICD10 

diagnoses codes were attributed to respondents. Given the wide scale use of HRT, it 

can be a potential confounding variable in cancer screening studies, where women 

receiving HRT have a higher awareness of the risks of breast cancer due to 

messaging received when starting the therapy. 

 

2.1.2.  Lung Cancer Screening 

The large-scale National Lung Cancer Screening Trial (NLCST) was an RCT 

testing the efficacy of LDCT vs radiography was conducted between April 2002 and 

December 2009 enrolling 53,454 persons that had a history of smoking of 30 pack 

years, and in the patient was not currently at smoker, had quit in the last 15 

years(16). The results of this trial laid the groundwork for USPSTF 

recommendations around lung cancer screening. The study removed subjects that 

previously had lung cancer diagnoses or a CT scan within 18 months prior to 

enrollment, as well as those with unexplained weight loss and hemoptysis. Subjects 

were evenly split into the LDCT and radiography groups. The study reported a 

significant reduction in overall mortality in the LDCT group, reducing the rate of 

death per hundred thousand from 309 (radiography) to 247(LDCT). A reduction in 

the false positive of rate of the tests also showed an improvement 94.5% (LDCT) 

from 96.4% (radiography). The study had a rate of adherence to the screening of 

95% and 93% for LDCT and radiography respectively. The study mentions a 

limitation of not using community care as a control group but rather radiography. 

The justification for using radiography as a control, was that there is another trial 

underway to study the effect of radiography vs community care. The study also 
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mentioned a “healthy volunteer” effect that could possibly make the results of the 

study intervention (LDCT) more favorable, than if used in the community.  

In a study looking at differences in LCDT lung cancer screening uptake, it was 

found that urban and rural populations in the United States did not have 

significantly different uptake rates(17). Data used for the study was from Behavioral 

Risk Factor Surveillance System (BRFSS) sources from 20 different states during 

2018-2019 and had a total of 1268 patients. Despite having no significant difference 

between urban and rural areas, both uptake rates for patients eligible for screening 

remained low (17.7% and 16.3% respectively). It was found that patients with 

underlying chronic conditions and veterans were more likely to be screened. The 

study also reported that screening declined with age, increased level of education, 

and where concerns about access and payment were reported. 

A study based on the 2018 BRFSS addressed demographics and lung cancer 

screening uptake among eligible persons(18). The survey questions used in lung 

cancer module of BRFSS ascertained the respondents age when they started 

smoking one or more cigarette a day, when the last time the respondent last smoked 

regularly, and on average how many cigarettes per day they had smoked. This was 

used to determine whether USPSTF screening recommendations would have been 

applied. The respondents were also asked if they had received a CT or CAT scan in 

the previous 12 months. The 2017 lung cancer module in the BRFSS survey was 

only applied in 11 states, and the study reported a 14.4% rate of screening for those 

determined eligible(18). This was a marked improvement from the National Health 

Interview Survey (NHIS) results in 2010 of 3.3%, prior to the USPSTF 

recommendations going into effect. From the nationally applied 2018 lung cancer 

module in BRFSS data, the study reported that there were no significant differences 

across sex, race, marital status, education, or income in screening uptake for those 

eligible(18). Significant increases in the proportion of eligible persons being 

scanned were reported when the respondent had health plan coverage, COPD, or a 

Primary Care Provider(18). 

A study in the United Kingdom looked at identification of barriers to screening 

uptake for high-risk individuals (Noor 2015) that declined to participate in the UK 

Lung Cancer Screening Trial (UKLS). During recruitment for the screening trial, 

4061 high risk individuals were identified and consented to screening, and 2756 

high risk individuals declined. Demographics from this study showed that older age, 

females, lower socioeconomic group and currently smoking were all associated with 

higher likelihood of declining screening(4). Analysis of the reasons that patients 

decline to participate were put into two categories, emotional and practical barriers. 

Of the practical barriers, travel and comorbidities were the most sited most reasons 

for declining as well as all reading received a screening(4). The most reported 

emotional barrier was the avoidance of lung cancer information, where patients did 

report not wanting to know if they had lung cancer. Other emotional reasons given 

included a perception of being too old or the patient believing they were at low risk 

because they had stopped smoking years prior(4). 
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2.1.3. Colorectal Cancer Screening 

Significant disparities among racial and ethnic groups exist in colorectal cancer 

(CRC) incidence, mortality, and screening uptake. Differences between African 

America and non-Hispanic whites are striking. Incidence among African Americans 

is 45.7 per 100,000 vs. 38.6 for non-Hispanic whites (19). African American 

patients also suffer from a higher mortality risk from CRC, with a death rate of 19 

per 100,000 vs. 13.8 for non-Hispanic whites (19). With regard to screening, 66% of 

African Americans between 50 and 75 years are up to date on screening, vs. 68% of 

non-Hispanic whites. African Americans are more likely than non-Hispanic whites 

to be diagnosed with distant stage CRC. Socioeconomic status, disparities in access 

to care, as well as prevalence of risk factors such as smoking, and obesity, and the 

distribution of comorbidities all contribute to the differences. 

 

2.1.4. Evidence Based Practices to Increase Colorectal Cancer Screening Uptake 

In a study of clinics that were enrolled in the Colorectal Cancer Control Program 

from 2015-2017, data collected by the CDC showed that interventions can be 

implemented to increase screening uptake.  A host of intervention strategies were 

tested. Five interventions demonstrated an increase in the clinic screening rate with 

significant p-values: Client reminders, provider assessment and feedback, reducing 

structural barriers, and having a CRC screening champion(20). “Client reminders” 

were completed in the form of letters, postcards, and phone messages when patients 

were past due. The “provider assessment” intervention involved sharing the 

provider’s metrics on offering and delivering screening to their patients. The 

“reducing structural barriers” strategy used interventions that addressed clinical 

hours and distance of service delivery but did not address underlying economic 

burdens. The most effective intervention was the “assignment of a screening 

champion,” which was a leadership role assigned to the public health effort. 

The Centers for Medicare & Medicaid Services (CMS)  calculates CRC screening 

rates  by dividing the number of Medicare enrollees aged 50–- 75 that received 

appropriate screening over the total number of enrollees aged 50-75, with enrollees 

that had a CRC diagnosis or a colectomy removed from the denominator(21). 

A small study of interviews of patients and primary care providers published in 

2020(22) investigated the use of a risk stratification tool for CRC diagnoses to 

increase screening uptake. The tool used age, gender, family history of CCR, pack 

years of cigarette smoking, and size of the waist to assign patients into one of four 

risk categories, with an ROC AUC of .77-.7826. This was intended to facilitate a 

conversation between patients and providers, where less invasive fecal 

immunochemical tests (FIT) might be recommended to patients in the lowest risk 

category, whereas colonoscopy might be recommended to the highest risk category, 

and patients and patient preferences and barriers might be discussed to suggest a test 

in the intermediate risk categories. The study reported that that using the tool to 

customize test recommendations was appealing to the patients and providers. 

However, the primary complaints providers had about use of the tool were that the 

tool took too much time, it was not natively in the EHR, and it lacked clinical 

guidelines for use from a national body. In addition, the study design did not have 

the ability to quantify screening uptake. 
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A more recent 2021 study by Yen published in the American Journal of 

Gastroenterology assessed the National Cancer Institute’s Colorectal Cancer Risk 

Assessment Tool’s (CCRAT) ability to use disease risk stratification to improve 

screening uptake. The tool uses short sets of questions about demographics, diet and 

physical activity, family history, and medical history was designed to take five 

minutes or less to complete. This study was conducted in primary care clinics with 

patients between the age of 50 and 75. This randomized control trial tested 

presenting patients with 5-year and lifetime risk scores for CRC against an 

education control that consisted of general information about CRC and screening. 

Information for the screening tool was taken over the phone. The results from this 

trial were that informing the patient of the CCRAT risk showed no difference in 

time to screening, no change in self-reported intentions to get screened, and resulted 

in a lower screening rate in the group CCRAT group than the control group at 12 

months (23). 

An RCT published in 2013 demonstrated promising results in improving screening 

uptake by automatically mailing fecal occult blood tests (FOBT) to patients, along 

with follow up phone calls over a control intervention of mailing reminder 

letters(24).In this study, EHRs were used to identify patients that were overdue for 

tests. These patients were mailed FBOT tests, and if tests were not completed within 

three weeks, follow up phone calls were made to encourage test completion. In 

contrast, the control group only received a reminder letter to get screening once per 

year on their birthdays. An interesting cost reduction was also demonstrated, 

because the FBOT group received less colonoscopies than the control group, 

offsetting the costs of automatically mailing the FBOT test. The participants 

automatically receiving the FBOT test were twice as likely to be current with CRC 

screening(24). Additionally, a treatment effect was demonstrated during follow-up 

to the cases where tests were incomplete. Patients were increasingly likely to be 

current on screening as the follow-up calls went from automated reminders to 

“navigated” calls with a care provider. 

A cross sectional study of men and women published in 2014 by Wernli et al. 

looked at screening uptake among the newly eligible. Using a cohort of 83,777 

persons enrolled in the mixed insurance care delivery system, Group Health located 

in Washington state, the study applied Cox survival regression to understand 

screening uptake in the five years following the individuals’ 50th birthdays between 

1996 and 2010(25). To determine whether a screening test occurred, CPT codes for 

FOBT, FIT, or colonoscopy were used EHR data. The study also removed those 

with prior CRC diagnoses, colectomy, colitis, or Crohns disease, and focused on 

those with average risk. The study found that individuals turning 50 in the last years 

of the study (2008-2010) were more likely to be screened than those turning 50 

earlier in the study (1996-2007). The study also found lower screening rates among 

women and some minority groups, as well as those with obesity and diabetes. After 

the age of 54, the study reported that 4.5% of women and 10.1% of men were still 

not screened, the reason attributed was lack of contact with the health system, less 

than one visit in the prior two years to their 50th birthday(25). 

Significant disparities among underserved populations in CRC screening uptake 

were reported in a large-scale cross-sectional study of patients in New York City by 
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Ni et al. published in 2020. The study cohort of 21256 patients between the ages of 

50 and 75 had at least one visit with a primary care provider (PCP) in 2014. The 

study reported that 67.9% of the individuals were not up to date on CRC screening 

recommendations(26). The study found that factors associated with a decreased rate 

of screening were having ever been a smoker and having morbid obesity. The study 

also found that age, sex, language, and travel time to the hospital were not 

associated with an increasing risk of not being up to date on screening. Of the 

patients that were overdue when they saw a PCP, only 11.5% had a CRC screening 

in the following year(26). The study reported that age was correlated with screening 

rates, and that the 50 –54-year-old group was 15% less likely to be screened than the 

70–75-year-old group. The largest difference in screening uptake among race was 

reported to be between Caucasian (8.5%) and Asian 13.9%, however, the study 

noted that Asians had the lowest baseline screening rate at 26.4%. In the discussion 

of the study, a comparison to the NYC Community Health Survey conducted over 

the telephone shows stark differences. The survey reported 70% uptake during the 

same period, whereas the study reported 39.9%. The authors hypothesized that this 

large difference was due to the telephone screening overestimating screening on 

underserved populations. 

Financial incentives were shown to not improve CRC screening uptake in an RCT 

with results published by Green et al. in 2019(24). The study took place at Kaiser 

Permanente western Washington and looked at average-risk individuals with no 

first-degree blood relatives with a CRC diagnosis before 60, as well as no 

colonoscopies within the last 9 years, and no prior CRC diagnoses. 10,000 

participants were selected using a baseline questionnaire from a population of 

34,000 eligible participants and, ultimately, 898 respondents were randomly 

assigned to one of three arms of the study. The first arm was sent a mailer with 

information about CRC. The second arm was sent a mailer and $10 that was 

conditional on completing a screening, and the third arm was sent a mailer with a 

lottery incentive that they would have a 1/10 chance of winning $50 upon 

completion of screening(24). The primary outcome used was the completion of any 

CRC screening test including FIT, flexible sigmoidoscopy, or colonoscopy within 

six months of the intervention. A secondary outcome measured whether only a FIT 

or colonoscopy test was completed within six months. The result of the trial was 

that the mailer only group had the lowest completion rate for any CRC test, at 

71.5%, but that was not found to be statistically different than the groups with 

monetary incentives: 74.6% for the lottery and mailer group and 76.7% for the 

monetary and mailer group. The study found a statistically significant increase in 

FIT completion with an increase of 7.7% for the group receiving the mailer and 

monetary incentive, and a 7.1% increase for the mailer and lottery incentive, in 

comparison to only receiving the mailer(24). The study also performed a subgroup 

analysis that showed that patients with Medicaid were more responsive than patients 

with other insurance to monetary and lottery incentives in addition to mailers and 

reported a 37.7% increase in the odds of completion among this group(26). 
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2.1.5. Machine Learning Approaches to Understand and Predict Healthcare 

Outcomes 

Machine learning is a subset of artificial intelligence that provides a set of tools and 

approaches to understand and predict patterns in data. There are two predominant 

approaches to machine learning, unsupervised and supervised. In the unsupervised 

approach, data is grouped together by similarity and distance metrics and is 

categorized using algorithms such as clustering, Bayesian networks and association 

learning. This approach is appropriate where outcomes are not historically known. 

In the supervised approach, a set of historical data is used to train a model to predict 

a known outcome. Supervised methods include decision trees, regression, neural 

networks, and ensembles of supervised methods. Regardless of the type, machine 

learning follows a standard workflow that starts with data collection, data 

preparation, data splitting, model training and evaluation. In the data collection 

phase, the ability to collect outcomes typically dictates whether unsupervised or 

supervised methods can be used. Data preparation steps may include removing or 

replacing outliers or nonsense data, combining factors into principal components, 

validating outcomes to be calculated correctly, and feature selection. Feature 

selection is a topic with robust research and with a variety of methods, however it 

can generally be thought of as using either recursive feature elimination or recursive 

feature addition. These methods, respectively, either subtract or add features until 

model performance starts deteriorating. 

 

2.1.6. Defining and Addressing Bias in Machine Learning Systems 

Machine learning systems functioning inside a health system are inherently 

automating decisions.  Investigating the fair and equitable performance of machine 

learning systems across subgroups of patients is key to ensuring that machine 

learning systems are not automating discriminative behaviors. A working definition 

for bias was published by Yeung et al in 2021 who stated “An automated decision-

making system is biased if it consistently produces disparate or disproportional 

outcomes for different groups of people and the disparate impacts are not 

commensurate with what might be expected for people in the affected groups”(27).  

This definition along with the U.S. Food and Drug Administration (FDA) guidelines 

on “Good Machine Learning Practice for Medical Device Development(28) set forth 

that race, gender, sex, national origin and ethnicity should be represented in 

underlying data used for machine learning development, and the systems should 

perform equitably across those groups. In addition to just measuring performance 

across groups of interest, Alelyani in 2021 published an approach that used relative 

entropy (KL divergence) to quantify differences in predictions and observations for 

subgroups(29). KL divergence is a statistical measure of distance between 

probability distribution and reference distribution and, notably, is not 

symmetric(30). This approach seeks to minimize the difference between observed 

probability distributions and what is predicted by models. According to this 

approach, a large distance between predicted and observed variables for a particular 

subgroup would indicate that bias is present.  
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2.1.7. Causal Inference 

Causal Inference methods have long been used to try and estimate treatment effects 

in observational data where randomized control trials and natural experiments are 

not present or impractical. These sets of approaches are often used where figuring 

out causation is an important objective and correlation-based methods are 

insufficient. The need for such methods can be illustrated by the Simpson paradox, a 

pattern in data where a statistical association can be found for a population, but 

when the data is broken down into sub populations, the association is reversed for 

each group(31). This can generally be thought of as occurring when a confounding 

variable affects both the treatment and the outcome variables. In the cases where 

this occurs, independence of treatment, confounders, and outcomes can be 

represented in the form of directed acyclic graphs (DAG). Nodes of the graph are 

variables and directed refers to the edges of the graph being directional. Acyclic 

refers to network not having a path where one node can follow edges and end up at 

itself. An edge between two nodes represents the parent node having influence over 

the child. Valtorta and Huang formally defined a Bayesian causal network as having 

two elements, the probability distribution of a set of multivariate random variables, 

and a DAG with one-to-one correspondence within the set of variables expressing 

causal relationships(32).  

Important properties of Bayesian causal networks are as follows. The DAG 

constraints the join probability distributions of the variables, which means that the 

network does not represent all combinations of joint probabilities. Due to this 

constraint, when learning a Bayesian causal network there are fewer parameters to 

learn, since the set of all joint probabilities is not being considered. When using a 

DAG for causal inference, do-expressions can be used to distinguish between 

correlative and cause effects. The do of a probability distribution X, denotes that X 

is fixed at a value, x. The notation P(Y=y| do(X=x)) is interpreted the probability 

that Y=y for a probability distribution y, when X is fixed at value x. In an example, 

using X as a drug exposure and Y as a recovery, this frame can be used to 

investigate the causal effect difference, defined in this example as the difference 

between P(recovered | drug_exposure=True) and P(recovered | 

drug_exposure=False). If exposure and recovery can take on multiple values such as 

degrees of recovery and levels of exposure, this can be abstracted to the general 

causal effect. When controlling potential confounders, the backdoor and front door 

criterion need to be considered. The backdoor criterion is used to determine whether 

a causal effect can be from a DAG, given that there are unobserved confounding 

variables. The back door criterion requires that spurious pathways between 

treatment and effect must be blocked, where directed pathways between treatment 

and outcome are maintained. This essentially means that an unobserved confounder 

that is not controlled for cannot be allowed to leak information to the treatment, and 

effect. If the back door criterion is met, there is no such leakage and causal effects 

of the treatment on the outcome can be calculated. If the back door criterion is not 

met, it may still be possible to calculate the treatment effects using the front door 

criterion. The front door criterion requires that the measured variable intercepts all 

the directed paths between the treatment and the outcome. This new measured 

variable must have no back door paths between it and the treatment, and all 
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backdoor paths between the new measured variable and the outcome must be 

blocked by the treatment variable. 

 

 

 

2.1.8. Bayesian Network learning 

Bayesian networks were proposed in 1986 by Judea Pearl to model causal 

interactions between variables. They consist of two components, an a-cyclic graph 

(DAG) and a table of conditional probabilities (23). The DAG consists of nodes and 

edges, where the edges are directed causal associations between variables. The 

conditional probability table gives the strength of association between each pair of 

nodes connected by an edge. 

The DAG can be created by hand using prior knowledge of the data, but also may 

be learned. Scored based structure learning algorithms consist of two components, a 

scoring function and a search algorithm. The purpose of the scoring function is to 

determine how well the DAG fits the data. Scoring functions are of form: 

Score(G:D)=LL(G:D)−ϕ(|D|)∥G∥ 

LL(G:D)= log-likelihood of observing the data with DAG structure G 

ϕ(|D|)∥G∥ = is a regularization term , where ∥G∥ is the number of parameters 

in the   graph 

The purpose of the regularization term is to penalize complexity in the graph, to 

reduce over fitting. The scoring functions becomes Akaike Information Criterion 

(AIC) when or ϕ(t)=log(t)/2 (32) 

The most basic search strategy is known as exhaustive search. This searches through 

the space of all possible DAGs and returns the one with the maximum likelihood. 

Exhaustive search is only computable for very small networks, (typically less than 

five nodes) given the hyper-exponential growth of the search space as the number of 

nodes grows. 

Hill climbing search iterates over all possible edges and adds them one at a time to 

the graph until the scoring function ceases to increase. While this strategy can 

handle many more nodes, it also can terminate early in a local maximum. 

Chow-liu search strategy finds a maximum-likelihood tree structure and has the 

constraint that each node can only have a single parent node, as well as picking a 

root node. Chow-liu uses the mutual information between all pairs of variables. 

Using this, a tree that spans the maximum weight is constructed using Prim or 

Kruskal(33) 

Mutual Information: (𝑥, 𝑦) log ( 𝑃(𝑥, 𝑦)/𝑃(𝑥)𝑃(𝑦)) 

 

Chow-liu search then assigns direction to the edges outward from the root node, 

creating the DAG. 

Two common methods for parameter learning are Maximum likelihood estimation 

(MLE), and Bayesian Parameter Estimation (BPE). In MLE the relative frequency 

of which the observed state has occurred. This method is subject to over fitting and 

considered to be unstable when the number of possible states becomes large. 

BPE starts with a known conditional probabilities table, and updates the prior 

knowledge based overserved data using Bayes Rule 



 12  

p(θ|D) = p(D|θ) * p(θ)/ p(D) 

p(θ): prior parameter (or conditional probability) 

P(D): probability of observing data 

p(D|θ): probability of observing the data given parameter θ 

p(θ|D) : Posterior distribution 

Prior knowledge of probabilities can be used as priors. A typical strategy to using a 

uniform distribution set all the add 1 to all observation counts, known as the k2 

prior. The Bayesian Dirichlet equivalent uniform prior requires an N parameter and 

pseudo counts of observations are derived as having N uniformed samples of each 

variable and parent. 

 

2.2.  Gaps in Prior Research 

2.2.1. Gaps in Prior Research Addressing Cancer Screening Uptake 

Prior research on cancer screening uptake is centered around approaches that use 

patient surveys, or county level data to draw conclusions about which factors are 

influencing at patient’s decision to be screening in the later approach, or an overall 

screening rate for a county in the former approach.  The 2021 Kee  et at  study is 

emblematic of the survey approach, leveraging data from the 2018 Behavioral Risk 

Factors Surveillance System phone survey(18).  While this is a valid approach from 

understanding patient reported barriers to screening, in context of operationalizing 

in a health system it may be difficult to automate the identification of groups at high 

risk for non-follow through. In county level approaches such as those used in the 

2018 Heller et al paper, it is not clear that predictions made about individual patients 

would be meaningful (26). At the time of writing, a gap exists in the literature 

specifically addressing when cancer screening follow through can be predicted 

leveraging EHR and geographic data. 

2.2.2. Gaps in Prior Research Addressing Machine Learning Bias 

Prior research addressing bias in machine learning models focus on model 

performance on subgroups and selecting representative data. This has generally 

involved training a model, predicting a known outcome, and measuring differences 

between predicted and actual values.  However, there is not a unified approach that 

addresses both the feature space in which predictions are made, as well as the actual 

model performance among groups.  Application data may be substantially different 

than training data which can contribute to discrepancies among subgroups. At the 

time of writing, there is not yet an approach that can describe when bias is 

occurring, as well as indicates which data attributes that may be contributing.  
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2.3. Contributions Considering Prior Research 

Considering the gaps in prior literature addressing the prediction and understanding cancer 

screening follow through, this study intends to contribute the results of machine learning 

experiments testing the extent to which lung cancer screening and breast cancer screening 

can be predicted using comorbidities, personal and family cancer histories derived from 

and EHR system combined with geographic social determinants.  These experiments will 

shed light on the question of whether EHR data is suitable and will quantify contributions 

of elements found in the EHR for the prediction tasks. This represents a novel approach to 

understanding cancer screening uptake and may set the groundwork for automating this 

prediction in a way that would not be possible with prior approaches.   
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3. Predicting Cancer Screening Follow Through with EHR and Geographic Data  

3.1. Description of Hypothesis 

The overall hypothesis of this dissertation is that cancer screening uptake can be predicted 

using EHR and geographic data with machine learning.  This process is fundamentally 

taking a set of inputs, making an assessment based on those inputs and training an 

algorithm on prior data and return an output.  The training occurs when known historic 

outcomes are used with its associated set of inputs, and a machine learning algorithm is 

used to set weights that serve a memory for the model.  When new data is, encountered, 

the model can then be used to make a prediction about which outcome is more likely.  This 

process requires training data is selected that represents new data that is anticipated to be 

encounter by the model, and that the inputs are mathematically associated with the 

outcome variable. A key consideration that machine learning methods are not typically 

learning patterns of causation and can be easily fooled by spurious correlation.  Another 

consideration is that for a machine learning model to be implemented in a health system, 

every element of data extraction and transformation must also be automated, and all 

required data inputs must be available at the time when a prediction is generated. To that 

end, the following describes the overall frame work used to develop training and test sets 

from deidentified EHR data, sourced for Medical University of South Carolina’s patient 

population and outlines how it can be transformed into numeric arrays representing 

patients in a particular point in time, used for training models(34). 

 

3.2. Overall Description of Method of Transformation of Electronic Medical Record 

(EHR) Data for Use in Machine Learning 

EHR data used for this dissertation in an untransformed state exists in a series of tables, 

each of which describe a particular concept about patients such as billed diagnosis, 

problem lists, labs and family histories, or demographics.  These tables typically can 

contain a mix of text and number data, know to the EHR at a specific date and time for a 

specific patient.  This data is filter to contain only observations preceding the time of 

prediction (time in which the prediction is assumed to have occurred), so that observations 

only know after a prediction is made cannot pollute the model.  The next step is to 

transform and aggregate data into a single numeric array represented what is known about 

a patient at the time of prediction.   

 

3.2.1. Diagnoses Data 

An ICD10CM diagnoses code represent a diagnoses for which the patient was 

billed. They contain structured codes that indicate category of disease, anatomical 

site, and potentially cause and context of the diagnoses.  Machine learning 

algorithms require encoding the list of prior ICD10CM codes into a numeric array.  

Diagnoses codes were collected prior to the patient having a screening test ordered 

and transformed with PyElixahuser package(35). This used Elixhauser 

Comorbidities Coding Algorithm(36) to create array of binary flags indicating 

specific comorbidity groups, along with a number score representing the sum of all 

comorbidities.  Elixshauser was chosen because it was shown to have a slight 

advantage predicting 5-year all-cause mortality over an alternative the Charlson 

Comorbidity Index (CCI)(37).  
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3.2.2. Patient Problem Lists 

Problem lists are list of conditions, illnesses, injuries and other items that may be 

affecting a patient. They are recorded in the MUSC EHR data as ICD9CM or free 

text. The approach to encoding this numerically was to search for key words in the 

text, and to create binary arrays based on the results. The CancerUtils python 

package was used to systematically create these numeric arrays(38).  

 

3.2.3. Family and Patient Histories 

Patient and family histories are represented in free text where a type of cancer and 

relative who had it is given, or type of cancer is given with an indication that there is 

not family or personal history.  This data was transformed into binary arrays for 

specific concepts like “family history of breast cancer” using regular expressions 

and detection of negating terms. The CancerUtils python package was used to 

systematically create these numeric arrays(38). 

 

3.2.4. Geographic Attributes 

Geographic data was linked to patients using 11-digit FIPS codes. It is important to 

note that in practice this would require reverse geocoding the patients addresses to 

discover FIPS codes, and assumes that the census track of the patient’s address is 

representative of the conditions they are experiencing. 

 

3.3. Application Development 

3.3.1. CanceUtils - A Python Package for Extracting EHR Data(38)  

Cancer utils is a python package developed in python 3.8 that has functions to 

search through ICD10CM, ICD9 and free text to detect specific cancer concepts 

such as breast cancer history, family history of cancer and tobacco usage.  This 

package is intended to solve the problem of diagnoses information being stored in 

multiple places and can create combined concepts that search for information in 

billing codes as well as free text. 

 

3.3.2.  PyElixhauser – A Python Package to Extract Elixhauser Comorbidities from 

Diagnoses Codes(35) 

This python code package transforms concatenated lists of ICD10CM and ICD9CM 

codes into binary arrays of Elixhauser comorbidities as well as calculates the 

Elixhauser Comorbidity score.  This code was leveraged to create structure arrays 

suitable for machine learning, out of raw diagnoses codes.  

 

3.3.3.   EHR Dataset Builder A Python Program to Systematically Transform EHR Data 

Into Machine Learning Ready Data Sets  

This python code package was designed to transform de-identified research data 

stored in multiple tables into a single data set. It leverages the Cancer Utils and 

PyElixhauser to preform transformations.  The results are flattened datasets suitable 

for use in machine learning.  

 

3.3.4.   Pro-DOBIE A Python Program to Run Protocol for Domain and Outcome Bias 

Exploration in Healthcare(39) 



 16  

Pro-DOBIE protocol is a set of demonstration python Jupyter notebooks that apply 

the protocol to sample datasets. These code notebooks execute the three components 

of the protocol and visualize the results, with the intent that they can quickly be 

modified to meet future needs. 

 

3.4. Methods and Application Relevance to Following Chapters. 

3.4.1. EHR Dataset Builder used Cancer Utils and PyElxihauser as the primary data 

selection, filtering, and transformation steps to create the underlying data sets used 

in mammogram screening and Lung cancer screening experiments.   Using de 

identified EHR data from MUSC, the EHR Dataset builder application leveraged 

procedure codes, diagnoses codes, lab results, demographics, insurance coverage, 

and census tract to assemble a data set that labeled patients completed or not 

completing screening after having one ordered, as well as an array of features 

describing what could be summarized about the patient prior to visit.   

3.4.2. Pro-DOBIE was used to analyze the mammogram screening experiment for 

potential areas of bias to demonstrate the protocol on novel data.   
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4. Pro-DOBIE: A Protocol for Domain and Outcome Bias Exploration in Healthcare 

Machine Learning Models 

 

4.1. Submission 

The following work was submitted to the Journal of Medical Internet Research AI with 

Matthew Davis as the primary author and Dr. Alexander Alekseyenko as a coauthor. 

 

4.2. Introduction 

Machine learning approaches to automating decisions and analyzing data in health care 

have a great potential for positive impact, they may result in unintended harm to patients. 

Machine learning approaches here generally refer to the practice of collecting data and 

using it to fit supervised or unsupervised models. The data may include text, lab values, 

images, diagnoses codes, geographic information, and demographic characteristics. Such 

data is normalized and transformed into numeric arrays for computer-based analysis. The 

data is split into training and holdout sets, designated for model development, and model 

evaluation, respectively. We assume that the resulting learning algorithms are intended to 

either predict a known historic response in the supervised approach or describe patterns 

and clusters in the unsupervised approach. Then the learning algorithm performance is 

evaluated on the unseen data holdout set for accuracy and generalizability.   

 

4.3. Background 

While there are many ways to define bias and equity regarding machine learning, Yeung D 

et al in 2021 published a definition as “An automated decision-making system is biased if 

(1) it consistently produces disparate or disproportional outcomes for different groups of 

people and (2) the disparate impacts are not commensurate with what might be expected 

for people in the affected groups”(27). We adopt this as the working definition for this 

study. 

Addressing bias in machine learning algorithms is critical to ensure patients are not 

harmed or disproportionally discriminated against.  The U.S. Food and Drug 

Administration (FDA) published guidelines “Good Machine Learning Practice for Medical 

Device Development” to help ensure that data sets used to create models are representative 

of the intended populations and lists age, gender, sex, race, national origin and ethnicity as 

examples of subgroups that need to be considered for inclusion on initial data curation, 

and independently analyzed to ensure equable model performance(28).  Zhou et all 

published in 2022 a paper that highlighted two primary negative effects of bias that have 

legal implications, when a group or member of a protected group (race, or national origin 

for example) receives disparate treatment considering relevant factors and disparate 

impact, where a member of protected group has an adverse impact from a seemly neutral 

decision3.  Zhou et al cites data bias, either through collection, selection, or confounding 

variables and algorithmic bias where the learning algorithm develops behavior that 

negatively impacts a group in the training process(40).    

There is a robust literature on detecting and mitigation of bias in machine learning models 

that focuses on performance differences among subgroups, under or overrepresented 

samples and retraining models to reduce bias. However, a gap exists when it comes to the 

establishment of a standardized approach detecting bias in both the performance and 

feature domains.  Pro-DOBIE contributes a novel protocol that is not reliant on a specific 
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classification algorithm, reveals bias in feature sets, predictions, and model performance, 

and helps enable researchers increase their understanding the behavior of trained machine 

learning classification algorithms. 

 

4.4. Methods 

4.4.1. The Pro-DOBIE framework 

Pro-DOBIE evaluates the triplet input of a predictive model, model application data, 

and a grouping variable of interest by prescribing three dimensions of model and 

data evaluation:  

 

  (1) subgroup performance equitability (figure 4.4.2.1) 

  (2) application and training data similarity (figure 4.4.3.1) 

  (3) training data grouping variable congruence (figure 4.4.4.1)  

 

Evaluation according to these dimensions will help identify performance 

discrepancies among subgroups and provide insights as to whether they are a result 

of systematic errors in data, sampling differences or novel clusters of data not seen 

during training. 

 

4.4.2. Subgroup Performance Equitability 

Pro-DOBIE addresses subgroup performance equitability 

(figure 4.4.2.1) via disaggregated subgroup analysis.  

Disaggregated subgroup analysis entails evaluation of 

model performance within pre-defined or rationally 

selected groups of patients from the application 

population. Within each group we track raw performance 

metrics, such as area under the curve of the receiver 

operating characteristic (AUC), Harmonic mean of the 

precision and recall (F1), Precision (Positive predictive 

value) and Recall (Sensitivity).  Micro average metrics 

are calculated for true positives (TPs), true negatives 

(TNs), false positives (FPs), and false negatives (FNs) as 

well as macro averaged metrics, calculated as the 

weighted average metric value for each subgroup or 

cluster.  Where the macro averaged metric is 

substantially worse than the micro averaged metric, it is 

reasonable to conclude that at least one subgroup or 

cluster is experiencing disparate treatment by the model. 

 

4.4.3. Application and training data similarity 

Pro-DOBIE checks the application and training data similarity (figure 4.4.3.1) to 

detect presence and sources of bias attributable to inappropriate transfer of a 

machine learning model across populations.  

To satisfy this step of Pro-DOBIE, principal component analysis (PCA) inversion 

analysis is used to calculate the error distribution after PCA and inverse PCA 

transform is applied to data(41). Principal component analysis was chosen because 

Figure 4.4.2.1. Disaggregated 

subgroup analysis to 

determine performance equity 

across subgroups. 
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it is a common data compression algorithm that decomposes high dimension data 

into a lower dimension subspace. PCA Inverse Error Analysis was conducted by 

scaling to unit variance the feature array and applying the automatic PCA method 

described by a Minka 2008(41) using the scikit-learn python package.  The resulting 

compressed component 

array was the inverse PCA 

transform was applied, and 

the mean average error 

was calculated by feature, 

between the original 

(scaled) data and the 

inverses principal 

components. By measuring 

the mean average error for 

each feature, aggregated 

results are plotted by 

subgroup and dataset to 

reveal dissimilarities.  

The PCA inversion analysis 

used was as follows: 

Let X be the centered feature array with dimensions (rows, cols) and V be the 

eigenvalue array calculated of dimension (cols, eigenvalues) calculated during the 

PCA fitting.  Then Z is the lower subspace representation of X.  

By assumption:  

 
 𝑍 = 𝑋𝑉, it follows that  𝑍𝑉𝑇 = �̂�𝑉𝑉𝑇  which implies �̂� =  𝑍𝑉𝑇  
 

This allows for column (feature wise) calculation of mean average error between the 

original scaled and centered features and the �̂� representation of the principal 

components Z. 

 

4.4.4. Training data grouping variable 

congruence 

Training data grouping variable 

congruence (figure 4.4.4.1) evaluates 

how well a variable of interest partitions 

the features space. Intuitively, a feature 

space that is well partitioned by a 

variable is likely to contain a lot of 

predictive information about the 

outcome variable. An example method 

that can get this accomplished is 

Silhouette Score Analysis(42). 

Silhouette value is a measure of dissimilarity 

and can be calculated for each data point in a 

data set given that each point has been assigned to a cluster and that cluster has a 

Figure 4.4.3.1 PCA inversion analysis to determine the 

distribution of errors among subgroups. 

Figure 4.4.4.1. Silhouette score analysis to determine 

variable grouping congruence. 
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defined center.  The Silhouette value is calculated using three formulas, published 

by Peter Rousseeuw in 1986(42) 

The mean distance between data points within a given cluster 𝐶1is defined as a(i) 

where i is a datapoint in cluster 𝐶𝐼.  

𝑎(𝑖) =
1

|𝐶𝐼| − 1
∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐶𝐼,𝑖≠𝑗

 

The mean dissimilarity of point 𝑖  to some cluster 𝐶𝑗 is that average of the distance 

to all points.  

𝐶𝑗𝑏(𝑖) =𝐽≠𝐼
𝑚𝑖𝑛

1

|𝐶𝐽|
∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐶𝐽

 

Both the mean distance within a given cluster a(i) the mean dissimilarity b(i) are 

combined in the following formula to create the silhouette value s(i) 

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
, 𝑖𝑓 |𝐶𝐼| > 1 

This formula results in a silhouette value that can generally be interpreted as 

follows, a value close to 1 indicates the datapoint well within a defined cluster. A 

value near 0 typically indicates, the data point is near a boundary of two clusters. A 

value near –1 indicates that the data point is closer to other clusters, than the one 

that it is possible indication of poor clustering.  Silhouette values were calculated for 

each point in the feature sets after applying unit variance scaling, using Scikit-

Learn, and the distribution of silhouette values was used to compare how well 

datasets were “clustered”. 

 

4.4.5. Datasets 

The three-step analysis methodology described was applied to three data sets.   

The Breast Cancer Wisconsin (Diagnostic) Dataset published by Wolberg et al,1995 

an available publicly from the University of California Irvine Machine Learning 

Repository (UCIMLR)(43). The data has 30 numeric features describing properties 

of a fine needle aspirate (FNA) of a breast mass, with the objective of predicting 

malignant or benign diagnoses. This data consisted of 569 observations, and was 

randomly split into 66% training data, and 33% testing data. A random forest 

classifier predicting the diagnoses was trained using the training data.  A third 

feature set was derived using the test data where 30% of values in each row were 

randomly set to null and imputed with mean values learned from the training set, 

referenced as the “Altered Test Set” which simulated the task of detecting a 

systematic bias in a new feature space. A KMeans cluster model was trained on the 

training set, and used for subgroup analysis on the training, unaltered test, and the 

test set where 30% of the values were imputed(44). 

The Heart Failure Clinical Records Dataset published in Ahmad et al 2017 and 

publicly available in UCIMLR(45).  The data set consisted of 299 observations of 

11 numeric variables including lab, cardiovascular and demographic values derived 

collected from Faisalabad Institute of Cardiology at the Allied Hospital in 

Faisalabad (Punjab, Pakistan) in 2015, with the objective of predicting fatality. All 

the patients had left ventricular systolic dysfunction and previous heart failures and 

were aged 40-95. This data was randomly split into 66% training data, and 33% 
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testing data. An altered training set was created where patients under the age of 45 

were removed.  A logistic regression classifier was trained on the altered training 

set, predicting the diagnoses. The original data set included patients aged (40-95) 

was altered for  training to only include patients age (45-95), and test set included 

patients aged(40-95). This simulated a task where a model was trained on a dataset 

missing a key subgroup.  

The application of Pro-DOBIE on MUSC breast cancer screening uptake study 

cohort demonstrates the methods on novel data. The dataset was derived from 

electronic medical record data of Medical University of South Carolina (MUSC). 

Included were females aged 50-74 who at the time of at least one billed visit during 

the 2016–2019 time period had at least one breast cancer screening test ordered. The 

target is to predict which patients would follow through and complete the breast 

cancer screening test within 180 days. The dataset consisted of 2,073 patients, with 

110 features describing comorbidity, demographic, self-reported personal and 

family cancer history as well as geographically linked (at the census track level) 

social variability derived from the 2018 CDC/ATSDR Social Vulnerability 

Index(46).  Feature selection was conducted by discretizing the 110 features into 

three uniform ordinal buckets per feature, and features indicating race were masked 

from the training and test sets. A network structure learning algorithm Tree-

Augmented Naive Bayes (TAN) was used to learn relationships between the 

case/control flag (completing a screening test in 180 days after order or failing to 

complete). The Markov blanket of the case/control node was selected after pruning 

features with conditional probabilities resulting in p-values less than 0.1 to create 

the final set of features for the model. A logistic regression classifier was then 

trained on the original data with only the Markov blanket features and tested on a 

randomly selected holdout set of 33% of the patients. The silhouette analysis, PCA 

inverse Error Analysis and Performance Across Subgroups Analysis was conducted 

using race as the grouping variable. 

 

4.5. Results  

4.5.1. Wisconsin Breast Cancer 

Subgroup performance equitability for 

the Wisconsin Breast Cancer data was 

conducted on the K-Means clustering 

of the model features. The K-Means 

clustering resulted in three clusters 

named 1,2,3. The model performance 

in Cluster zero F1 score dropped from 

0.842 to 0.811 between the test data and the 

altered (imputed) test data, however no 

drop in performance in cluster 2 occurred.  

Even though cluster 1 had no positive 

labels, the effect of the imputer was also apparent inspecting the probability output 

from the model.  The median prediction in the Cluster 0 went from 0 in the original 

test data to 0.36 in the altered (imputed), which demonstrates the effect of the 

imputer, raising the average prediction for the negative class when the tumor was in 

Figure 4.5.1.1. Average predictions for 

cluster 0 has much higher median prediction 

in data is imputed for the benign group on 

Wisconsin Breast Cancer Data. 
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fact benign in figure 4.5.1.1. Tabulated results are shown in table 4.5.1.1. 

 

Silhouette distribution analysis on Wisconsin Breast Cancer data indicated a drop in 

mean silhouette score for each cluster in the altered (30% imputed) test set over the 

original test set, and the training set. The distribution plot of the Silhouette shows 

that each cluster gradually shifting left (reduced silhouette values) indicating that 

the three clusters are less distinct in the altered (30% imputed) test set as in the 

original training set, or original test set, seen in figure 4.5.1.2.   A drop in silhouette 

score was measured in every cluster on the altered (30% imputed) data set, 

suggesting the presence of a systematic error and indicating that there is less of a 

distinct boundary between clusters in the altered test set. 

PCA Inverse Error Analysis on 

Wisconsin Breast Cancer data 

resulted in 95.6% of the variance 

of the original dataset explained in 

10 components, a reduction from 

the original data set’s 30 features.  

The mean average error (MAE) for 

all features in the altered (30% 

imputed) test set over the original test 

set, and the training set, shown in 

figure 4.5.1.3.  The features in the 

altered (30% imputed) after the PCA 

and PCA inverse show a clear pattern 

where nearly every feature has higher 

MAE than the training or test set, 

clearly suggesting the presence of a 

systematic error.  

 
 

 

 

 

 

 

 

Table 4.5.1.1 Performance metrics by subgroup (clusters) in Wisconsin Breast Cancer dataset 

Table 4.5.1.1 Wisconsin Breast 
Cancer Data  

AUC f1 precision recall accuracy Balanced 
accuracy 

TP FP TN FN 

Micro Average 0.987 0.96 0.967 0.952 0.947 0.945 178 6 92 9 

Macro Average 0.965 0.903 0.954 0.863 0.917 0.85 89 3 21 4.5 

Training Data Cluster 0 1 0.947 1 0.9 0.963 1 18 0 34 2 

Test Data Cluster 0 0.97 0.842 0.889 0.8 0.882 0.889 16 2 29 4 

Test Data (Altered) Cluster 0 0.979 0.811 0.714 0.938 0.868 0.714 15 6 31 1 

Training Data Cluster 1 Na 0 0 0 1 0 0 0 61 0 

Test Data Cluster 1 Na 0 0 0 1 0 0 0 50 0 

Test Data (Altered) Cluster 1 Na 0 0 0 0.975 0 0 1 39 0 

Training Data Cluster 2 0.975 0.97 0.961 0.98 0.947 0.961 147 6 13 3 

Test Data Cluster 2 0.968 0.974 0.954 0.994 0.951 0.954 166 8 9 1 

Test Data (Altered) Cluster 2 0.962 0.977 0.966 0.988 0.958 0.966 169 6 15 2 

Figure 4.5.1.2 Lower Silhouette Score by cluster for 

Wisconsin Breast Cancer data when data is imputed. 

Figure 4.5.1 3.  Higher MAE per feature after PCA 

inversion Wisconsin Breast Cancer data when data is 

imputed. 
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4.5.2. Heart Failure Clinical Records Data Set 

When the Heart Failure Clinical Records Data was used to train with the 40–45-

year-old patients masked, there was a clear effect on the predictions produced by 

logistic regression model. The positive class (where fatality occurred) received 

lower predictions in the test set 

for most age groups, and 

conversely, the negative class 

(where fatality did not occur) in 

most cases received a higher 

prediction shown in figure 

4.5.2.1. Tabulated results are 

shown in table 4.5.2.1. 

Where the age group from 40-

45 was initially masked in the 

altered training set show a clear 

change in the distribution of 

silhouette scores for each Age 

group used to partition the data 

set.  

The low silhouette scores 

generally suggest that there is 

substantial overlap between 

data points in the age group 

partitions. The masking of the 

40-45 age group resulted in 

average training silhouette score 

being reduced from -0.004 to –

0.034 indicating less distinction 

between groups in the altered 

training data (with the 40–45-

year-old patients masked) as 

shown in figure 4.5.2.2.  

PCA Inverse Error Analysis on 

Heart Failure Clinical Records 

Data resulted in 96.61% of the 

variance of the original dataset 

explained in 10 components 

(reduction from the original data 

set’s 30 features.  The mean average 

error (MAE) for all features is distinctly higher on test set for every feature, after 

learning the principal components on the altered training set with Age 40-45 

masked, indicating the presence of a systematic error figure 4.5.2.3. 

 

  

Figure 4.5.2.1. Heart Failure Clinical Records Data 

demonstrating fatalities received lower scores, and non-

fatalities received hire scores when the 40–45-year-old age 

group was removed from the  model training data. 

Figure 4.5.2.2 Lower silhouette score by age group for 

Heart Failure Clinical Records Data when age 40-45 was 

masked. 

Figure 4.5.2.3. Higher MAE per feature after PCA 

inversion Heart Failure Clinical Records Data in the 

test set for every feature over the training set and 

training data (with the 40–45-year-old patients 

masked) 
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Table 4.5.2.1 Performance of subgroups (by age) for Heart Failure Clinical Records Dataset 

Table 4.5.2.1 Heart Failure 

Clinical Records 

AUC f1 precision recall accuracy balanced 

accuracy 

TP FP TN FN 

Micro Average 0.729 0.605 0.575 0.639 0.697 0.685 23 17 46 13 

Macro Average 0.666 0.514 0.55 0.58 0.65 0.528 3.833 2.833 7.667 2.167 

Training Data Age Group 40s 0.836 0.2 1 0.111 0.733 1 1 0 21 8 

Test Data Age Group 40s 0.5 0 0 0 0.824 0 0 1 14 2 

Training Data Age Group 50s 0.835 0.267 1 0.154 0.804 1 2 0 43 11 

Test Data Age Group 50s 0.602 0.25 1 0.143 0.769 1 1 0 19 6 

Training Data Age Group 60s 0.797 0.56 0.636 0.5 0.828 0.636 7 4 46 7 

Test Data Age Group 60s 0.668 0.5 0.714 0.385 0.655 0.714 5 2 14 8 

Training Data,  Age Group 

70s 

0.758 0.696 0.727 0.667 0.794 0.727 8 3 19 4 

Test Data Age Group 70s 0.85 0.706 0.667 0.75 0.722 0.667 6 3 7 2 

Training Data Age Group 80s 0.667 0.706 0.75 0.667 0.615 0.75 6 2 2 3 

Test Data  Age Group 80s 0.375 0.5 0.5 0.5 0.333 0.5 2 2 0 2 

Training Data Age Group 90s Na 1 1 1 1 1 3 0 0 0 

Test Data Age Group 90s 1 0.8 0.667 1 0.667 0.667 2 1 0 0 

 

4.5.3. Mammogram Screening Uptake 

Data from Medical University of 

South Carolina 

Performance analysis across 

subgroups form the MUSC 

Mammogram Screening Uptake 

showed the model was much more 

effective by ROC AUC measure for 

the other less frequent race category 

than with the African American or 

White/Caucasian category.  This 

resulted in the Macro Average 

AUC being 0.665, higher than the 

micro average AUC 0.611 as 

shown in table 4.5.3.1.  As a result 

of the subgroup analysis, it was 

found that when patients have 

addresses outside of the county in 

which MUSC health system resided, 

difference in the average predictions 

between cases and controls were 

reduces. The model’s ability to 

discriminate between patients likely 

to complete the mammogram 

screening was greatly degraded as 

shown in figure 4.5.3.1.  

The silhouette analysis on the 

MUSC mammogram screening 

update data revealed that a higher 

silhouette in the White/Caucasian group was found in both the cases and controls.  

This indicates that the White/Caucasian group has slightly more distinctive partition 

Figure 4.5.3.1.  MUSC Mammogram screening uptake 

predictions degraded when a patient address was 

outside of the county where the health system is 

located. 

Figure 4.5.3.2. Distribution lower silhouette scores 

showing White/Caucasian group has slightly more 

distinctive partition of features. 

Figure 4.5.3.3. PCA inversion shows MAE on MUSC 

mammogram screening uptake. 
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of the feature space, than African American or the less frequent race category, 

which holds true for cases and controls shown in figure 4.5.3.2.  It is clear over 

allow silhouette score that for cases and controls, the feature space is not well 

partition by the Race variable, indicating there is substantial overlap between the 

datapoints in each category. PCA Inversion shows MAE discrepancies between the 

Percentile Percentage of Perrons Living Below Poverty (EPL_POV) from the CDC 

SVI, and the Count of Cancer of Types Negative in Family, which is the county of 

parents, grandparents and siblings confirmed to have a no history of cancer, in 

figure 4.5.3. This indicates that further investigation of these variables is warranted.  

In the case of EPL_POV, there is a paradox for cases (where mammograms not 

completed after ordered), both White/Caucasian and African American patients had 

addresses in census tracks with higher rates of poverty.  
Table 4.5.3.1 Performance of subgroups (race) on MUSC mammogram screening follow through data 

Table 4.5.3 .1 MUSC 

Mammogram 

Screening Data 

AUC f1 precision recall accuracy balanced 
accuracy 

TP FP TN FN 

Micro Average 0.621 0.611 0.622 0.6 0.599 0.598 216 131 194 144 

Macro Average 0.665 0.633 0.62 0.653 0.617 0.616 72 43.667 64.667 48 

African-

American 

0.625 0.632 0.625 0.639 0.599 0.625 85 51 63 48 

Other or les 

frequent Race 

0.735 0.692 0.6 0.818 0.652 0.6 9 6 6 2 

White-Caucasian 0.615 0.592 0.611 0.574 0.588 0.611 124 79 120 92 

 

However, the opposite is true for the other less frequent race category shown in 

table 4.5.3.2.  The most likely cause of the PCA Inversion MAE discrepancy among 

the Race category in the of Count of Cancer of Types Negative in Family shown in 

figure 4.5.3.3 is that the “Other or Less frequent Race” bin including all patients not 

explicitly identified as White or Caucasian, or African American have no  

observations where the Count of Cancer of Types Negative in Family variable is 

greater than 2.  This is not the case in White or Caucasian, or African American, 

shown in table 4.5.3.3 
Table 4.5.3.2 EPL_POV higher amount cases for African American and White-Caucasians, however the 

opposite is true for the “Other” race category. 

EPL_POV 
African-

American 

Other or less 

frequent Race 

White- 

Caucasia

n 

case 0.59 0.36 0.35 

control 0.56 0.38 0.31 

 

Table 4.5.3.3 Count of cancer of types negative in family, MUSC  

mammogram uptake data showing lack of observations in the 

 “Other or less frequent Race” category. 

Cancer Types 

Negative in 

Family (count) 

African-

American 

Other or less 

frequent Race 
White-Caucasian 

0 668 57 1102 

1 62 5 48 

2 26 1 42 

3 15 0 25 
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4 11 0 8 

5 1 0 2 

 

4.6. Discussion 

Using subgroup equitability, application and training data similarity, and training and 

application data variable congruence, bias was successfully detected when introduced to 

two well-known publicly available datasets. The protocol was also able to generate key 

insights into novel data from MUSC associated with mammogram screening uptake.  

Results of applying the protocol showed the presence of bias in predictions, contributing 

variables, and differences in training and application data.   

One of the limitations of this study is that the uncertainty in conclusions about bias was 

not addressed and quantifying may be an important future avenue of research. Another 

limitation of this study is that the datasets used for application of the protocol were 

relatively small, and it is not clear that the methods would be performant on very large 

datasets.  Additional areas of exploration could include whether these methods would be 

performant on numerical arrays derived from images or text, or on regression outcomes.  

Publishing of Silhouette Score Distribution Analysis, PCA Inverse Error Analysis and 

Performance Across Subgroups data when publishing models could provide valuable 

benchmarks to test not only the model performance but ensure the new datasets in which 

the model is applied have similar characteristics as the underlying training data.  Specific 

tailoring of metrics for disaggregated subgroup analysis as well as the underlying 

compression algorithm used in the PCA inversion analysis may extend this protocol to 

work on a wide variety of machine learning tasks and datasets, however, was not 

addressed in this study.  Another limitation is that the Pro-DOBIE consists of primarily 

visual tools and lacks significance testing.   This may be an avenue for future research and 

tool development.   

An alternative approach to Pro-DOBIE would be to focus on fairness metrics across 

potentially biased subgroups that describe model performance. Huang et al published in 

2022 a systematic review of machine learning papers that attempted to detect and mitigate 

bias(47).  A variety of fairness metrics were encountered, including some of those outlined 

in Pro-DOBIE. Differences in performance between groups were compared, as a primary 

method of detecting bias.  

Another viable alternative approach to Pro-DOBIE was outline by Alelyani in 2021. The 

author proposed calculating the relative entropy (KL divergence) for potentially bias 

subgroups such as race and gender, to quantify the differences between predicted and 

observed distributions(29). While these alternatives are effective at detecting bias, the Pro-

DOBIE protocol provides a more robust description of the underlying feature space, that 

enhances understanding above solely focusing on fairness metrics among subgroups.  

 

4.7. Conclusion 

The Pro-DOBIE framework can successfully detect bias in underlying datasets as well as 

unfairness in machine learning classification systems.   This framework provides a useful 

set of tools that can not only identify bias in performance, but through application and 

training data similarity, and data grouping congruence, also shed light on whether 

underlying data is to blame. 
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5. Predicting Mammogram Screening Follow Through with Electronic Health Record and 

Geographically Linked Data  

5.1. Submission  

The following work was submitted to the Journal of Cancer Research Communications in 

2023 with Matthew Davis as primary author and Dr. Kit Simpson, Dr. Leslie Lenert, Dr. 

Vanessa Diaz, and Dr. Alexander Alekseyenko as coauthors.   

 

5.2. Motivation 

The motivation behind this study is to create an automated system that can identify a small 

group of individuals that are at elevated risk for not following through completing a 

mammogram after having one ordered by a healthcare provider. Successful 

implementation of such a system could allow for well documented interventions to 

increase screening uptake to be focused on individuals that are least likely to complete the 

test. The end goal of which is to increase screening uptake, detect cancers at an earlier 

stage where less aggressive therapies can be used and decrease the overall mortality rate 

from breast cancer.  

 

5.3. Problem Statement 

Rates of screening for breast cancer are well short of national goals set in order to decrease 

the mortality rate. In a resource constrained environment, if patients at the most risk for 

non-follow through can be systematically identified, interventions to increase uptake can 

be focused, which in term should decrease overall mortality rates from breast cancer. 

 

5.4. Introduction 

Cancer is the second leading cause of death in the United States, and breast cancer is the 

fourth leading cause of cancer death, with 42,275 women dying of breast cancer in the 

United States in 2020(7). According to the American Cancer Society, 1 in 8 women 

nationally will have a diagnoses of breast cancer in their lifetimes (48) .  Screening is a 

key strategy for reducing mortality from breast cancer and is recommended by various 

national guidelines. When localized breast cancer is detected, five-year survival is 

approximately 99%.  However, if it is detected at a regional stage, where cancer has spread 

to nearby structures or lymph nodes, five-year survival drops to 86%(49). The 2019 

National Health Interview Survey (NHIS), CDC/NCHS estimated that cancer screening 

uptake for females aged 50-74 was 76.2%, well short of the Healthy People 2030 goal of a 

screening rate of 80.5%(2). In South Carolina, Department of Health and Environmental 

Control (DHEC) reported during 2013-2017 a breast cancer incidence rate of 129.9 per 

100,000 in women, higher than the national average of 125.2(50). The mortality rate due 

to breast cancer during the same period for South Carolina was 21.5, higher than the 

national average of 20.3 per 100,000 women(50). Mammography screening is 

recommended every other year by the U.S. Preventive Services Task Force (USPSTF) for 

women between age of 50 to 74(1). The USPSTF cites evidence of reduction in a relative 

risk of mortality from breast cancer as a basis for its recommendation(1). Increasing 

follow through with recommended screenings can further improve the population level 

risk. To maximize screening, it is essential to design interventions directed at 

subpopulations least likely to complete their recommended screenings. To identify this 
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subpopulation, we conducted a retrospective observational study to design a model that 

predicts timely completion of a mammogram breast cancer screening test after having one 

ordered by a health care provider, based on demographics, clinical visit data, insurance 

coverage, and geographic data. Our goal is to design a highly predictive supervised 

machine learning model, which is both explainable and transparent to aid in intervention 

design. Our intent is to automate the identification of patients most at risk of not following 

through using data from an electronic health record (EHR), so that health systems can 

focus efforts on patients needing follow up assistance.  

The literature addressing mammogram screening uptake has generally focused on two 

methods, population level analysis and patient surveys.  Heller and colleagues (2018) 

showed positive correlation between having some college education and county level 

mammogram uptake for Medicare recipients aged 67-69(51). The authors reported an 

inverse correlation between screening uptake and age adjusted mortality, moderated by the 

ratio of white and black residents in a county(51). Factors affecting mammogram 

screening uptake were addressed in a 2020 meta-analysis of studies by Özkan and Taylan 

assessing barriers and behaviors to breast cancer screening across 22 countries(52). The 

authors report that many factors contribute to lower screening uptake including fear, 

embarrassment, lack of education of the benefits, socioeconomic challenges as well as 

health insurance, and accessibility(52).  While machine learning has been used extensively 

to address breast cancer diagnoses, we could not identify any published papers that used 

machine learning to a improve mammography screening uptake. The successful use of 

machine learning to develop a system to enable automated identification of patients who 

are unlikely to follow through on screening tests, has the potential for improving screening 

completion, and thus cancer survival. Interventions designed to increase uptake could then 

be directed, with the goal of increasing uptake and decreasing the burden of mortality due 

to breast cancer.  

Supervised machine learning provides a set of tools to predict and understand patterns in 

data and has been applied to a wide variety of health care prediction problems. This 

approach relies on using known historic outcomes to train a model to make inferences 

about instances in which the outcome is unknown.  A key step to supervised machine 

learning is data preparation where feature selection takes place.  This involves selecting a 

restricted subset of features from the original large feature set where only useful features 

are retained, and non-informative features are disregarded. Feature selection methods 

strive to reduce the number of features, improve accuracy and robustness of the model, 

and reduce over fitting attributed to noisy variables. Evaluation of a supervised machine 

learning model involves splitting data into two datasets; a training set used for learning the 

parameters of the model, while a testing set is used only for analysis of performance of the 

trained model.  These processes can be repeated across different splits of the original data 

in a process called cross validation that trains and evaluates a model for a data splitting 

scenario, resulting in a distribution of performance statistics that estimate how the model 

will perform on new data. 

 

5.5. Methods 

5.5.1. Population Selection 

This study was approved by the Medical University of South Carolina (MUSC) 

Internal Review Board (IRB Pro00101494). Electronic Health Record (EHR) data 
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were sourced from Medical University of South Carolina’s patient population as de-

identified records. Variables included basic visit information, co-morbidity, 

insurance coverage, and screening test completion information. These cases and 

controls were selected female patients, age [50-74] at the time of an outpatient visit, 

with at least one billed visit during the 2016–2019 timeframe.  Controls were 

defined as having a mammogram test ordered and having had test status of 

completed within 180-days after the first date it was ordered. Cases were defined as 

having had a mammogram test ordered, but not completed, billed or with status sent, 

within 180-days of the first ordered date. The 180-day span was chosen to ensure 

timeliness of the test completion.  Patients with a history or condition code 

indicating cancer were excluded.  Study population demographics are shown in 

table 5.6.1. 

 

5.5.2. Feature Construction 

Patient level data was joined by 11-digit FIPS codes to the CDC’s 2018 Social 

Vulnerability Index, creating a rich geographic feature set describing the context 

where each patient lives(46). Relative tract percentiles that make up the 

socioeconomic, household composition-disability, minority-status-language and 

housing-type-transportation themes were used as features. Billed ICD10CM codes 

prior to the first mammogram ordered were mapped to Elixhauser Comorbidities 

(36)(53) using python 3.8 and the PyElixhauser package(35).  Features were built 

using binary encoding of ICD10CM base codes billed before the first order of a 

mammogram screening test. Features deriving from self-reported personal and 

family histories in the EHR indicating family history of cancer were also 

constructed using a binary encoder with the CancerUtils python package(38).  These 

were combined with binary features indicating whether the patient had been a new 

patient in the past year, age group, race, and marital status, also derived from the 

EHR. 

 

5.5.3. Feature Selection 

Feature selection was done in two stages. The first stage used the mutual 

information score for discrete and continuous data from the sci-kit learn 

package(54).  Features with average mutual information less than 0.001 about the 

target were removed. This process was repeated 20 times and the mutual 

information was averaged to reduce variability during selection.  The next stage of 

feature selection used reverse feature elimination where logistic regression was used 

to sequentially remove features one at a time with p values over 0.1, starting with 

features that had the highest p value. 

 

5.5.4. Modeling and Evaluation 

A classification approach to modeling was used with support vector machines 

(SVM), decision trees (DT), random forests (RF), extra trees, logistic regressions 

(LR), principal component logistic regression (PC-LR), and negative matrix 

factorization logistic regression (NMF-LR). This set of models was selected to 

represent emblematic approaches typical in machine learning and covered decision 

tree methods, ensemble approaches (combining models) as well as linear models 
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with and without data compression preprocessing.  Model evaluation involved 

evaluating a series of metrics using 10-fold cross validation where the model was 

trained on 90% of the data with 10% held out for testing.  Performance metrics were 

calculated and averaged across each test fold. These methods were implemented 

using the sci-kit learn package in python 3.8. Metrics used for evaluation included: 

area under the curve (AUC) of the receiver operating characteristic (ROC), 

harmonic mean of the precision and recall (F1), overall accuracy, positive predictive 

value (PPV) and negative predictive value (NPV). Significance level of 0.05 was 

use for all confidence intervals. Top performing models were selected by AUC 

because it represented the balance between the true positive rate (where patients 

were not completing the mammogram with 180 days were correctly identified) and 

the false positive rate (where patients who completed screening, but incorrectly 

labeled by the model as likely not to complete).  AUC was chosen as a primary 

metric because it describes the model’s ability to discriminate between the cases and 

controls at various thresholds, and usage of the model can be tailored to the end 

users’ tolerance for false positives. The results of the 10-fold cross validation 

demonstrate how different types of models will perform on new (out of the box) 

samples.  A logistic regression model was trained to show coefficient effect sizes as 

well as p-values to quantify the contribution of individual features towards the 

model's prediction.   An analysis of the patients in the 97.5 percentile used 20 

random samples of 50% of the patients to demonstrate the confidence in the model's 

ability to identify a small cohort of patients to which interventions can be focused 

and calculate performance metrics. A calibration table was also developed so that 

the model’s PPV, NPV, and accuracy can be estimated on a range of cut points 

(thresholds) where predictions above the threshold are considered likely to fail to 

follow through with screening. 

 

5.6. Results 

Study population demographics are shown in table 5.6.1. Basic comparison of these 

characteristics indicates that African American race and marriage are associated with 

greater follow through with screening. Younger [55-60) and older age [70-74] on the 

contrary were associated with less follow through. From the MUSC EHR, during the 

study time frame, 3,490 female patients, aged 50-74 were identified as having a 

mammogram screening test ordered, of which 28.9% with confidence (27.4%-

30.4%) failed to have a completed screening test in the following 180 days observed 

at MUSC. 
Table 5.6.1 Study Population Demographics. 

Variable  Value level cases controls 
P-value*

1
 

Race White-Caucasian 576 (59.9%) 482 (55.7%) 0.07 

Race Other 30 (3.1%) 23 (2.7%) 0.58 

African-American 355 (36.9%) 360 (41.6%) 0.04 

Marital Status Not Married 509 (53.0%) 417 (48.2%) 0.04 

Married 452 (47.0%) 448 (51.8%)  

Age Age [55  - 60) 417 (43.4%) 292 (33.8%) <10-4 

Age [60 - 65) 215 (22.4%) 181 (20.9%) 0.46 

Age [65 - 70) 222 (23.1%) 217 (25.1%) 0.32 

Age [70 – 74] 107 (11.1%) 175 (20.2%) <10-7 

 
1 * Fisher exact test for variable values vs all other levels lstt than P<0.05 are in bold 
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After removing patients where the test was ordered and completed on the same day, 

1,826 patients were found to have met the selection criteria outlined in the methods 

with 961 cases (missing screening after ordered) and 865 controls (completing 

screening after ordered within 180 days) were identified and summarized in the table 

5.6.2.  

 
Table 5.6.2 Results of the study cohort selection. 

Cohort Selection  count Proportion Failed to Complete 

Screening 

Female patients aged 50-74 with at least 

mammogram ordered in study time frame 

3,940  28.9% with confidence (27.4%-30.4%)  

Patients found to have a same day 

mammogram completion, history of breast 

cancer, or order was less than 180 days prior to 

the end of the study, or had a test with status 

'sent', but completion could not be determined 

2,114   

Cases (failed to complete screening) 961   

Controls (completed screening in within 

following 1-180 days) 

856   

Total study cohort  1,826 52.6% with confidence (50.3%-54.9%) 

 

Summary statistics on the selected cohort showing the distribution of cases and 

controls regarding demographic, insurance, comorbidity, and patient histories are 

shown in table 5.6.3. 

    
Table 5.6.3 Summary Statistics on MUSC mammogram screening data.  The count of cases and controls where with a diagnosis, 

or demographic characteristic is true are shown, along with proportions among all cases, and all controls, with difference in 

proportion statistics. 

Summary 

Statistics  

Variable Name Cases controls Proportion 

Among Cases 

Proportion 

Among Controls 

Odds 

Ratio 

Fisher P-

value 

Totals Patient Count 961 865         

Billed or 

Problem List 

Diagnosis 

F32 Depressive episode 32 11 (0.022- 0.045) (0.005- 0.02) 2.632 0.005 

  F41 Other anxiety 

disorders 

30 10 (0.02- 0.042) (0.004- 0.019) 2.714 0.006 

  N95 Billed Menopause or 

perimenopause 
11 1 (0.005- 0.018) (0.0- 0.003) 9.952 0.007 

  Z72 Problems related to 

lifestyle 

13 3 (0.006- 0.021) (0.0- 0.007) 3.921 0.024 

  Anemia dx or pl 16 5 (0.009- 0.025) (0.001- 0.011) 2.895 0.045 

  Depression dx or pl 49 20 (0.037- 0.065) (0.013- 0.033) 2.217 0.003 

  Sleep dx or pl 36 15 (0.025- 0.049) (0.009- 0.026) 2.171 0.011 

Demographics African-American 355 360 (0.339- 0.4) (0.383- 0.449) 0.892 0.202 

  Asian 7 7 (0.002- 0.013) (0.002- 0.014) 0.905 1 

  Divorced or Sep 168 130 (0.151- 0.199) (0.126- 0.174) 1.169 0.235 

  Married 452 448 (0.439- 0.502) (0.485- 0.551) 0.913 0.273 

  Single 239 186 (0.221- 0.276) (0.188- 0.242) 1.163 0.178 

  White-Caucasian 576 482 (0.568- 0.63) (0.524- 0.59) 1.081 0.317 

  Age under_60 417 292 (0.403- 0.465) (0.403- 0.465) 1.292 0.004 

  Age 60-65 215 181 (0.197- 0.25) (0.182- 0.236) 1.075 0.543 

  Age 65-70 222 217 (0.204- 0.258) (0.222- 0.28) 0.926 0.49 

  Age over_70 107 175 (0.091- 0.131) (0.176- 0.229) 0.553 <0.001 
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Insurance Managed care 31 16 (0.021- 0.043) (0.01- 0.027) 1.753 0.076 

  Medicaid 17 2 (0.009- 0.026) (0.0- 0.006) 7.69 0.001 

  Medicare  178 154 (0.161- 0.21) (0.153- 0.204) 1.046 0.721 

Patient History Family History of breast 

cancer 

111 122 (0.095- 0.136) (0.118- 0.164) 0.823 0.165 

  History of diabetes 75 68 (0.061- 0.095) (0.061- 0.097) 0.998 1 

  Neg family history of breast 

cancer 

109 112 (0.093- 0.133) (0.107- 0.152) 0.881 0.393 

Previous Visits Electrocardiogram prior 

365 
109 126 (0.093- 0.133) (0.122- 0.169) 0.783 0.083 

  Established patient prior 

365 

700 672 (0.7- 0.757) (0.749- 0.805) 0.942 0.414 

  Hemoglobin test prior 365 83 101 (0.069- 0.104) (0.095- 0.138) 0.744 0.063 

  New patient prior 365 260 181 (0.242- 0.299) (0.182- 0.236) 1.3 0.015 

  Pneumococcal vac prior 

365 

49 62 (0.037- 0.065) (0.054- 0.089) 0.715 0.097 

  Preventive visit prior 365 129 107 (0.113- 0.156) (0.102- 0.146) 1.091 0.535 

  Urinalysis prior 365 124 151 (0.108- 0.15) (0.149- 0.2) 0.743 0.024 

 

The original feature set, after feature 

construction, included 55 features 

summarizing comorbidity, insurance, 

demographics, diagnoses, patient and family 

history and prior visits. This was reduced to 

39 features after selecting those with average 

mutual information about 0.001. The results 

of the selection can be seen in figure 5.6.1, 

which shows the highest mutual information 

attributed to the percentile percentage of 

persons in poverty (EPL_POV). This 

estimates the relative percentile of the 

poverty rate by census track.   

 

The feature set was then further reduced to 

13 after applying logistic regression and recursively removing the feature with the 

highest p-value, until all p-values were under 0.1. An added benefit of this process is 

that no highly correlated features remained in the curated features. 

Performance estimates of the different types of machine learning classifiers were 

estimated on the final set of selected features. Modeling types of logistic regression and 

logistic regression with PCA preprocessing had the highest average AUC across unseen 

test data of 0.63.   The cross-validation results show limited or no improvement when 

using complex model types such as tree-based methods, ensembles, support vector 

machines or complex preprocessing such as PCA or NMF over traditional logistic 

regression.  Performance results of the 10-fold cross validation experiment can be seen 

in table 5.6.4.  Logistic regression was chosen as the best classification method since 

other methods showed only slight improvements, and interpretation of the impact of 

each variable was limited.  

  

Figure 5.6.1. Mutual information of features with 

respect to failing to complete a breast cancer 

screening test in 180 days. 
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Table 5.6.4 Cross validated model training results on test fold showing logistic regression as the best 

performer by ROC AUC.. 

 

The final logistic regression model was 

trained only on the selected features, but 

on the entire dataset without 

regularization, and resulted in an AUC 

of 0.63 with confidence (0.589-0.683) 

and accuracy of 0.59 with confidence 

(0.569-0.619).  The ROC for the final 

logistic regression is shown in figure 

5.6.2 and demonstrates how sensitivity 

and specificity change at different 

thresholds.  Coefficients from the resulting 

regression are seen in table 5.6.5, and a data 

dictionary for variables used in the is 

included the appendix. Of the binary features, having a prior billed diagnosis 

ICD10CM of N95 (Menopausal and other perimenopausal disorders) had the highest 

effect size with patients being 7 times with confidence (.86-56.2) more likely to miss 

the screening test with p-value 0.066.  This is also supported by summary statistics 

where (1/864) controls and (11/950) cases had a N95 diagnoses with fisher odds ratio 

10.0, p value 0.007.  The next highest effect size was insurance of Medicaid, where 

patients are 5.5 times with confidence (1.21-24.6) more likely to miss screening if 

they have Medicaid insurance.  Patients having a billed ICD10CM of F41 (other 

anxiety disorders) were 1.7 times with confidence (0.91-4.1) to miss screening. 

  

ML Results 

mean (stdev) 

 AUC score 

test 

F1 score test accuracy score 

test 

NPV test PPV test 

classifier      

Logistic Regression 0.626 (0.031) 0.638 (0.022) 0.594 (0.021) 0.584 (0.035) 0.601 (0.023) 

Logistic Regression 

with PCA 

0.626 (0.031) 0.636 (0.023) 0.594 (0.021) 0.584 (0.035) 0.603 (0.024) 

Support Vector 

Machine -Linear 
0.624 (0.031) 0.646 (0.023) 0.591 (0.026) 0.589 (0.039) 0.595 (0.03) 

Logistic Regression 

with NMF 

0.622 (0.03) 0.653 (0.026) 0.593 (0.025) 0.597 (0.045) 0.592 (0.024) 

Support Vector 

Machine -rbf 

0.6 (0.03) 0.609 (0.027) 0.579 (0.022) 0.56 (0.033) 0.596 (0.029) 

Extra Trees 0.6 (0.024) 0.619 (0.02) 0.573 (0.022) 0.558 (0.03) 0.585 (0.028) 

Random Forest 0.594 (0.026) 0.629 (0.022) 0.576 (0.023) 0.566 (0.032) 0.584 (0.027) 

Decision Tree 0.554 (0.025) 0.592 (0.073) 0.538 (0.024) 0.53 (0.049) 0.552 (0.023) 

Figure 5.6.2. ROC AUC Curve of Logistic 

Regression 

 (build on all data) demonstrating the 

discriminating ability of the model. 
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Table 5.6.5 Coefficients on logistic regression predict failure to complete a breast cancer screening test, 

demonstrating effect of Menopause related diagnoses and Medicaid associated with increasing risk of missing a 

screening. 

Variable Name Coef. Std.Err. Z statistic p-value Lower 

confidence 

Upper 

Confidence 

N95 Billed Menopause 

or perimenopause 

7.019 2.891 1.836 0.066 0.876 56.212 

Medicaid 5.578 2.135 2.266 0.023 1.261 24.666 

F41_Other anxiety 

disorders 

1.931 1.470 1.708 0.088 0.908 4.111 

EPL_DISABL 1.700 1.211 2.770 0.006 1.168 2.476 

EPL_AGE17 1.514 1.201 2.266 0.023 1.058 2.168 

EPL_MUNIT 1.428 1.151 2.537 0.011 1.084 1.880 

Out Of County 1.390 1.161 2.202 0.028 1.037 1.864 

age_under_60 1.231 1.109 2.006 0.045 1.005 1.507 

Comorbidity Count 1.211 1.060 3.315 0.001 1.082 1.356 

Married 0.749 1.098 -3.092 0.002 0.623 0.900 

established_patient_pri

or_365 
0.748 1.115 -2.679 0.007 0.604 0.925 

African American 0.603 1.120 -4.470 0.000 0.483 0.753 

age_over_70 0.546 1.154 -4.228 0.000 0.412 0.723 

 

 

Top contributors indicating an increased likely hood that a patient follows through with 

screening are age over 70, race of African American, having a visit as an established patient 

in the last year, and having marital status of married.   Given the prior feature selection step 

using mutual information and logistic regression, only the African American race category 

was selected as a feature, indicating the reference level for the coefficients is White or 

Caucasian as well as all other races. The association with African American race and being 

less likely to miss a screening test is also supported in the overall statistics, with controls 

having (360/505) African Americans vs all other races, and cases having (365/606) African 

Americans vs all other races with an odds ratio 0.82, p value 0.044. 

Comorbidities also contributed, and the regression showed that an increase of one in the 

Elixhauser count was associated with 1.2 (1.05-

1.51) increase in the risk of missing screening. The 

percentile of disabled persons (EPL_DISABL), 

percentile of persons under the age of 17 

(EPL_AGE17) and percentile of persons in multi-

unit housing (EPL_MUNIT) all were associated 

with increasing risk of missing screening 

associated with patients’ census tracts. 

 

Repeated sampling of the group of patients 

predicted by the model to be at the highest risk 

(97.5 percentile) for not completing screening, 

resulted in a mean positive predictive value of 0.888 

Figure 5.6.3. Calibration plot showing logistic 

regression metrics when probability threshold 

is changed. 
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(std 0.003). This indicates that an intervention focused on the top 2.5% of patients most at 

risk for missing screening, would likely only have 11 of 100 patients who would have 

completed the screening without intervention. Calibration results that demonstrate the 

models PPV, NPV, and recall at range of thresholds are shown in figure 5.6.3. Tabulated 

results are available in appendix 10.2.   

 

 

5.7. Discussion 

5.7.1. Summary of Results 

The machine learning experiments failed to show a high level of discriminative 

ability to predict which individual patients will not follow through with screening.  

However, it was demonstrated that the model did have enough discriminative ability 

to identify a small group of patients with a very low likelihood of follow through. 

The importance of a patient’s geographic location to breast cancer screening is 

clearly demonstrated, with the coefficient percentile percentage of disabled persons 

EPL_DISABLE variable.  This effectively shows for every 10 percentile increase in 

the ranking on the community proportion of population living with a disability, the 

Risk of missing a breast cancer screening test would also be expected to increase by 

7% (1.6% to 24.7%). Slightly lower effect sizes were observed in the EPL_AGE17 

and EPL_MUNIT variables, which were associated with an increased risk of 

missing screening.  Also, patients with addresses outside of the county had an 

increase in risk of missing a screening of 23.1% (0.5 to 80.0) %. It Is possible that 

this effect is a failure to capture screening tests conducted in health systems not 

affiliated with MUSC. The finding that African American patients are more likely to 

follow through with screening is also reflected in statewide data that indicated 

81.4% of African American women had a mammogram in the prior two years, in 

contrast to only 77.1% of White/ Caucasian patients in 2018(50).   

 

5.7.2.  Limitations  

A primary limitation of this study is that the data was sourced from a single health 

system, MUSC. The confounding effect of screening tests ordered at MUSC but 

completed at another health system and not captured in MUSC’s EHR is likely still 

present in the data. Masking “SENT” mammogram orders and patients with out of 

state addresses and insurance may have not totally mitigated the leakage. This may 

have contributed to coefficients fit by logistic regression associating patients with 

addresses out of state or out of county with decreased screening uptake. It is not 

clear for this study whether screening tests are occurring at other health systems and 

simply not being captured.  This analysis carries the assumption that people have 

enough access to the health care system that they have office visits. It is unclear 

whether the incites of this study would apply to the general population, or only 

those with at least minimal access to a health system. Since linear regression was 

selected as a final model, any non-linear trends present would not be captured. 

 

5.7.3. Interpretation and Recommendations 

The purpose of this model development is to create an automated system to identify 

a small group of individuals with a high risk for non-adherence to screening.  Since 
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the model was trained on data that masked mammograms completed on the same 

day as ordered, and to be included in the data set, a mammogram screening would 

have had to been ordered by a health care provider, it follows that the model should 

be applied to patients following a visit where the screening test has been ordered.  

Focusing on the 2.5% of patients at highest risk for non-completion, could serve as 

an effective filter for choosing which patients might be eligible for high-cost 

interventions such as arranging transportation, childcare or discounting screening. 

Since the PPV is very high for this small group, care managers could have 

confidence that resources are being directed to groups of patients that are very 

unlikely to complete screening without them.  The calibration table can be used by 

researchers or health systems to enter a specific metric that is most valued, and 

model thresholds and other metrics that would be expected are returned.  For 

example, if a health system was implementing a low-cost intervention such as text 

message reminders, having a high recall may be required.  Setting recall at 0.95, the 

resulting model threshold is 0.347 which would also result in PPV of 0.547. The 

effect of this would be that most patients receive a message, except for a small 

group of patients that were very likely to follow through with screening regardless.   

The recall indicates that 19 of 20 patients who would have otherwise missed 

screening will receive a message. A high-cost intervention such as arranging 

transportation may require high PPV. Setting PPV .941 would result in recall 0.017. 

This indicates less than 2% of those who otherwise would have missed screening 

would receive the intervention.  However, of those who did have transportation 

arranged, the recall indicates only roughly 1 in 20 would have completed the 

screening regardless of the intervention.  

 

5.8. Conclusion  

Predicting mammogram screening uptake remains a challenging problem. However, it can 

be estimated using EHR and geographic data with logistic regression. An increased risk of 

missing screening can be associated with geographic areas where patients live that have 

higher proportions of disabled persons, higher proportions of populations under that age of 

17 and higher proportions of multi-unit housing. Menopause and anxiety disorders were 

also associated with increased risk of missing screening. Since this model relies on EHR 

and geographic data, it can be automated to stratify patients. By utilizing the model to 

focus on the patients at highest risk, care managers can identify a group of patients who 

are very unlikely to complete screening and target them with interventions to increase 

screening uptake.  
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6. Predicting Lung Cancer Screening Follow Through 

6.1. Objective  

To design a prediction system that can identify patients that are unlikely to have timely 

completion of a lung cancer screening test after having an order by a healthcare provider. 

 

6.2. Significance 

Systematic identification of patients that are unlikely to complete lung cancer screening 

could allow targeted interventions to improve the odds of screening completion and 

ultimately earlier detection on cancers and better patient outcomes. It also can enable 

limited resources to be focused on a small group of patients that are very unlikely to 

complete screening without intervention. 

 

6.3. Background  

Lung cancer is the top cause of cancer deaths for men and women in the United States.  

The American Cancer Society estimates 238,340 new cases and 127,070 deaths will occur 

in the United States in 2023(55).  Screening is a primary tool to reduce mortality due to 

lung cancer. A low-dose computed tomography (LDCT) scan is recommended annually by 

the United States Preventive Services Task Force (USPSTF) annually for patients age 55-

80 who currently smoke, or quit within the previous 15 years and had accumulated a 30 

pack-year history of smoking(56).  Lung cancer screening is intended to reduce the 

bourdon of mortality by detecting cancer at a localized stage when treatment can be more 

effective. If small cell lung cancer is detected at a localized stage, 5-year rate of survival is 

30%, however it drops to 18% if it is detected at a regional stage(57). Healthy People 2030 

has set a goal of reducing deaths from lung cancer from  31.7 to 25.1 per 100,000 

people(58).  A primary strategy to achieve this goal is increasing the proportion of people 

recommended for screening  who  follow through getting screened from 4.5% to 7.5% 

(58). A previous study published by Zdogic et al in 2021 showed that structural barriers 

due to insurance, increasing age, education level and smoking were all associated with 

lower lung cancer screening uptake(17).  This study extends this research by leveraging 

CDC SVI data to look at social determinants as well as testing machine learning 

classification methods to detect underlying associations related to screening follow 

through.  This approach is intended to test the feasibility of automating these predictions, 

for use identifying groups that are at high risk of not following through with screening. 

 

6.4. Methods 

Electronic Health Record (EHR) data was sourced from the MUSC patient population.  

Patients selected were age 55-80 at the time of at least one billed visit during the 2016–

2019 timeframe and had a lung cancer screening test order at a subset of MUSC 

outpatient clinics. Cases were defined as having failed to have the screening tests status 

of complete or sent within 180 days of the first date ordered.  Controls were defined as 

having a test status of complete within 180 days of the first ordered date. This data was 

joined with demographic, insurance, and ICD10CM billed diagnoses as well as data 

from the CDC Social Vulnerability Index (CDC SVI) from 2018 attributed to the 

patients address by census track. ICD10CM codes were mapped to Elixhauser 
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comorbidities using the PyElixhauser package (35,36). The CDC SVI estimated 

percentile percentage columns were used that attribute a census track relative rank for a 

given risk factor, including unemployment, low high school completion, low percent of 

vehicle ownership, as well as a host of other risk attributes listed in the CDCs 

documentation(59).  These data were loaded into a python3.8 environment.  The data 

processed and joined with pypsark and analyzed using Jupyter notebooks. Binary 

variables were analyzed using fishers exact test to show the odds ratio of a patient 

completing a lung cancer screening test within 180 days.  

Univariate features selection was conducted using mutual information, and features with 

mutual information scores less than .005 were removed. A series of models were trained 

and tested with cross validation to estimate performance on unseen data.  Models tested 

included logistic regression (LR), logistic regression with PCA (LR-PCA), decision tree 

(DT), random forest (RF), extra trees (ET), support vector machine with linear kernel 

(SVM-LR) and with radial basis kernel (SVM-RBF).  A series of univariate logistic 

regressions were then built to try and estimate the likelihood that a patient fails to  

complete screening for selected ordinal variables. Coefficients from this regression were 

reported, to show underlying associations of the variables to the screening follow 

through outcome.  Metrics used for evaluation included: area on the curve of the receiver 

operating characteristic (AUC), harmonic mean of the precision and recall (F1), overall 

accuracy positive predictive value (PPV) and negative predictive value (NPV).   

 

6.5. Results 

Using de-identified MUSC EHR data, 233 patients were identified including 73 cases, 

where screening was not completed and 160 controls where screening was completed. 

This resulted in a non-follow-through rate of 31.1%. The age of the patients ranged from 

50-79. Summary statistics on the study population are shown in table 6.5.1.  
Table 6.5.1 Summary statistics on lung cancer screening follow through within 180 days. 

The sum of flags indicating at a patient’s census tract is in the 90th percentile percentage or 

greater for social risk factors in the CDC SVI (F_TOTAL) is higher in cases than controls. 

Table 6.5.1 
Failure to Complete Lung Cancer 

Screening 
Controls  Cases 

Summary Total Patients (233) 160 73 

Variable Type Variable Name counts (proportion) among cases counts (proportion) among cases 

Race WHITE OR CAUCASIAN 142.0 (0.547-0.672) 100 (0.629-0.779) 

Race BLACK OR AFRICAN AMERICAN 89.0 (0.32-0.444) 59 (0.565-0.761) 

Gender MALE 117.0 (0.438-0.566) 85 (0.646-0.807) 

Gender FEMALE 116.0 (0.434-0.562) 75 (0.56-0.734) 

Insurance Medicare 85.0 (0.303-0.427) 62 (0.635-0.824) 

Insurance Medicaid 5.0 (0.003-0.04) 2 (0.0-0.829) 

Insurance private insurance 68.0 (0.233-0.35) 46 (0.565-0.788) 

Insurance Out of state insurance 9.0 (0.014-0.063) 5 (0.231-0.88) 

History Family history of cancer 134.0 (0.512-0.639) 96 (0.64-0.793) 

History history of smoking 44.0 (0.139-0.239) 31 (0.57-0.839) 

History personal history of cancer 44.0 (0.139-0.239) 32 (0.596-0.859) 

Ordinal Variables   mean (confidence) among cases 
mean (confidence) among 

controls 

Comorbidity Elixhauser Comorbidity 1.079 (0.78-1.378) 0.975 (0.532-1.419) 

CDC SVI SVI_F_Total 0.862 (0.647-1.077) 1.173 (0.768-1.577) 

CDC SVI SVI_THEME1 0.191 (0.101-0.281) 0.333 (0.152-0.515) 

CDC SVI SVI_THEME2 0.296 (0.202-0.39) 0.37 (0.22-0.521) 

CDC SVI SVI_THEME3 0.026 (0.001-0.052) 0.025 (-0.01-0.059) 

CDC SVI SVI_THEME4 0.349 (0.236-0.461) 0.444 (0.27-0.619) 
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This indicates that geographic social risk factors have some associations with screening 

follow through. However, a Wilcoxon rank sums tests of the F_TOTAL medians in the 

cases and controls had a statistic 1.03 with p-value 0.303 suggesting that there is not 

enough evidence to conclude the medians are different. F_TOTAL is comprised of four 

themes: socioeconomic (THEME_1), household composition and disability (THEME_2), 

minority status and language (THEME_3) and housing type and transportation 

(THEME_4)(60). Results in Table 6.8.1 show that for each theme, the average number of 

patients flagged as living in the 90th percentile percentage of risk is higher.  The average 

Elixhauser comorbidity count for controls is 1.079 and is lower for cases at 0.975 

suggesting that the control group has more comorbidity than the cases.  However, a 

Wilcoxon rank sums test between the median comorbidity of the case and control groups 

had a statistic of 0.52 and a p-value of 0.601.  This indicates that there is not enough 

evidence to conclude that the median morbidity between the case and control groups are 

significantly difference.  Individual comorbidities are shown in table 6.5.2. No individual 

comorbidity had a p-value less than .1 when using fishers exact test to analyze difference 

in proportions of cases and controls.  However, it is notable that depression was associated 

with increased risk for failing to follow through on screening with odds ratio 2.781 and p-

value 0.115.  This indicates that the effect size is very uncertain.    
Table 6.5.2 Results from Fishers Exact test on difference in proportion for variables including demographics, and diagnoses data 

among cases and controls. 

Lung Cancer Screening Follow 

Through 

Fishers Exact Test 

Results 

Odds 

ratio 

p-value controls cases 

Variable type feature         

  age_under_60 1.149 0.740 32 with vs 120 without 19 with vs 62 without 

Age Group age_65-70 0.770 0.520 39 with vs 113 without 17 with vs 64 without 

  age_over_70 0.624 0.205 43 with vs 109 without 16 with vs 65 without 

  age_60-65 1.673 0.095 38 with vs 114 without 29 with vs 52 without 

Billed or Problem List 

Diagnosis 

anemia_dx_or_pl 0.000 0.166 5 with vs 147 without 0 with vs 81 without 

  depression_dx_or_pl 2.781 0.116 5 with vs 147 without 7 with vs 74 without 

Demographics WHITE OR 

CAUCASIAN 

0.709 0.260 97 with vs 55 without 45 with vs 36 without 

  BLACK OR AFRICAN 

AMERICAN 
1.381 0.261 54 with vs 98 without 35 with vs 46 without 

  Not Married 1.749 0.053 79 with vs 73 without 53 with vs 28 without 

  Race Other 1.888 1.000 1 with vs 151 without 1 with vs 80 without 

  Married 0.572 0.053 73 with vs 79 without 28 with vs 53 without 

Elixhauser Comorbidity THYROID_HYPO 0.616 0.717 6 with vs 146 without 2 with vs 79 without 

  DIAB_UNCX 0.490 0.248 18 with vs 134 without 5 with vs 76 without 

  HTN_CX 0.368 0.667 5 with vs 147 without 1 with vs 80 without 

  RENLFL_MOD 0.304 0.426 6 with vs 146 without 1 with vs 80 without 

  ANEMDEF 0.000 0.166 5 with vs 147 without 0 with vs 81 without 

  CANCER_SOLID 0.000 1.000 1 with vs 151 without 0 with vs 81 without 

  HTN_UNCX 0.689 0.292 49 with vs 103 without 20 with vs 61 without 

  VALVE 0.000 1.000 1 with vs 151 without 0 with vs 81 without 

  AUTOIMMUNE 0.000 1.000 1 with vs 151 without 0 with vs 81 without 

  RENLFL_SEV inf 0.348 0 with vs 152 without 1 with vs 80 without 

  CBVD_POA 0.938 1.000 2 with vs 150 without 1 with vs 80 without 

  PERIVASC 0.938 1.000 2 with vs 150 without 1 with vs 80 without 

  ALCOHOL 0.938 1.000 2 with vs 150 without 1 with vs 80 without 

  LUNG_CHRONIC 1.440 0.567 8 with vs 144 without 6 with vs 75 without 

  THYROID_OTH 1.888 1.000 1 with vs 151 without 1 with vs 80 without 
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 Results from features selection showed that percentile percentage of persons living in 

group quarters 

(EPL_GROUPQ), the 

comorbidity count and 

having anemia had the most 

information associated with 

failing to complete screening 

shown in figure 6.5.1. The 

feature set was reduced from 

77 to 16 by selecting those 

with information gain greater 

than 0.005.  This feature set 

was then used to train and 

test with cross validation a 

series of machine learning 

models.  The overall best 

performing model was the 

ensemble method Extra Trees 

with AUC 0.604.  However, all 

methods achieve F1 and AUC scores that indicated poor discrimination between cases 

and controls.  Results from the machine learning experiment are shown in table 6.5.2.  

 
Table 6.5.2 Results of machine learning model training and testing on with cross 

validation on hold out fold show that all models performed poorly at the task of 

predicting which patients would complete lung cancer screening in 180 days. The best by 

AUC was Extra Trees. 

This experiment was 

repeated with a task 

of predicting 

whether a patient 

had ever competed 

lung cancer 

screening test during 

the study time 

frame, however 

results failed to 

produce a model 

with an AUC higher 

than 0.57.  

 

Results from 

univariate regression using each of the ordinal variables failed to conclude that any 

social risk theme, or the total of theme flags (F_TOTAL) had a statistically significant 

association to the dependent variable, failing to complete screening within 180 days.  

 

 

ML Results 

 mean (stdev) 

auc score test f1 score 

test 

accuracy 

score test 

npv test ppv test 

Extra Trees 0.604 (0.076) 0.115 

(0.098) 

0.642 

(0.057) 

0.657 

(0.058) 

0.396 

(0.306) 

Logistic 

Regression with 

PCA 

0.603 (0.061) 0.289 

(0.115) 

0.653 

(0.062) 

0.679 

(0.06) 

0.509 

(0.165) 

Logistic 

Regression 

0.59 (0.063) 0.232 

(0.117) 

0.658 

(0.06) 

0.673 

(0.059) 

0.531 

(0.263) 

Random Forest 0.586 (0.055) 0.079 

(0.091) 

0.642 

(0.051) 

0.655 

(0.057) 

0.24 

(0.252) 

 Decision Tree 0.57 (0.095) 0.317 

(0.143) 

0.64 

(0.077) 

0.68 

(0.062) 

0.464 

(0.196) 

Support Vector 

Machine-Linear 

0.541 (0.089) 0.16 

(0.105) 

0.651 

(0.058) 

0.664 

(0.06) 

0.489 

(0.319) 

Support Vector 

Machine-rbf 

0.528 (0.112) 0.139 

(0.104) 

0.649 

(0.057) 

0.661 

(0.057) 

0.463 

(0.321) 

Figure 6.5.1 Information Gain shows that F_Total, and Comorbidity 

Count had the most information about failing to complete lung cancer 

screening. 
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Univariate regression of the comorbidity count indicated risk of missing screening 

decreases as comorbidity increases with exponentiated coefficient 0.842 with confidence 

(0.7234-0.967), p-value 0.015 and AUC of 0.541 shown in table 6.5.3. 

 
Table 6.5.3 Univariate logistic regression results for ordinal SVI themes and comorbidity 

county. Regressions coefficients are show exponentiated.  

Results from 

Univariate Log Reg 

Coef. Std.Err. z P>|z| [0.025 0.975] AUC 

F_TOTAL 0.909 1.077 -1.293 0.196 0.786 1.051 0.479 

F_THEME1 0.966 1.204 -0.186 0.853 0.671 1.391 0.478 

F_THEME2 0.763 1.213 -1.398 0.162 0.522 1.115 0.481 

F_THEME4 0.804 1.178 -1.334 0.182 0.583 1.108 0.473 

Comorbidity_Cnt 0.842 1.073 -2.439 0.015 0.734 0.967 0.541 

 

6.6 Discussion 

The primary findings from this study are that social risk from geographic features lack 

strong association to timely completion of a lung cancer screening test.  Also, that 

increasing comorbidity is associated with decreased risk of missing screening.  The lack 

of strong associations between CDC SVI and lung cancer screening can serve as a 

caution against health systems using this sort tract level geographic features to identify 

cohorts at high risk for not following through with screening. The finding that increased 

comorbidity is not a barrier to screening, and in-fact the opposite is true, is counter 

intuitive.  This finding may be affected by access to the healthcare system, which could 

be confounding. This analysis was limited due to small sample size, and it is certainly a 

possibility that an increased sample may reveal statistically significant effects. This likely 

contributed to the failure of the machine learning experiments to train a model with 

performance that would be considered good enough to be useful in clinical practice. The 

impact of this work is to affect future directions of research.  Larger studies focused on 

fundamental access barriers that can be collected in an automated fashion are needed to 

determine whether risk of failing to follow through with lung cancer screening tests is 

predictable.  

 

6.7 Conclusion 

This study shows in a small sample of patients from MUSC there is little ability to predict 

lung cancer screening follow through using EHR and geographic data.  The CDC SVI 

lacked strong associations with screening. As the number of comorbidities increased for 

patients, so did the likely hood of following through on lung cancer screening. Predicting 

lung cancer screening follow through remains a challenging problem, and the results of 

this study can serve as a signpost to drive future research. 
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7. Estimating Barriers to Mammogram Screening Uptake with County Factors  

7.1. Submission 

The following work was submitted to the Journal of Rural Health with, Kit Simpson PhD 

 Vanessa Diaz MD, Alexander V. Alekseyenko PhD as co-authors 

7.2. Objective 

This study intends to quantify and describe patterns in social determinants and their 

association to female breast cancer screening uptake, age adjusted mortality rate due to 

breast cancer and the extent that models trained on counties are generalizable to 

individuals. 

7.3. Introduction 

Improving breast cancer screening uptake is a key strategy to reducing mortality by 

enabling early detection and intervention(7). Developing a deep understanding of the 

barriers to screening and the circumstances in which increased screening uptake alone is 

not likely to be effective are important steps at pushing down the mortality rate. This 

study uses machine learning to detect and quantify patterns in the relationships between 

social determinants of health, mammogram screening uptake, and age adjusted mortality 

rates due to breast cancer, in addition, we test the hypothesis that models developed using 

county data can make meaningful predictions about individual patients.  

7.4. Background  

The relationships between social determinants of health and age adjusted mortality due to 

breast cancer have been well documented in literature. This was summarized by a meta 

study published by Gerend et Al in 2008 that associated, poverty, social justice and social 

factors as being contributors to screening uptake differences between African American 

and White/ Caucasian patients(61). However, sourcing of information indicating a social 

determinant is present can range from billed ICD10cm codes, self-reported data to 

geographically attributed data.  This work is intended to extend a study published in 2018 

by Heller et al that showed variance in County Health Rankings data to identify the 

percentage of female Medicare enrollees 67–69 years old per county who had at least one 

mammogram and associated lower screening uptake rates to counties with higher poverty 

rates(51). This study also reported that screening uptake was positively correlated to the 

proportion of Medicare patients in a particular county with some college education(51).  

Heller et al also showed that college education was negatively correlated with the age 

adjusted mortality per county(51). Heller et al showed there was good evidence 

associated poverty and education and screening uptake at the county level. This study 

intends to extend this work in several key ways.  Firstly, this study leverages a new data 

source, the CDC Social Vulnerability Index SVI with 15 social factors, including 

unemployment, minority status, and disability that are calculated by census tract and 

county.  This data provides robust measures representing social risk factors. This study 

also applies new statistical methods. Given the highly correlated nature of social risk 

factors, Bayesian networks are leveraged to reduce the SVI to essential features 

associated with screening uptake and the age adjusted mortality outcome.  

 

Bayesian networks are graph models that encode probabilistic uncertainty between nodes 

and have been used to represent relationships between variables and outcomes. They 
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consist of a directed acyclic graph (DAG) and a table of conditional probabilities between 

the nodes. Bayesian networks required variables to be conditionally independent, which is 

unlikely to be the case on real world data.   Tree Augmented Naive Bayes (TAN) is a 

network structure learning algorithm that relaxes the independence requirement and 

imposes a tree structure where all nodes initially share an edge with the class node and 

contains each variable’s interaction with other variables, limiting them to two parents(62). 

This method greatly reduces the computation complexity required to learn the network.  

Both Bayesian and Tree Augmented Naive Bayesian networks require underlying data to 

be discrete in order to learn the underlying network structure(62).  A subset of a graph 

known as the Markov blankets or Markov boundary around a particular node is defined as 

the subset of parents, children, and parents of children of a particular node. The Markov 

blanket is thought of as the minimal set of information about a node, however, it is not 

unique(63). A final way this study intends to extend the Heller et al(64) work is to test the 

performance of models trained on county 

level data with patient level outcomes and 

tract SVI features, and vice versa.  This 

provides insights into generalizability of the 

conclusions.   

7.5. Methods  

7.5.1 County Datasets 

Data for this study used four 

publicly available county level data 

sets to train a TAN network, and a 

fifth dataset of individual patient 

data to learn screening uptake patterns and make predictions about counties’ 

breast cancer screening uptake, and 

age adjusted mortality. This study 

also tested the strength of these 

learned pattern’s ability to 

discriminate between patients that 

followed through a breast cancer 

screening test and those who did not. 

The usage of the datasets, and the transfer of the model trained on county data to 

individual patients is shown in figure 7.4.1. The first four data sets used for initial 

model training were: 

• The county and tract level 2018 CDC/ATSDR Social Vulnerability Index 

(SVI)(59),  

• County Health Rankings data to identify the percentage of Medicare 

enrollees 67–69 years old per county who had at least one mammogram in 

2015 sourced from the Dartmouth Atlas of health care(65),  

• CDC WONDER Female Breast Cancer Mortality Rate, averaged 2010-

2020 by county(66). 

• The 2013 United States Department of Agriculture Rural Continuum 

Codes (RUCC)(67).  

The datasets were joined together using Federal Information Processing 

Standard County Codes (FIPS). This combined data was discretized in the 

Figure 7.4.1 Study design for translation county level 

mammogram screening uptake to patient level 

screening follow through. The top boxes show 4 

county level data sets being merged and discretized 

and used to train a model predicting county breast 

cancer uptake. 
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following way. Mammogram screening rates and age adjusted mortality 

due to breast cancer were binned in buckets with uniform width of 5%. 

CDC SVI estimated percentile (EPL) columns were rounded to the nearest 

10, to create buckets with uniform width of 10%. Counties without age 

adjusted mortality, or screening rates between 0 and 100% were masked 

from the data. 

7.5.2 County Screening Uptake and Mortality Modeling 

A TAN model is used to force all features to be dependent on the 

screening uptake, and only one other feature. The final network 

represented county associations between age adjusted mortality due to 

breast cancer, mammogram screening and the CDC SVI. The Markov 

blanket of the screening variable was used to subset the network. The 

results were analyzed with a linear weighted kappa score to quantify the 

extent the network learning produced predictions that agreed with the 

discretized screening and mortality variables. 

7.5.3 Individual Patient Data  

The individual validation cohort was derived from electronic medical 

record data of Medical University of South Carolina (MUSC), and 

included females aged 50-74 at the time of at least one billed visit during 

the 2016–2019 time period with at least one breast cancer screening test 

ordered. The dataset had a target task of predicting which patients would 

follow through and complete the breast cancer screening test within 180 

days. Patients completing the mammogram on the initial date that it was 

ordered were masked. The dataset consisted of 1880 female patients that 

had at least one mammogram screening test ordered with features 

describing comorbidity, demographic, self-reported personal and family 

cancer history as well as geographically linked (at the census track level) 

social variability derived from the 2018 CDC/ATSDR Social 

Vulnerability Index. The patient level data from MUSC was discretized 

using the same method as the data for the county level model. SVI tract 

level features were used to predict the screening uptake rate, and age 

adjusted mortality due to breast cancer.    

7.5.4 Evaluation of County Patterns with Respect to Individual Patients  

 The predictions were compared to PCT or ICD10CM codes that indicated 

the patient had completed a mammogram screening during the study time 

frame. Performance metrics were calculated on the overall cohort of 

patients, and area under the curve of the receiver operating characteristic 

(AUC) was used as a primary metric to describe the model’s ability to 

discriminate between patients that completed screening vs. not after being 

ordered by a provider at different thresholds. 

7.6. Results 

7.6.1. Data Selection Results 

The county level data (joining the SVI, screening uptake data and breast cancer 

mortality data) resulted in a dataset of 2,270 counties in the United States with 13 

features and two outcomes. Summary statistics along with variable definitions for 

the county data are shown in table 7.6.1.1  
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Table 7.6.1.1. Summary Statistics for 2270 Counties including the CDC SVI, screening uptake and age adjusted mortality due to 

breast cancer. 

Statistics for 2270 
Counties 

Quantile 25 Quantile 50 Quantile 75 definition 

EPL_POV 0.28 0.523 0.753 Percentile Percentage of persons below poverty estimate 

EPL_UNEMP 0.319 0.542 0.756 Percentile Percentage of civilian (age 16+) unemployed estimate 

EPL_PCI 0.248 0.497 0.74 Percentile per capita income estimate 

EPL_NOHSDP 0.269 0.507 0.733 Percentile Percentage of persons with no high school diploma 
(age 25+) estimate 

EPL_AGE65 0.223 0.427 0.659 Percentile percentage of persons aged 65 and older estimate 

EPL_AGE17 0.27 0.508 0.746 Percentile percentage of persons aged 17 and younger estimate 

EPL_DISABL 0.243 0.483 0.73 Percentile percentage of civilian noninstitutionalized population 

with a disability estimate 

EPL_SNGPNT 0.327 0.553 0.774 Percentile percentage of single parent households with children 

under 18 estimate 

EPL_MINRTY 0.292 0.527 0.75 Percentile percentage minority (all persons except white, non-

Hispanic) estimate 

EPL_LIMENG 0.3 0.537 0.76 Percentile percentage of persons (age 5+) who speak English 
"less than well" estimate 

EPL_MUNIT 0.338 0.584 0.805 Percentile percentage housing in structures with 10 or more units 

estimate 

EPL_MOBILE 0.226 0.473 0.734 Percentile percentage mobile homes estimate 

EPL_CROWD 0.291 0.513 0.739 Percentile percentage households with more people than rooms 
estimate 

EPL_NOVEH 0.294 0.534 0.766 Percentile percentage households with no vehicle available 

estimate 

EPL_GROUPQ 0.267 0.517 0.758 Percentage of persons in group quarters estimate 

RUCC_2013 2 4 6 USDA 2013 Rural Urban Continuum Code 

Pct Un Screened 33.26 38.251 42.959 Percentage of Female Medicare enrollees 67–69 years old per 

county who did not have at least one mammogram in the prior 

two years 2015 

Mortality Age 

Adjusted 

18.7 20.8 23.3 Female Age Adjusted Mortality Rate from Breast Cancer per 
100,000 averaged 2010-2020 

Tract level SVI data was combined with the MUSC patient data in which 

mammogram screening follow through was measured. The result of joining the 

individual MUSC patient data to tract level SVI area shown with summary 

statistics in table 7.6.1.2.  
Table 7.6.1.2 Summary statistics on the CDC SVI attributed to 1880 MUSC female patients by census tract. 

1880 MUSC Patients Age 50-74 mean std 25% 75% 

EPL_POV 0.422 0.297 0.173 0.637 

EPL_UNEMP 0.336 0.278 0.124 0.545 

EPL_PCI 0.354 0.261 0.162 0.576 

EPL_NOHSDP 0.341 0.270 0.120 0.571 

EPL_AGE65 0.542 0.240 0.363 0.726 

EPL_AGE17 0.329 0.269 0.117 0.456 

EPL_DISABL 0.391 0.239 0.219 0.543 

EPL_SNGPNT 0.364 0.282 0.145 0.564 

EPL_MINRTY 0.481 0.230 0.332 0.632 

EPL_LIMENG 0.284 0.243 0.000 0.529 

EPL_MUNIT 0.533 0.285 0.379 0.781 

EPL_MOBILE 0.561 0.317 0.474 0.775 

EPL_CROWD 0.306 0.238 0.000 0.466 

EPL_NOVEH 0.395 0.272 0.172 0.562 

EPL_GROUPQ 0.366 0.318 0.000 0.583 

RUCC_2013 2.084 0.501 2.000 2.000 

RUCC_2013 2.084 0.501 2.000 2.000 

Failed to Complete Screening 0.409 0.492 0.000 1.000 

Mortality Age Adjusted by county 19.382 1.273 19.100 19.100 

Age At Visit 61.787 6.744 56.000 67.000 

 

We evaluated the individual-level variables for association with mammogram 

completion within 180 days.  Counts, proportions of and fishers exact test results 
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to show difference in proportion for each feature being true for case and controls 

are summarized in table 7.6.1.3. Depression, anxiety and 

menopause/premenopausal billed ICD10cm diagnoses codes all had strong 

associations with increased odds of failing to follow through on screening. 

Medicaid insurance also had an association with lower screening completion 

rates. 
 

Table 7.6.1.3 Summary statistics on MUSC mammogram screening follow through data, after joining to counties where mortality 

and screening uptake was available. 

Table 7.6.1.3
2
 

1880 MUSC Female Patients Age 

50-74 
True 

Among 

Cases1 

True 

Amou

nt 

Contr

ols 

Proportion 

Among Cases 
Proportion 

Among 

Controls 

Odds 

Ratio 
Fisher 

P-

Value
3
 

Type Variable 
      

Billed or 

Problem List 

Diagnosis 

F32_Depressive episode 32 11 (0.021 - 0.043) (0.005 - 0.02) 2.632 0.005 

F41_Other anxiety disorders 30 10 (0.02 - 0.041) (0.004 - 0.018) 2.714 0.006 

N95_Billed Menopause or 

perimenopause 

11 1 (0.005 - 0.018) (0.0 - 0.003) 9.952 0.007 

Z72_Problems_related_to_lifestyle 13 3 (0.006 - 0.02) (0.0 - 0.007) 3.921 0.024 

Anemia dx or problem 16 5 (0.008 - 0.024) (0.001 - 0.01) 2.895 0.045 

Depression dx or problem 49 20 (0.036 - 0.063) (0.013 - 0.032) 2.217 0.003 

Sleep dx or problem 36 15 (0.025 - 0.048) (0.008 - 0.025) 2.171 0.011 

Demographics African American 358 361 (0.333 - 0.393) (0.372 - 0.436) 0.897 0.220 

Asian 7 8 (0.002 - 0.012) (0.003 - 0.015) 0.792 0.797 

Divorced or Sep 169 130 (0.148 - 0.195) (0.122 - 0.169) 1.176 0.212 

Married 476 472 (0.451 - 0.513) (0.496 - 0.561) 0.912 0.264 

Single 240 189 (0.216 - 0.27) (0.185 - 0.238) 1.149 0.199 

White-Caucasian 599 508 (0.576 - 0.637) (0.536 - 0.601) 1.067 0.404 

age_60-65 219 189 (0.196 - 0.248) (0.185 - 0.238) 1.048 0.702 

age_65-70 227 227 (0.204 - 0.256) (0.226 - 0.283) 0.905 0.347 

age_over_70 110 176 (0.092 - 0.131) (0.171 - 0.223) 0.565 0.000 

age_under_60 431 301 (0.406 - 0.468) (0.306 - 0.368) 1.296 0.003 

Insurance Managed care 31 16 (0.021 - 0.042) (0.009 - 0.027) 1.753 0.076 

Medicaid 17 2 (0.009 - 0.025) (0.0 - 0.005) 7.690 0.001 

Medicare 179 156 (0.157 - 0.205) (0.15 - 0.2) 1.038 0.767 

Patient History FH breast cancer 111 122 (0.093 - 0.132) (0.114 - 0.159) 0.823 0.165 

History of diabetes 75 68 (0.059 - 0.093) (0.059 - 0.094) 0.998 1.000 

Neg FH breast cancer 109 112 (0.091 - 0.13) (0.104 - 0.147) 0.881 0.393 

 
2 Cases are patients, who failed to complete the screening in 180 days, and controls completed the screening within 180 days (excluding same 

day completion). 

 
3 Fishers exact test p-values less than 0.05 are shown in bold 
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7.6.2 County Screening Uptake and Age 

Adjusted Mortality Results 

The network structure trained on the 

county data resulted in a host of 

associations between SVI features 

and screening shown in figure 

7.6.2.1  

 

This demonstrates the associations learned 

between the percent of patients unscreened, 

age adjusted mortality and the CDC SVI 

and RUC codes.  Each edge in the graph 

contains conditional probabilities between 

edges.  The EPL_POV node, representing percentiles of persons in poverty is shown to 

have associations with lower vehicle ownership (EPL_NOVEH), lower income 

(EPL_PCI) higher unemployment 

(EPL_UNEMP) and lower mammogram 

screening uptake (Pct Un Screened).  

Also, shown in figure 7.6.2.2 is the 

strongest association to age 

adjusted mortality are mammogram 

screening uptake and percentile 

minority (EPL_MNTRY) The 

network learning algorithm found 

associations related to age adjusted 

mortality and screening uptake was 

confounded by the estimated 

percentile of minorities in a county. 

The network also revealed that 

estimated percentile of age over 65 

was a confounding factor in the 

association between rural-urban 

continuum code and the proportion of female Medicare patients aged 67-69 without a 

mammogram screening in the prior two years. The positive correlation between the rural-

urban continuum code and missing screening had a Pearson coefficient 0.21 with p-value 

< 0.000.  This association is shown in table 7.13.4 where the proportion on unscreened 

individuals increases with the RUCC codes.  However, counties in the 90th percentile of 

age over 65% consistently had a lower percentage of unscreened individual as shown in 

figure 7.14.3.  

Next, we used the network-derived features for screening uptake prediction. The resulting 

model had the following 16 feature inputs: EPL_POV, EPL_UNEMP, EPL_PCI, 

EPL_NOHSDP, EPL_AGE65, EPL_AGE17, EPL_DISABL, EPL_SNGPNT, 

EPL_MINRTY, EPL_LIMENG, EPL_MUNIT, EPL_MOBILE, EPL_CROWD, 

EPL_NOVEH, EPL_GROUPQ, RUCC_2013. The task of predicting the proportion of 

patients that went unscreened resulted in a weighted kappa of 0.82 and accuracy 0.79 

Figure 7.6.2.1 Network of Factors Influencing 

Mammogram Screening and Age Adjusted Mortality from 

Breast Cancer.  The proportion of patients that went 

unscreened in a county the class node, which all other 

nodes have edges, due the TAN network constraint. 

  

Figure 7.6.2.2 shows the difference in mammogram screening uptake 

between counties with high proportion of people over age 65 vs not, 

for each RUC code with the 25th, 50th, and 75th percentiles marked 

as the box, and the whisker bars as 1.5x the interquartile range. 
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predicting the proportion patients that went unscreened in 11 discretized ordinal bins, 

each with width 5%. The task of predicting age adjusted mortality due to breast cancer 

from the same network resulted in weighted kappa of 0.14 and accuracy of 0.57 across 

five ordinal bins, each with width of 5 patients per 100,000.  

Given the results from the network structure learning experiment showed that percentile 

of minorities in a county (EPL_MINRTY) was a confounding factor between screening 

uptake and age adjusted mortality due to breast cancer, additional regressions were 

conducted to quantify the associations.  

This experiment used mixed effects model 

with the county mammogram screening 

uptake rate as an independent variable, 

and the age adjusted mortality as the 

dependent, where random slope and 

intercepts were fit for counties flag as in 

or out of the 90th percentile of proportion 

minority. 

For counties not in the 90th percentile of 

proportion minority, the resulting 

regression shows for every 10% increase 

in a county’s screening rate, is associated 

with a 1.3 to 1.7 person per 100,000 

decrease in age adjusted mortality would 

be expected with a p-value less than 0.001, 

and r-squared of 0.082. This shows a clear 

effect of decreasing age adjusted mortality 

due to breast cancer, when screening is 

increased, for counties not in the highest percentiles of minorities, shown in figure 

7.6.2.3.  

For counties in 90th percentile of proportion minority counties, a 10% increase in a 

county’s screening rate would be associated with a -0.9 to 1.5 per person 100,000 change 

to the age adjusted mortality rate with p-value 0.58 and r-squared 0.001.  This shows the 

effect of increasing screening on age adjusted mortality is uncertain on the 209 counties, 

flagged as being the highest percentiles of minorities.  This breakdown of the relationship 

between screening and age adjusted mortality in high proportion minority areas suggests 

other unaccounted factors are influencing age adjusted mortality.  

 

 

 

 

 

 

 

 

 

 

Figure 7.6.3.2 shows female age adjusted mortality due to 

breast cancer plotted with the percent of persons that went 

unscreened.  When the proportion of females that are 

unscreened goes up, the age adjusted mortality also 

increases for areas not in the highest proportion on minority 
shown in the left panel.  This association is no true for high 

proportion minority areas where the association of 

screening and age adjusted mortality is uncertain.   
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7.6.3 Individual Patient Results 

The next experiment used the 

trained network model to make 

inferences about individual 

patients with  SVI data attributed 

by census tract.  Predictions were 

made estimating which patient 

completed a screening test after 

ordered within 180 days The 

AUC score was 0.532 (0.524-

0.54) and ROC is shown in 

figure 7.6.3.1. This suggests that 

the network trained on county 

level data had little discriminative 

ability in predicting which 

patients would complete the 

screening test. The model 

preformed even worse specifically for the age 67-69 cohort (matching the age in 

county level CMS screening uptake metric) with an ROC AUC of 0.42. 

 

7.7. Discussion 

One of the key findings of this study is that TAN networks can encode the relationships 

in county social vulnerability, and age adjusted mortality from breast cancer to accurately 

predict screening uptake.  This network successfully identified percentile percentage of 

minorities is a key confounding variable in the relationship in which increased screening 

is associated with decreased age adjusted mortality.  However, the county level TAN 

network model fundamentally failed to have meaningful discriminative ability when it 

came to determining which patients would follow through with screening tests. In this 

case, knowledge derived from county data, and encoded in the TAN network cannot be 

translated to make meaningful predictions about individuals. Potential sources for this 

failure are numerous. Chief among them is the difference between county and individual 

screening measures. The county level screening metric was measured for females aged 

67-69 with at least one mammogram screening in the prior two years, whereas the 

individual patient measure assessed whether a patient completed a mammogram 

screening within 180 days of having one ordered by a provider. Another limitation was 

that model was trained nationally on county level data, and the applied to only to patients 

via there census tracts in counties utilizing the MUSC health system, which may not be 

representative of the nation.  

The primary limitation to this work is that the predictions made about MUSC patients had 

CDC SVI attributes that were attributed to patients at the census tract level. This 

associates aggregated information from an entire census tract to an individual. Another 

limitation of this study is that mammogram screening follow through was measured at a 

single health system (MUSC), and it is inevitable it is failing to capture some screening 

that is occurring at other health systems. It is possible that inclusion of claims data on 

future studies could mitigate this leakage. One of the strengths of this study was 

Figure 7.6.3.1Model Trained on County Screening Uptake 

Have a Poor Ability to Discriminate Between Patients that 

Will or Will Not Complete a Mammogram Screening After 

Ordered by a Provided. 
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demonstrating the Bayesian Network structure learning algorithm to detect confounding 

variables that were influencing screening uptake as well as age adjusted mortality. This 

pattern learning algorithm led directly to the regression findings that the correlation 

between screening and age adjusted mortality does not hold in high minority areas. This 

finding suggests that increasing the screening uptake rate for mammograms in high 

minority areas alone is not likely to have a meaningful effect on the age adjusted 

mortality rate. It is also important to note that the CDC defined minority as races other 

than white non-Hispanic, and that in the MUSC patients, African American patients had 

higher screening follow through rates than White patients. The learning algorithm itself 

presented limitations. The CDC SVI is a robust measurement representing geography 

based social determinants of health, however the Tree Augmented Naïve Bayesian 

structure learning algorithm limits the number of parents that a child of the class node can 

have to two, and only the strongest associations are returned. This leaves open the 

possibility that other associations between the SVI and age adjusted mortality are present 

but being pruned in light of the strength between the association of percentile rank of 

proportion of minorities, screening uptake and age adjusted mortality. 

 

7.8. Conclusion 

This study shows the ability to use the CDC Social Vulnerability Index to understand a 

significant portion of the variance in county level mammogram screening uptake. 

However, models trained on this data were shown to be ineffective at discriminating 

between which patients would complete a mammogram screening within six months after 

having one ordered from a health care provider. This study also demonstrated that the 

core association between increased screening and decreased age adjusted mortality does 

not hold in high minority areas. This suggests additional barriers not being captured by 

CDC SVI are contributing to the age adjusted mortality rate in those areas.  
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8. Evaluation of the Impact of the Work  

8.1. The Impact of Work Towards Automatic Cancer Screening Follow Through 

Prediction 

There were several findings from this work that can be immediately put into practice. 

Health systems looking to improve mammogram screening rates can leverage work 

predicting patients unlikely to follow through with screening. This work shows that a 

small group of patients can be systematically identified using machine learning, 

leveraging EHR and geographic data, who are very unlikely to complete screenings, to 

which intervention resources can be directed.  This dissertation lays out a blueprint as to 

implementation of such a system including dataset design, feature extraction, modeling, 

and performance benchmarks.  If put into practice, this may make positive strides 

towards improving breast cancer screening uptake, and ultimately leading to a reduction 

in mortality.  

The breakdown in relationship between mammogram screening and age adjusted 

mortality due to breast cancer in high proportion minority areas is also a profound 

finding. Given that increasing screening is a primary strategy to decrease the mortality 

burden from breast cancer, the fact that it is likely to be less effective in high proportion 

minority areas should raise alarm bells. This work signals to researchers, more studies 

are needed specifically focused on these areas to understand which strategies will be 

effective at decreasing mortality due to breast cancer. Another key finding is that the 

CDC SVI can provide meaningful information about county mammogram screening 

uptake, however county patterns fail to make meaningful predictions about individuals. 

This finding should serve as a signpost to future research efforts. The impact of the work 

related to lung cancer screening is a signal to researchers that larger, more robust data is 

needed to determine whether automated predictions of failing to follow through on 

testing is achievable. 

 

8.2. The Impact of Pro-DOBIE 

Recognizing that any automated system will likely encode some bias, the PRO-DOBIE 

protocol was developed to describe the nature and effect of it on models.  The impact of 

this protocol was key to understanding the results of the subsequent experiments.  As a 

protocol, it is immediately available to researchers wanting to understand the 

implications of bias in machine learning models and has general applicability even 

outside healthcare. The PRO-DOBIE protocol application during model development led 

to the exclusion of variables that had high amounts of multivariate outliers and enabled 

the training of robust logistic regressions with minimal feature sets. If adopted widely, 

this methodology can lead to a better understanding of bias and increase performance 

equability and fairness in predictive systems 
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9. Summary 

9.1. Summary of Contributions 

Several research contributions resulted from the work presented in this dissertation. The 

core data feature engineering to extract structured data from patient EHR records as well 

as predictive modeling for mammogram screening follow through was presented at the 

Spark NLP Summit 2022 in a talk titled Utilizing NLP for Structure Learning to 

Understand Cancer Screening Uptake(68). The Pro-DOBIE protocol was submitted to 

the Journal of Medical Internet Research – AI. Findings from experiments predicting 

mammogram screening uptake were submitted as a research article to Cancer Research 

Communications titled Predicting Mammogram Screening Follow Through with 

Electronic Health Record and Geographic Linked Data. Findings from the experiments 

testing whether county level screening patterns translated into predictions about 

individuals were submitted to the Journal of Rural Health as a research article titled 

Cancer Screening Uptake from Social Determinants of Health Can Be Lost in 

Translation to Individuals. 

 

9.2. Assessment of hypothesis 

This dissertation tested the hypothesis that cancer screening follow through can be 

predicted in an automated fashion using machine learning leveraging EHR and 

geographic data.  Three research aims were developed to test this hypothesis. 

 

9.2.1. Research Aim 1 

Design a classification system that predicts which patients will complete a 

mammogram cancer screening test within 180 days after it was first ordered by a 

health care provider. This prediction will be based on demographics, clinical, visit 

data, insurance coverage, and geographic data after a breast cancer test has been 

ordered. 

 

Mammogram screening follow through was successfully modeled with EHR and 

geographic data. It was demonstrated through logistic regression that menopause, 

Medicaid insurance, anxiety disorders and living in areas with high proportion of 

disabled persons were associated with increased risk of failing to follow through 

with screening.   However, this effort failed to achieve performance needed to apply 

predictions to individual patients.  It was demonstrated that the model can be 

effective at identifying a group a high risk for not following through with 

mammography screening.  Experiments showed that a small group of patients can 

be identified that are very unlikely to complete screenings, after having them 

ordered by providers, to which screening uptake interventions can be targeted.   

 

9.2.2. Research Aim 2 

Design a system that can identify patients that are unlikely to ever complete a lung 

cancer screening test, following an order. Demographics, clinical, visit data, 

insurance coverage, and geographic linked data will provide the basis for 

prediction.   

 

Working addressing predicting lung cancer screening follow through using EHR 



 53  

and a geographic data ultimately did not result in models that were powerful enough 

to be used in practice.  Limitations with sample size likely contributed to this 

finding. The most important finding of this study was that the Elixhauser 

comorbidity did not behave in linear fashion where the count of comorbidities was 

associated with increasing or decreasing risk.  Also, the sum of the socioeconomic, 

household composition, minority status and housing and transportation geographic 

themes in the CDC SVI had little relationship to lung cancer screening follow 

through when applying machine learning classification techniques.  This study was 

limited by sample size, however, provides some evidence that EHR diagnoses, and 

census track level social determinants fail to capture risk factors related to patients 

failing to complete lung cancer screening tests.   

 

9.2.3. Research Aim 3 

Design an explanatory system that explains and visualizes the barriers to cancer 

screening uptake that considers the complex network of factors potentially causal 

social determinants, and comorbidities. 

 

Complex barriers to breast cancer screening were analyzed a model to associate the 

CDC SVI to predict county screening rates and age adjusted mortality due to breast 

cancer. County level screening uptake was successfully modeled, and the effect of 

social determinants were described.  Key factors such as a break down in the 

screening and age adjusted mortality relationship in high proportion minority areas 

were discovered and quantified.  However, when this model was applied to 

individual patients to estimate which patient would complete a mammography 

screening after having one ordered by a provider, the model had virtually no 

discriminative ability. This study provides a key piece of evidence that transferring 

patterns from counties are not likely to generalize well if applied to patients. Given 

the depth of nationally available health statistics about counties, and the relative 

difficultly obtaining patient level EHR data, it is easy to see why transferring 

knowledge from one dataset to the other may be desirable. This study serves as a 

caution against doing so. 

 

9.2.4. Summary of the Research Aims Towards Support of the Hypothesis 

The overall hypothesis of this dissertation is that cancer screening follow through 

can be predicted in an automated fashion using machine learning.  To that end, it 

was shown that this can be done in limited contexts. Small groups of female patients 

likely to fail following through with mammography screening can be systematically 

identified with her and geographic linked data using machine learning. However, 

this system is not yet powerful enough to create meaningful predictions about 

individual patients. Lung cancer screening follow through remains a challenging 

problem. Attempts to develop automated prediction were limited due to small 

sample size and ultimately unsuccessful.  

 

9.3. Generalizability 

The results found in this study should be understood to represent findings in a single 

health system, and it is not clear that they will generalize to other health systems.  
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Further application and research at other health systems could address this. By virtue of 

how data was selected in this study, patients would require access to the health system 

and preceding visits with healthcare providers.  This selection criteria were essential to 

ensure EHR information on the patient was available for analysis, however it also means 

results may not generalize to populations where even the most fundamental access to 

health care is challenging. Homeless, stigmatized populations, as well as those 

experiencing migration status challenges are almost certainly underrepresented in this 

approach. This means the results should not be inferred on the community at large.  

However, in the context of a population for which a health system is already providing 

care, it may provide vital tools and insights to increase screening.   

 

9.4. Range of Applications 

Research results show that models developed to predict mammogram screening follow 

through can be directly used, modified, or benchmarked against, within a health system 

to automate the identification of small groups of patients at very high risk for missing 

screening.  If this system is implemented and paired with highly effective interventions 

to increase screening follow through, the impact to patient lives could be dramatic.  For 

this system to create value for a health system, it requires that highly effective 

interventions to increase screening are available but are unaffordable to be used for all, 

but a small group of patients identified by the model. Interventions designed to increase 

screening would need to be shown to be effective specifically for the group most at risk 

for missing screening. It is unclear that interventions designed to “nudge” patients in 

action, such as infrequently messaging the patient using content designed for a broad 

audience, not addressing the underlying structural barriers to screening would benefit 

from being focused on high-risk groups. A more appropriate application of the tool 

would be to identify a small group of patients to receive relatively high-cost 

interventions such as referral to no cost screening services and arranging for 

transportation. The mammogram screening follow through model may also serve as a 

blueprint for CRC screening follow through. As was one of the original research aims, it 

was abandoned when sufficient data was not available.  Research methods used for this 

study could easily be adapted for that application, and Pro-DOBIE would be particularly 

useful to reveal patterns in racial bias that may arise during development. 

Pro-DOBIE protocol has wide applications even outside of health.  The protocol is not 

overly prescriptive in methods and is not tied to a single type of data or domain.  It could 

directly be applied into a broad range of classification and regression problems.  One 

direct application of Pro-DOBIE is debugging machine learning models that are already 

in production where results have either been unexpected or poor performance for a 

subgroup of interest has been observed. The code used to apply the protocol can be 

quickly adapted for different datasets, metrics, or subgroups.  

 

 

9.5. Future Work 

Extending this body of work to include CRC screening and testing results at other health 

systems are clear next steps for this work. Since the predictive power of the models 

developed during this research was far from overwhelming, new data sources should be 

considered.  Widely adopted patient surveys such as PHQ-9 for depression screening 
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(69) and the Patient Activation Measure (70)  would be good candidates to augment 

existing data.  The results found in this study would be much more impactful if 

replicated across health systems on large populations of patients. However, challenges 

collecting datasets de-identified to limited use across health systems is foreboding.  

Pro-DOBIE protocol development and application to a wider variety of datasets is also a 

potential avenue for future work.  Applications to high dimension microbiome data that 

also contains basic demographics and clinical information would be an excellent 

candidate to further refine Pro-DOBIE.  Adoption of the mammogram screening follow 

through predictive tool among health systems will also provide future opportunity to 

apply and develop Pro-DOBIE, as inevitable differences between health system data 

affect performance of predictive systems.  

 

9.6. Conclusion 

This research has shown that predicting mammogram screening follow through using 

machine learning is achievable.  Small groups of patients at very high risk for not 

completing a mammogram can be systematically identified using EHR data augmented 

with the social determinants sourced geographically from the CDC SVI.  This research 

can provide a blueprint on how to automate this prediction, with the end goal of 

increasing mammogram screening uptake. It was shown that analogous predictive 

systems estimating which patients are unlikely to complete lung cancer screening are not 

yet achieving good accuracy.  The research also developed a novel protocol, shown to be 

useful in detecting and describing bias in machine learning systems. Together, the 

research furthers the body of knowledge around cancer screening uptake, serves as a 

road map to implement an automated mammogram screening follow through predictive 

system and is a guide towards future research. 
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10. Appendix 
Table 10.1 Comprehensive data dictionary describing variables used throughout the studies. 

Variable Name Variable Group Description Type Min Max 

Failed to Complete 

Mammogram Screening 

Patient Outcome Patient had a mammogram screening ordered by a 

provided, however failed to have a test status of ‘sent’ or’ 

‘completed’ within 180 days (1), if the patient had a 

screening with order status ‘completed’ within the 1-180 
days following the first date ordered then (0) otherwise 

masked 

binary 0 1 

Failed to Complete Lung 

Cancer Screening  

Patient Outcome Patient had a lung cancer screening ordered by a provided, 

however failed to have a test status of ‘sent’ or’ 

‘completed’ within 180 days (1), if the patient had a 
screening with order status ‘completed’ within the 1-180 

days following the first date ordered then (0) otherwise 

masked 

binary 0 1 

Mammogram Screening 

Uptake 

County Outcome Proportion of female Medicare enrollees aged 67-69 in year 

2015 with a mammogram screening in the prior two years, 
sourced from the Dartmouth Atlas of Health 

contin

uous 

0 1 

Age Adjusted Mortality 

due to Breast Cancer 

County Outcome Female age adjusted mortality rate be 100,000 patients due 

to breast cancer averaged from 2010-2020 by county 

sourced the CDC Wonder 

contin

uous 

0   

RUCC  County 
Descriptor 

United States Department of Agriculture Rural Continuum 
Codes 2013 

ordina
l 

1 9 

Comorbidity_Cnt Elixhauser 

Comorbidity 

Sum of Elixhauser Comorbidities ordina

l 

0 7 

White-Cauc Demographics 1 if patient race is White or Caucasian, otherwise 0 binary 0 1 

African-American Demographics 1 if patient race is African American, otherwise 0 binary 0 1 

Asian Demographics 1 if patient race is Asian, otherwise 0 binary 0 1 

Married Demographics 1 if patient marital status is married, otherwise 0 binary 0 1 

Single Demographics 1 if patient marital status is single, binary 0 1 

     otherwise, 0       
Divorced_or_Sep Demographics 1 if patient marital status is divorced or separated otherwise 

0 

binary 0 1 

OutOfCounty Demographics 1 if patient address was in a census tract outside of the 

county of the MUSC health system otherwise 0 

binary 0 1 

EPL_POV CDC-SVI Census tract level percentile percentage of persons below 

poverty estimate 

contin

uous 

0 1 

EPL_UNEMP CDC-SVI civilian (age 16+) unemployed estimate civilian (age 16+) 

unemployed estimate 

contin

uous 

0 1 

EPL_PCI CDC-SVI Census tract level percentile per capita income estimate contin
uous 

0 1 

EPL_NOHSDP CDC-SVI Census tract level percentile percentage of persons with no 

high school diploma (age 25+) estimate 

contin

uous 

0 1 

EPL_AGE65 CDC-SVI Census tract level percentile percentage of persons aged 65 

and older estimate 

contin

uous 

0 1 

EPL_AGE17 CDC-SVI Census tract percentile percentage of persons aged 17 and 

younger estimate 

contin

uous 

0 1 

EPL_DISABL CDC-SVI Census tract percentile percentage of civilian 

noninstitutionalized population with a disability estimate 

contin

uous 

0 1 

EPL_SNGPNT CDC-SVI Census tract Percentile percentage of single parent 
households with children under 18 estimate 

contin
uous 

0 1 

EPL_MINRTY CDC-SVI Census tract percentile percentage minority (all persons 

except white, non-Hispanic) estimate 

contin

uous 

0 1 

EPL_LIMENG CDC-SVI Census tract percentile percentage of persons (age 5+) who 

speak English “less than well” estimate 

contin

uous 

0 1 

EPL_MUNIT CDC-SVI Census tract percentile percentage housing in structures 

with 10 or more units estimate 

contin

uous 

0 1 

EPL_MOBILE CDC-SVI Census tract percentile percentage mobile homes estimate contin

uous 

0 1 

EPL_CROWD CDC-SVI Census tract percentile percentage households with more 
people than rooms estimate 

contin
uous 

0 1 

EPL_NOVEH CDC-SVI Census tract percentile percentage households with no 

vehicle available estimate 

contin

uous 

0 1 

EPL_GROUPQ CDC-SVI Census tract percentile percentage of persons in group 

quarters estimate 

contin

uous 

0 1 
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F_POV CDC-SVI Census tract is in the 90th percentile percentage of persons 

below poverty estimate 

binary 0 1 

F_UNEMP CDC-SVI Census tract is in the 90th percentile percentage of civilian 

(age 16+) unemployed estimate civilian (age 16+) 

unemployed estimate 

binary 0 1 

F_PCI CDC-SVI Census tract is in the 90th percentile percentage of 

percentile per capita income estimate (inversed) 

binary 0 1 

F_NOHSDP CDC-SVI Census tract is in the 90th percentile percentage of persons 

with no high school diploma (age 25+) estimate 

binary 0 1 

F_AGE65 CDC-SVI Census tract is in the 90th percentile percentage of persons 

aged 65 and older estimate 

binary 0 1 

F_AGE17 CDC-SVI Census tract is in the 90th percentile percentage of persons 
aged 17 and younger estimate 

binary 0 1 

F_DISABL CDC-SVI Census tract is in the 90th percentile percentage of civilian 

noninstitutionalized population with a disability estimate 

binary 0 1 

F_SNGPNT CDC-SVI Census tract is in the 90th percentile percentage of single 

parent households with children under 18 estimates 

binary 0 1 

F_MINRTY CDC-SVI Census tract is in the 90th percentile percentage of minority 

(all persons except white, non-Hispanic) estimate 

binary 0 1 

F_LIMENG CDC-SVI Census tract is in the 90th percentile percentage of persons 

(age 5+) who speak English “less than well” estimate 

binary 0 1 

F_MUNIT CDC-SVI Census tract is in the 90th percentile percentage of housing 
in structures with 10 or more units estimate 

binary 0 1 

F_MOBILE CDC-SVI Census tract is in the 90th percentile percentage of mobile 

homes estimate 

binary 0 1 

F_CROWD CDC-SVI Census tract is in the 90th percentile percentage of 

households with more people than rooms estimate 

binary 0 1 

F_NOVEH CDC-SVI Census tract is in the 90th percentile percentage of 

households with no vehicle available estimate 

binary 0 1 

F_GROUPQ CDC-SVI Census tract is in the 90th percentile percentage of persons 

in group quarters estimate 

binary 0 1 

F_THEME1  CDC-SVI Sum of flags for Socioeconomic Status theme F_POV + 
F_UNEMP + F_PCI + F_NOHSDP 

ordina
l 

0 4 

F_THEME2  CDC-SVI Sum of flags for Household Composition theme  F_AGE65 

+ F_AGE17 + F_DISABL + F_SNGPNT 

ordina

l 

0 4 

F_THEME3  CDC-SVI Sum of flags for Minority Status/Language theme 
F_MINRTY + F_LIMENG 

ordina
l 

0 2 

F_THEME4 CDC-SVI Sum of flags for Housing Type/ Transportation theme 

F_MUNIT + F_MOBILE + F_CROWD + F_NOVEH + 

F_GROUPQ 

ordina

l 

0 5 

F_TOTAL CDC-SVI Sum of flags for the four themes (F_THEME1 + 
F_THEME2 + F_THEME3 + F_THEME4) 

ordina
l  

0 15 

RPL_THEME1 CDC-SVI Percentile ranking for Socioeconomic theme summary       
RPL_THEME2 CDC-SVI Percentile ranking for Household Composition theme 

summary 
      

RPL_THEME3 CDC-SVI Percentile ranking for Minority Status/Language theme       
RPL_THEME4 CDC-SVI Percentile ranking for Housing Type/ Transportation theme       
managed care Insurance managed care patient insurance plan 1, otherwise 0 binary 0 1 

Medicare Insurance Medicare patient insurance 1, otherwise 0 binary 0 1 

Medicaid Insurance Medicaid patient insurance 1, otherwise 0 binary 0 1 

ppo Insurance Patient PPO insurance 1, otherwise 0 Insura

nce 

0 1 

hmo Insurance Patient had HMO Insurance 1, otherwise 0 Insura
nce 

0 1 

established_patient_prior_

365 

Previous Visits patient had a visit as an established patient in the prior 365 

days 1, otherwise 0 

binary 0 1 

new_patient_prior_365 Previous Visits patient had a visit as a new patient in the prior 365 days 1, 

otherwise 0 

binary 0 1 

preventive_visit_prior_365 Previous Visits patient had a preventative care visit in the prior 365 days 1, 

otherwise 0 

binary 0 1 

no_charge_cpt Previous Visits patient previously had a CPT Code with no charge 1, 

otherwise 0 

binary 0 1 

office_visit_prior_365 Previous Visits patient had any office visit  in the prior 365 days 1, 
otherwise 0 

binary 0 1 

urinalysis_prior_365 Previous Visits patient had a urinalysis CPT code in the prior 365 then 1, 

otherwise 0 

binary 0 1 
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hemoglobin_test_prior_36

5 

Previous Visits patient had a hemoglobin test CPT code in the prior 365 

then 1, otherwise 0 

binary 0 1 

electrocardiogram_prior_

365 

Previous Visits patient had a EKG CPT code in the prior 365 then 1, 

otherwise 0 

binary 0 1 

pneumococcal 

vac_prior_365 

Previous Visits patient had a pneumococcal vaccine in the prior 365 then 1, 

otherwise 0 

binary 0 1 

age_under_60 Demographics 1 if 50<= patient age <60 otherwise 0 binary 0 1 

age_60-65 Demographics 1 if 60<= patient age <65 otherwise 0 binary 0 1 

age_65-70 Demographics 1 if 65 <= patient age <70 otherwise 0 binary 0 1 

age_over_70 Demographics 1 if 70<= patient age <75 otherwise 0 binary 0 1 

depression_dx_or_pl Billed or 

Problem List 
Diagnosis 

1 if had patient had Elixhausrer comorbidity of depression, 

or problem list indicated depression, otherwise 0 

binary 0 1 

F41_Other anxiety 

disorders 

Billed or 

Problem List 

Diagnosis 

1 if patient had a billed ICD10cm of F41, or anxiety 

indicated in the problem list, otherwise 0 

binary 0 1 

N95_Billed 

Menopause_or_perimenop

ause 

Billed or 
Problem List 

Diagnosis 

1 if patient had a billed ICD10cm of N95, otherwise 0 binary 0 1 

F32_Depressive episode Billed or 

Problem List 

Diagnosis 

1 if patient had a billed ICD10cm of F32, otherwise 0 binary 0 1 

Z72_Problems_related_to_

lifestyle 

Billed or 

Problem List 

Diagnosis 

1 if patient had a billed ICD10cm of Z72, otherwise 0 binary 0 1 

anemia_dx_or_pl Billed or 

Problem List 
Diagnosis 

1 if patient had an Elixhauser combability indicating 

anemia, or anemia was indicated on the problem list, 
otherwise 0 

binary 0 1 

sleep_dx_or_pl Billed or 

Problem List 

Diagnosis 

1 if patient had a billed ICD10cm of G47 or sleep disorder 

indicated on the problem list, otherwise 0 

binary 0 1 

CancerTypesNegativeInFa

mily_cnt 

Patient History Count of cancer types reported by the patient that have no 
family history 

ordina
l 

0 5 

CancersTypesInFirstDegr

eeRelatives_cnt 

Patient History Count of cancer types reported by the patient in parents, 

siblings, and children 

ordina

l 

0 6 

CancersTypesInRelatives_

cnt 

Patient History Count of cancer types reported by the patient in all relatives ordina
l 

0 6 

Relatives_early_onset_cnt Patient History Count of relatives with early onset cancer reported by the 

patient 

ordina

l 

0 2 

FH_breast_cancer Patient History Patient reported family history of breast cancer 1, 

otherwise 0 

binary 0 1 

hist_of_diabetes Patient History 1 if any Elixhasuser diabetes comorbidity, or indications on 

the problem list, otherwise 0 

binary 0 1 

neg_FH_breast_cancer Patient History Patient reported having a negative family history of breast 

cancer 1, otherwise 0 

binary 0 1 
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Table 10.2 Calibration table for predicting patients failing to complete mammogram screening. A value can be entered for a 

metric such as positive predictive value (PPV) and the threshold can be looked up where, if model’s probability exceeds, the 

patient should be considered likely to miss screening.    

  npv ppv accuracy f1 recall Tp fp fn tn threshold Predictedpos 

cnt 

predicted_neg 

cnt 

8 NaN 0.526 0.526 0.69 1 961 865 0 0 0.163 1826 0 

9 1 0.527 0.527 0.69 1 961 864 0 1 0.184 1825 1 

10 1 0.527 0.527 0.69 1 961 864 0 1 0.204 1825 1 

11 1 0.527 0.528 0.69 1 961 862 0 3 0.224 1823 3 

12 0.727 0.528 0.529 0.69 0.997 958 857 3 8 0.245 1815 11 

13 0.706 0.528 0.53 0.69 0.995 956 853 5 12 0.265 1809 17 

14 0.647 0.53 0.532 0.689 0.988 949 843 12 22 0.286 1792 34 

15 0.623 0.531 0.533 0.688 0.979 941 832 20 33 0.306 1773 53 

16 0.609 0.533 0.537 0.687 0.965 927 812 34 53 0.327 1739 87 

17 0.616 0.537 0.542 0.686 0.95 913 788 48 77 0.347 1701 125 

18 0.621 0.542 0.549 0.685 0.931 895 757 66 108 0.367 1652 174 

19 0.633 0.549 0.559 0.686 0.914 878 722 83 143 0.388 1600 226 

20 0.65 0.56 0.575 0.688 0.892 857 672 104 193 0.408 1529 297 

21 0.642 0.569 0.584 0.686 0.863 829 628 132 237 0.429 1457 369 

22 0.619 0.574 0.585 0.676 0.82 788 584 173 281 0.449 1372 454 

23 0.619 0.59 0.599 0.671 0.778 748 519 213 346 0.469 1267 559 

24 0.612 0.607 0.609 0.662 0.728 700 453 261 412 0.49 1153 673 

25 0.59 0.613 0.603 0.638 0.666 640 404 321 461 0.51 1044 782 

26 0.572 0.622 0.597 0.61 0.599 576 350 385 515 0.531 926 900 

27 0.557 0.641 0.593 0.569 0.512 492 275 469 590 0.551 767 1059 

28 0.544 0.657 0.583 0.523 0.435 418 218 543 647 0.571 636 1190 

29 0.532 0.67 0.572 0.476 0.369 355 175 606 690 0.592 530 1296 

30 0.52 0.691 0.558 0.407 0.288 277 124 684 741 0.612 401 1425 

31 0.513 0.719 0.548 0.351 0.232 223 87 738 778 0.633 310 1516 

32 0.509 0.755 0.541 0.303 0.189 182 59 779 806 0.653 241 1585 

33 0.502 0.795 0.531 0.246 0.146 140 36 821 829 0.673 176 1650 

34 0.496 0.803 0.519 0.2 0.114 110 27 851 838 0.694 137 1689 

35 0.49 0.816 0.508 0.151 0.083 80 18 881 847 0.714 98 1728 

36 0.487 0.842 0.502 0.123 0.067 64 12 897 853 0.735 76 1750 

37 0.486 0.883 0.499 0.104 0.055 53 7 908 858 0.755 60 1766 

38 0.483 0.894 0.494 0.083 0.044 42 5 919 860 0.776 47 1779 

39 0.481 0.872 0.49 0.068 0.035 34 5 927 860 0.796 39 1787 

40 0.481 0.889 0.489 0.064 0.033 32 4 929 861 0.816 36 1790 

41 0.48 0.879 0.487 0.058 0.03 29 4 932 861 0.837 33 1793 

42 0.48 0.897 0.486 0.053 0.027 26 3 935 862 0.857 29 1797 

43 0.478 0.875 0.484 0.043 0.022 21 3 940 862 0.878 24 1802 

44 0.478 0.941 0.482 0.033 0.017 16 1 945 864 0.898 17 1809 

45 0.477 1 0.48 0.025 0.012 12 0 949 865 0.918 12 1814 

46 0.475 1 0.477 0.012 0.006 6 0 955 865 0.939 6 1820 

47 0.475 1 0.476 0.008 0.004 4 0 957 865 0.959 4 1822 

48 0.474 0 0.474 0 0 0 0 961 865 0.98 0 1826 
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