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Abstract:  

This work proposes a numerical scheme for heat parabolic problem by 

implementing a collocation method with a cubic B-spline for a uniform mesh. The 

key idea of this method is to apply forward finite difference and  Crank–Nicolson 

methods  for time and space integration, respectively. The stability of the 

presented scheme is proved through the Von-Neumann technique. It is shown that 

it is unconditionally stable. The accuracy of the suggested scheme is computed 

through the  L_2  and L_∞-norms. Numerical experiments are also given and 

show that it is compatible with the exact solutions. 
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1. Introduction  

Consider the following linear parabolic heat equation 

(1)                                                       
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
,      𝑢(𝑥, 𝑡) ∈ [0, 1] × [0, 𝑇],  

                                       

with initial condition 

(2)                                                                       𝑢(𝑥, 0) = 𝑓(𝑥),  

and boundary conditions 

(3)                                                                𝑢(0, 𝑡) =  𝑢(1, 𝑡) = 0.  

 

This problem is one of the well-known second order linear partial differential equation. Numerous 

authors have extensively researched this issue over a period of many years. However, given that many 

physical phenomena can be expressed as PDEs with boundary conditions, it is still a fascinating 

problem. The heat equation is crucial to many different fields of science. Numerous methods have 

been developed to solve parabolic such as finite difference method [1-7] and by compact finite 

difference method [8-10]. Furthermore, some extra ordinary problems has been numerically 
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investigated by finite element methods such as Galerkin method, least square method and collocation 

method with quadratic, cubic, quintic and septic B-splines [11-16]. Various techniques of both the 

cubic spline and cubic B-spline collocation methods and their application have been developed to 

obtain the numerical solution of the differential equations such as [17-18]. 

 

This paper aims to link a finite difference approach with the cubic B spline method for solving heat 

problem (1) subject to (2) and (3).  A key idea for the proposed scheme is to use the Crank–Nicolson 

method to discrtize the derivative of time while, cubic B-spline is use to interpolate the solutions at 

time. The stability of suggested method is proved. 

   

The rest of this work is structured like that. In Section 2, the description of the cubic B spline method 

is introduced. In section 3 and 4, The model of problems is presented. Stability analysis is given in 

section 5. Numerical experiments are shown for different types of examples in section 6, Finally, 

conclusions are given in section 7. 

 

2. Description of Cubic B-spline Collocation Method 

This section constructs numerical solution for the presented problem (1). Let 𝑎 = 𝑥0 < 𝑥1 <,⋯ ,<

𝑥𝑁−1 < 𝑥𝑁 = 𝑏  is partitioned on the space domain  with ℎ = 𝑥𝑖+1 − 𝑥𝑖 =
𝑏−𝑎

𝑁
 for 𝑖 = 0,1,2,… ,𝑁. 

The typical third-degree B-spline basis functions, given as   

(4)                                                 𝑈(𝑥𝑖, 𝑡) = ∑ 𝛿𝑖(𝑡)

𝑛+1

𝑖=−1

𝐵𝑖
3(𝑥),   𝑖 = 0,1,⋯ ,𝑁,   

Where  

(5)             𝐵𝑖
3(𝑥) =

1

ℎ3

{
 
 

 
 

(𝑥 − 𝑥𝑖−2)
3, [𝑥𝑖−2, 𝑥𝑖−1]

−3(𝑥 − 𝑥𝑖−1)
3 + 3ℎ(𝑥 − 𝑥𝑖−1)

2 + 3ℎ2(𝑥 − 𝑥𝑖−1) + ℎ
3, [𝑥𝑖−1, 𝑥𝑖]

−3(𝑥𝑖+1 − 𝑥)
3 + 3ℎ(𝑥𝑖+1 − 𝑥)

2 + 3ℎ2(𝑥𝑖+1 − 𝑥) + ℎ
3, [𝑥𝑖, 𝑥𝑖+1]

(𝑥𝑖+2 − 𝑥)
3, [𝑥𝑖+1, 𝑥𝑖+2]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Where 𝛿𝑖(𝑡), 𝑖 = −1,0, . . . , 𝑁 + 1 are unknown time-dependent quantity to be determined at each time 

level from boundary conditions and the initial conditions. At the knots, nodal values and its principal 

two derivatives are obtained using the cubic functions (5). The value of 𝐵𝑖(𝑥) and its derivatives 

𝐵𝑖
′(𝑥) and 𝐵𝑖

′′(𝑥) at the knots are given in Table 1. 

Table 1: The value of cubic B-spline and its derivatives at the knot’s points 

𝑥 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 

𝐵𝑖 0 1 4 1 0 

𝐵𝑖
′ 0 −3 ℎ⁄  0 3

ℎ⁄  0 

𝐵𝑖
′′ 0 6

ℎ2⁄  −12
ℎ2⁄  6

ℎ2⁄  0 

 
3. Implementation of the Method 

Applying forward finite-difference approach with utilizing Crank–Nicolson rule in (1), gives: 
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(7)                                               
𝑢𝑛+1 − 𝑢𝑛

𝑘
− 𝛼 [

(𝑢𝑥𝑥)
𝑛+1 + (𝑢𝑥𝑥)

𝑛

2
] = 0,  

Where 𝑘 = ∆𝑡 is the time step. 

Using approximate function (4) and cubic B-spline functions (5), the approximate values 𝑈(𝑥), and 

their derivatives up to second order are determined in terms of the time parameters 𝛿𝑖(𝑡), as 

(8)                                𝐴1𝛿𝑖−1
𝑛+1 + 𝐴2𝛿𝑖

𝑛+1 + 𝐴1𝛿𝑖+1
𝑛+1 = 𝐴3𝛿𝑖−1

𝑛 + 𝐴4𝛿𝑖
𝑛 + 𝐴3𝛿𝑖+1

𝑛 ,  

Where 𝛽 =
𝛼 ∆𝑡

2
, and 

𝐴1 = 1 −
6𝛽

ℎ2
,             𝐴2 = 4 +

12𝛽

ℎ2
, 

𝐴3 = 1 +
6𝛽

ℎ2
,             𝐴4 = 4 −

12𝛽

ℎ2
, 

After simplifying equations (8) which consists of (𝑁 + 1) linear equations with  (𝑁 + 3) 

unknowns (𝛿−1, 𝛿0, . . . , 𝛿𝑁 , 𝛿𝑁+1) 
𝑇. To address the challenge of not unique problem, in this work, we 

impose boundary condition (3) along with eliminating  𝛿−1, 𝛿𝑁+1. Therefore, the system obtained can 

be reduced to a matrix system of dimension (𝑁 + 1) × (𝑁 + 1) as 

𝔸𝑝𝑛+1 = 𝔹𝑝𝑛 + ℂ, 

Where 

𝔸 =

[
 
 
 
 
 
 
𝐴2 2𝐴1 0 0 0 … 0
𝐴1 𝐴2 𝐴1 0 0 … 0
0 𝐴1 𝐴2 𝐴1 0 … 0
0 0 𝐴1 𝐴2 𝐴1 … 0
⋮ ⋱ ⋱ ⋱ ⋱ … ⋮
0 … 0 0 𝐴1 𝐴2 𝐴1
0 0 … 0 0 2𝐴1 𝐴2]

 
 
 
 
 
 

(𝑁+1×𝑁+1)

 𝑝𝑛+1 =

[
 
 
 
 
 
 
 
𝛿0
𝑛+1

𝛿1
𝑛+1

𝛿2
𝑛+1

⋮
𝛿𝑛−2
𝑛+1

𝛿𝑛−1
𝑛+1

𝛿𝑛
𝑛+1]

 
 
 
 
 
 
 

(𝑁+1×1)

, 

𝔹 =

[
 
 
 
 
 
 
𝐴4 2𝐴3 0 0 0 … 0
𝐴3 𝐴4 𝐴3 0 0 … 0
0 𝐴3 𝐴4 𝐴3 0 … 0
0 0 𝐴3 𝐴4 𝐴3 … 0
⋮ ⋱ ⋱ ⋱ ⋱ … ⋮
0 … 0 0 𝐴3 𝐴3 𝐴3
0 0 … 0 0 2𝐴3 𝐴4]

 
 
 
 
 
 

(𝑁+1×𝑁+1)

          𝑝𝑛 =

[
 
 
 
 
 
 
 
𝛿0
𝑛

𝛿1
0

𝛿2
𝑛

⋮
𝛿𝑛−2
𝑛

𝛿𝑛−1
𝑛

𝛿𝑛
𝑛 ]
 
 
 
 
 
 
 

(𝑁+1×1)

,  

ℂ =

[
 
 
 
 
 
 
 
 
ℎ

3
(𝐴1𝑢

′(𝑥0, 𝑡𝑛+1) − 𝐴3𝑢
′(𝑥0, 𝑡𝑛))

0
0
⋮
0
0

ℎ

3
(−𝐴1𝑢

′(𝑥𝑛, 𝑡𝑛+1) + 𝐴3𝑢
′(𝑥𝑛, 𝑡𝑛))]

 
 
 
 
 
 
 
 

(𝑁+1×1)
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The above tri-diagonal system of matrix will be solved by a modified form Thomas algorithm.  

4. The Initial State 

To deal with the initial parameters 𝛿𝑖
0, this can be done by using the initial conditions (2) and the 

derivatives at the boundaries in the following way:  

(9)                                                                 𝑓(𝑥𝑖) = 𝛿𝑖−1
0 + 4𝛿𝑖

0 + 𝛿𝑖+1
0 ,  

(𝑈′)(𝑥0, 0) =
3

ℎ
(−𝛿−1 + 𝛿1) = 𝑓

′(𝑥0) 

(𝑈′′)(𝑥0, 0) =
6

ℎ2
(𝛿−1 − 2𝛿0 + 𝛿1) = 𝑓

′′(𝑥0), 

(𝑈)(𝑥𝑖 , 0) = 𝛿𝑖−1 + 4𝛿𝑖 + 𝛿𝑖+1 = 𝑓(𝑥𝑖), 

(𝑈′)(𝑥𝑁, 0) =
3

ℎ
(−𝛿𝑁−1 + 𝛿𝑁+1) = 𝑓

′(𝑥𝑁), 

(10)                                         (𝑈′′)(𝑥𝑁, 0) =
6

ℎ2
(𝛿𝑁−1 − 2𝛿𝑁 + 𝛿𝑁+1) = 𝑓

′′(𝑥𝑁).  

Applying boundary and initial conditions to eliminate the unknowns from the system of Eq. (10), imply 

that 

(𝑈′)(𝑥0, 0) = 𝑓
′(𝑥0),     (𝑈

′)(𝑥𝑁, 0) = 𝑓
′(𝑥𝑁). 

Combing above equation with Eq. (11), reads 

𝛿−1
0 = 𝛿1 −

ℎ

3
𝑓′(𝑥0),         

(11)                                                           𝛿𝑁+1
0 = 𝛿𝑁−1 +

ℎ

3
𝑓′(𝑥𝑁),   

The system obtained after simplifying and eliminating the functions values of 𝛿, can be solved by any 

algorithm. The numerical solution of presented method can be determined from the time evaluation of 

the vectors 𝛿𝑗
𝑛 by using the recurrence relations. 

𝑈(𝑥𝑖, 𝑡𝑛) = 𝛿𝑖−1 + 4𝛿𝑖 + 𝛿𝑖+1, 

From Eqs. (10) and (12), the resulting matrix system of (N+1) linear equations with (N+1) unknowns, 

written as 

[
 
 
 
 
 
 
4 2 0 0 0 … 0
1 4 1 0 0 … 0
0 1 4 1 0 … 0
0 0 1 4 1 … 0
⋮ ⋱ ⋱ ⋱ ⋱ … ⋮
0 … 0 0 1 4 1
0 0 … 0 0 2 4]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝛿0
0

𝛿1
0

𝛿2
0

⋮
𝛿𝑛−2
0

𝛿𝑛−1
0

𝛿𝑛
0 ]
 
 
 
 
 
 
 

= η =

[
 
 
 
 
 
 
 
 
 𝑓(𝑥0) +

ℎ

3
𝑓′(𝑥0)

𝑓(𝑥1)

𝑓(𝑥2)
⋮

𝑓(𝑥𝑁−2)

𝑓(𝑥𝑁−1)

𝑓(𝑥𝑁) −
ℎ

3
𝑓′(𝑥𝑛)]

 
 
 
 
 
 
 
 
 

. 
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5. Stability Analysis of the Method 

The aim of this section is to find stability condition of the presented approach through Von-Neumann 

stability method. Start with Eq. (8), we have 

𝐴1𝛿𝑖−1
𝑛+1 + 𝐴2𝛿𝑖

𝑛+1 + 𝐴1𝛿𝑖+1
𝑛+1 = 𝐴3𝛿𝑖−1

𝑛 + 𝐴4𝛿𝑖
𝑛 + 𝐴3𝛿𝑖+1

𝑛 , 

Where 𝐴1, 𝐴2, 𝐴3, and 𝐴4 are given in Eqs. (9). Now substituting  𝛿𝑗
𝑛 = 𝜉𝑛𝑒𝑥𝑝(𝑖𝑗𝜙) in (9), where 𝜙 =

𝑠ℎ, 𝑠 is the mode number, 𝑖 = √−1 and 𝜉 is the amplification factor of the schemes, becomes 

𝜉𝑛+1(𝐴1𝛿𝑗−1
𝑛+1 + 𝐴2𝛿𝑗

𝑛+1 + 𝐴1𝛿𝑗+1
𝑛+1) = 𝜉𝑛(𝐴𝛿𝑗−1

𝑛 + 𝐴4𝛿𝑗
𝑛 + 𝐴3𝛿𝑗+1

𝑛 ), 

(12)                 𝜉(𝐴1 exp(−𝑖𝜙) + 𝐴2 + 𝐴1 exp(𝑖𝜙)) = (𝐴3 exp(−𝑖𝜙) + 𝐴4 + 𝐴3 exp(𝑖𝜙)). 

Simplifying (12), imply that 

(13)                                                                         𝜉 =
𝑋1
𝑋2
,  

Where  

𝑋1 = 2𝐴3𝑐𝑜𝑠𝜙 + 𝐴4, 

𝑋2 = 2𝐴1𝑐𝑜𝑠𝜙 + 𝐴2. 

For the stability of the technique, we need to prove that |𝜉| ≤ 1, so for we only need to prove that 

𝑋2 ≥ 𝑋1 𝑜𝑟 𝑋2 − 𝑋1 ≥ 0, 

𝑋2 − 𝑋1 = [(2 (1 −
6𝛽

ℎ2
) 𝑐𝑜𝑠𝜙 + 4 +

12𝛽

ℎ2
) − (2 (1 +

6𝛽

ℎ2
) 𝑐𝑜𝑠𝜙 + 4 −

12𝛽

ℎ2
)], 

Take 𝑐𝑜𝑠𝜙 = 1, for the minimum value of  𝑋2 − 𝑋1, we obtain 𝑋2 − 𝑋1 = 0. Hence 𝑋2 − 𝑋1 ≥ 0 and 

𝑋2
2 ≥ 𝑋1

2 so |𝜉| ≤ 1, hence the scheme is unconditional stable. 

6. Numerical Experiments 

The section illustrates to show the accuracy of the suggested method, based on MATLAB 

programming. The error norms of L2 and L∞ are used to measure the error between the numerical and 

exact solutions  

 Ε𝑢(𝑥, 𝑡) = u (x, t) − 𝑈(𝑥, 𝑡), 

Let us introduce the three accuracy indicators, when using space step size h, as follows  

 The pointwise error 

 ℇ𝑢(𝑥, 𝑡) = | Ε𝑢(𝑥𝑖, 𝑡)|.           

 The L∞ −norm of the error 

L∞( Ε𝑢, ℎ) = max
0≤𝑖≤𝑁

| Ε𝑢(𝑥𝑖, 𝑡)|. 

 The L2 − norm of the errors 

L2( Ε𝑢, ℎ) = √ℎ∑|Ε𝑢(𝑥𝑖, 𝑡)|
2

𝑁

𝑖=0

.   
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Problem 1:  Consider the heat equation (1) when 𝛼 =
1

𝜋2
, 

𝜕𝑢

𝜕𝑡
=
1

𝜋2
𝜕2𝑢

𝜕𝑥2
,        0 < 𝑥 < 1,        𝑡 > 0 

With boundary and initial conditions 

𝑢(𝑥, 0) = sin(𝜋𝑥) ,         𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0         𝑡 ≥ 0, 

The exact solution of this problem is 𝑢(𝑥, 𝑡) = 𝑒(−𝑡)sin (𝜋𝑥). 

Table 2:  Pointwise error norm  for problem 1 

𝑥 𝑢(𝑥, 𝑡) U(𝑥, 𝑡)  ℇ𝑢(𝑥, 𝑡) 

0 0.00000000 -3.19398e-03 3.19398e-03 

0.1 1.13681e-01 1.10387e-01 3.29353e-03 

0.2 2.16234e-01 2.12703e-01 3.53099e-03 

0.3 2.97621e-01   2.93824e-01 3.79685e-03 

0.4 3.49874e-01 3.45876e-01 3.99806e-03 

0.5 3.67879e-01 3.63807e-01 4.07241e-03 

0.6 3.49874e-01 3.45876e-01 3.99806e-03 

0.7 2.97621e-01 2.93823e-01 3.79685e-03 

0.8 2.16234e-01 2.12703e-01 3.53099e-03 

0.9 1.13681e-01 1.10387e-01 3.29353e-03 

1 4.50522e-17 -3.19398e-03 3.19398e-03 

 
Table 3:  𝐿2 and 𝐿∞  error norm obtained from problem 1 

ℎ 𝐿2 𝑒𝑟𝑟𝑜𝑟 𝐿∞ 𝑒𝑟𝑟𝑜𝑟 

1/8 5.99598e-03 6.35888e-03 

1/16 1.46332e-03 1.59188e-03 

1/32 3.61537e-04 3.98094e-04 

1/64 8.98544e-05 9.95313e-05 

1/128 2.23977e-05 2.48833e-05 

 
Table 4: Maximum absolute error obtained for problem 1 

ℎ 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8 

1/8 2.12022e-03 3.56016e-03 4.64353e-03 5.54634e-03 

1/16 5.29112e-04 8.90835e-04 1.16286e-03 1.38891e-03 

1/32 1.32213e-04 2.22740e-04 2.90821e-04 3.47360e-04 

1/64 3.30490e-05 5.56869e-05 7.27116e-05 8.68480e-05 

1/128 8.26199e-06 1.39219e-05 1.81783e-05 2.17125e-05 

 

Problem 2: we consider the heat equation (1) when 𝛼 = 1, 

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
,        0 < 𝑥 < 1,        𝑡 > 0 
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With boundary and initial conditions 

𝑢(𝑥, 0) = sin(𝜋𝑥) ,         𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0         𝑡 ≥ 0, 

The exact solution of this problem is 𝑢(𝑥, 𝑡) = 𝑒(−𝜋
2𝑡)sin (𝜋𝑥). 

 

Table 5: Pointwise error for problem 2 

𝑥 𝑢(𝑥, 𝑡) U(𝑥, 𝑡)  ℇ𝑢(𝑥, 𝑡) 

0 0.00000000 -6.06765e-03 6.06765e-03 

0.1 4.29259e-02 3.68093e-02 6.11655e-03 

0.2 8.16499e-02 7.54147e-02 6.23519e-03 

0.3 1.12381e-01   1.06013e-01 6.36777e-03 

0.4 1.32112e-01 1.25644e-01 6.46823e-03 

0.5 1.38911e-01 1.32405e-01 6.50554e-03 

0.6 1.32112e-01 1.25644e-01 6.46823e-03 

0.7 1.12381e-01 1.06013e-01 6.36777e-03 

0.8 8.16499e-02 7.54147e-02 6.23519e-03 

0.9 4.29259e-02 3.68093e-02 6.11655e-03 

1 1.70117e-17 -6.06765e-03 6.06765e-03 

 
Table 6:  𝐿2 and 𝐿∞ error norm obtained for problem 2 

𝒉 𝑳𝟐 𝒆𝒓𝒓𝒐𝒓 𝑳∞ 𝒆𝒓𝒓𝒐𝒓 

𝟏/𝟏𝟎 6.58262e-03 6.50555e-03 

𝟏/𝟐𝟎 1.60905e-03 1.62641e-03 

𝟏/𝟒𝟎 3.97711e-04 4.06605e-04 

𝟏/𝟖𝟎 9.88593e-05 1.01652e-04 

𝟏/𝟏𝟔𝟎 2.46438e-05 2.54129e-05 

 

 

Figure 1: Exact and approximate solution of problem 1 in the domains 0≤x≤1, 0≤t≤1, 
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Figure 2: Exact and approximate solution of problem 2 in the domains 0≤x≤1, 0≤t≤0.2 

 

Figure 3: Approximate solution for problem 1 with different time levels 

 

Figure 4: Comparison between the exact solution u(x,t) and numerical solution U(x,t) for problem 1 
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Figure 5: Comparison between the exact solution u(x,t) and numerical solution U(x,t) for problem 2 

he numerical solutions are obtained for domains [0, 1] at different time levels 𝑡 = 0.2, 0.4, 0.6, 0.8 

with different levels of 𝑁.  In Table 3 and 6, the  𝐿2 and 𝐿∞ errors norm are calculated for different 

space levels. Furthermore,  the pointwise error is measured in domain 0 ≤ 𝑥 ≤ 1. These results show 

that it is close form the exact solution. The comparison of the numerical with the exact solutions is 

shown graphically in Figs.1- 5. These figures show that there is a good agreement between exact and 

numerical solutions. 

7. Conclusion  

This paper aims to investigate a numerical solution for the heat equation. The proposed approach is 

based on a finite difference method with the cubic B-splines function. More specifically, the cubic B 

spline method used the space variable and the finite difference method for the time variable for the 

partial differential equation case. The stability analysis of the method is shown to be unconditionally 

stable. The precision of the scheme has been measured by considering two test problems and 

calculating and error norms for different time levels. Numerical experiments demonstrated that the 

results that are obtained from the proposed method is efficient, reliable, fruitful, and powerful. 
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