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Abstract:

This work proposes a numerical scheme for heat parabolic problem by
implementing a collocation method with a cubic B-spline for a uniform mesh. The
key idea of this method is to apply forward finite difference and Crank—Nicolson
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for time and space integration, respectively. The stability of the
presented scheme is proved through the VVon-Neumann technique. It is shown that
it is unconditionally stable. The accuracy of the suggested scheme is computed
through the L 2 and L oo-norms. Numerical experiments are also given and

show that it is &)mpatible with the exact solutions.
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1. Introduction

Consider the following linear parabolic heat equation

(D a—u:aaz—u u(x,t) € [0,1] X [0,T]
ot x?’ ’ ' Y

with initial condition

(2) u(x,0) = f(x),

and boundary conditions

3) u(0,t) = u(1,t) =0.

This problem is one of the well-known second order linear partial differential equation. Numerous
authors have extensively researched this issue over a period of many years. However, given that many
physical phenomena can be expressed as PDEs with boundary conditions, it is still a fascinating
problem. The heat equation is crucial to many different fields of science. Numerous methods have
been developed to solve parabolic such as finite difference method [1-7] and by compact finite
difference method [8-10]. Furthermore, some extra ordinary problems has been numerically
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investigated by finite element methods such as Galerkin method, least square method and collocation
method with quadratic, cubic, quintic and septic B-splines [11-16]. Various techniques of both the
cubic spline and cubic B-spline collocation methods and their application have been developed to
obtain the numerical solution of the differential equations such as [17-18].

This paper aims to link a finite difference approach with the cubic B spline method for solving heat
problem (1) subject to (2) and (3). A key idea for the proposed scheme is to use the Crank—Nicolson
method to discrtize the derivative of time while, cubic B-spline is use to interpolate the solutions at
time. The stability of suggested method is proved.

The rest of this work is structured like that. In Section 2, the description of the cubic B spline method
is introduced. In section 3 and 4, The model of problems is presented. Stability analysis is given in
section 5. Numerical experiments are shown for different types of examples in section 6, Finally,
conclusions are given in section 7.

2. Description of Cubic B-spline Collocation Method
This section constructs numerical solution for the presented problem (1). Let a = xp < x1 <, -+, <
Xy_1 < xy = b 1is partitioned on the space domain with h = x;,1 — x; = b%a fori=0,1,2,...,N.

The typical third-degree B-spline basis functions, given as

n+1
(4) Ux;,t) = Z 5,(6)B3(x), i =0,1,-,N,
i=—1
Where
( (x — x;-2)%, [xi—2,x;—1]
1 |30 = x21)° + 3h(x —x;—1)?* +3h%(x —x;_) + 3, [xi_1,x]
(5) Blg (-x) = ﬁ _3(xi+1 _ x)3 + 3h(xi+1 _ x)z + 3h2(xi+1 _ x) + h3’ [xi’x,:+1]
(Xi42 — x)3, [Xi+1, Xiv2]
0 otherwise.

Where 6;(t),i = —1,0,..., N + 1 are unknown time-dependent quantity to be determined at each time
level from boundary conditions and the initial conditions. At the knots, nodal values and its principal
two derivatives are obtained using the cubic functions (5). The value of B;(x) and its derivatives
B;(x) and B;’(x) at the knots are given in Table 1.

Table 1: The value of cubic B-spline and its derivatives at the knot’s points

x Xi—2 Xi-1 Xi Xi+1 Xi+2
B; 0 1 4 1 0
B; 0 - 3/h 0 3/h 0
B; 6/h2 _ 12/h2 6/h2 0

3. Implementation of the Method

Applying forward finite-difference approach with utilizing Crank—Nicolson rule in (1), gives:
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(7) un+1 —un W (uxx)n+1 + (uxx)n “o
k 2 ’

Where k = At is the time step.

Using approximate function (4) and cubic B-spline functions (5), the approximate values U(x), and
their derivatives up to second order are determined in terms of the time parameters &;(t), as

(8) AT + A7 + A ST = AT, + ALOT + A3ST

Where § = aTAt, and

68 128
Alzl_ﬁ) A2:4+?,
68 128
A3:1+ﬁ, A4:4_?1

After simplifying equations (8) which consists of (N + 1) linear equations with (N + 3)
unknowns (8_1, 8, ..., 0x,0y+1) | . To address the challenge of not unique problem, in this work, we
impose boundary condition (3) along with eliminating &_1, dy1. Therefore, the system obtained can
be reduced to a matrix system of dimension (N + 1) X (N + 1) as

Ap™tl = Bp" + C,

Where

- en+1
8o

n+1
61

n+1
&2

A, 24, 0 0 O
A, A, A, 0 0
0 A4, A, 4 0
A=|0o 0o 4 4, 4,

n+1 _

: : n—
(0 0 .. 0 0 24, A,

n+1
(N+1xN+1) _6n

- O O OO

J(N+1x1)
— 561 -
&7
&7

A, 24; 0 0 O
A; A, A; 0 0
As A, A3 O
B=|0 0 A; A, As

(e}
- O O O O

0 .. 0 0 A; Az A3 n-1
[ 0 0 . 0 0 245 A4-(1v+1><1v+1) L 6 Y(N+1x1)

_ h -
3 (A1u’(x0; the1) — Azu’ (X, tn))
0
0
0
0
h ! !
_§ (_Alu (xn: tn+1) + A3u (xn: tn))_

(N+1x1)
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The above tri-diagonal system of matrix will be solved by a modified form Thomas algorithm.
4. The Initial State

To deal with the initial parameters 87, this can be done by using the initial conditions (2) and the
derivatives at the boundaries in the following way:

9 fx) =621 + 460 + 624,
3
(U")(x0,0) = n (=6_1+61) = f'(x0)

6
(U")(x0,0) = 55 (61— 280 + 81) = £ (x0),

(U)(x;,0) = 6;—1 + 46; + 841 = f(xp),

3
U Cen, 0) = 3 (=81 + Sv41) = f'Cxw),

6
(10) WU (xy,0) = ﬁ((SN—l — 26y + 8y41) = 7 (xp).

Applying boundary and initial conditions to eliminate the unknowns from the system of Eq. (10), imply
that

(U")(x0,0) = f'(x0),  (U)(xn, 0) = f'(xp).
Combing above equation with Eq. (11), reads

69, = 8, —f'(xp)
-1 1 3 0/,

h
(11) 51(\)1+1 =6y-_1t §f,(xN);

The system obtained after simplifying and eliminating the functions values of §, can be solved by any
algorithm. The numerical solution of presented method can be determined from the time evaluation of
the vectors 6]-" by using the recurrence relations.

U(Xi, tn) = 6i—1 + 451 + 5i+1'

From Egs. (10) and (12), the resulting matrix system of (N+1) linear equations with (N+1) unknowns,
written as

i N ]

4 2 0 0 0 0q] % fxo) +3/(x0)

1 4 1 0 0 of| o7 f(x1)

01 4 1 0 of| &9 Fxy)

00 1 4 1 olf ¢ [=n= :

S | PO Fln_s)

0 0 0 1 4 1f|s0 Flen1)

0 0 0 0 2 4| % h
o fen) -3 G
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5. Stability Analysis of the Method

The aim of this section is to find stability condition of the presented approach through Von-Neumann
stability method. Start with Eq. (8), we have

A ST+ A 60H + A = AgST, + ALOT + A3ST

Where Ay, A5, A3, and A, are given in Egs. (9). Now substituting 6;* = {"exp(ij¢) in (9), where ¢ =

sh, s is the mode number, i = v—1 and ¢ is the amplification factor of the schemes, becomes
EML(ALS] + A7t + ALSTY) = EM (AL, + AuS] + As6]L,),

(12) $(Ay exp(—igp) + Ay + Ay exp(ig)) = (A3 exp(—ig) + A4 + Az exp(igh)).
Simplifying (12), imply that

13 _4
( ) 5 - X_Zi

Where
X1 = 2A3c08¢ + Ay,
X, = 2A4cos¢ + A,.

For the stability of the technique, we need to prove that |£]| < 1, so for we only need to prove that
X, =2XiorX,— X, 20,

Xo— X1 = [(2(1—2—§>COS¢+4+%>—(2(1+2—€>c05¢+4—1;—f)],

Take cos¢ = 1, for the minimum value of X, — X;, we obtain X, — X; = 0. Hence X, — X; = 0 and
X% > X? so || < 1, hence the scheme is unconditional stable.

6. Numerical Experiments

The section illustrates to show the accuracy of the suggested method, based on MATLAB
programming. The error norms of L, and L, are used to measure the error between the numerical and
exact solutions

E,(x,t) =u(xt) —U(x,t),
Let us introduce the three accuracy indicators, when using space step size h, as follows

e The pointwise error

Eu(x, ) = [ Ey(x, )l
e The L, —norm of the error
Leo(Ey, h) = max| Ey (x;, ).
<i<

e The L, — norm of the errors

N
LBy h) = [h ) [By (i, 12
i=0
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Problem 1: Consider the heat equation (1) when a = iz,
T

ou 1 0%u
ot w2 0x?’

With boundary and initial conditions

u(x,0) = sin(mx),

0<x<1,

t>0

u(0,t) =u(1,t) =0

The exact solution of this problem is u(x, t) = esin(mx).

Table 2: Pointwise error norm for problem 1

t=0,

Page | 257

x u(x, t) U(x, t) E.(x, t)

0 0.00000000 -3.19398e-03 3.19398e-03
0.1 1.13681e-01 1.10387e-01 3.29353¢-03
0.2 2.16234e-01 2.12703e-01 3.53099¢-03
0.3 2.97621e-01 2.93824¢e-01 3.79685e-03
0.4 3.49874¢-01 3.45876¢e-01 3.99806¢-03
0.5 3.67879¢-01 3.63807¢e-01 4.07241e-03
0.6 3.49874e-01 3.45876e-01 3.99806e-03
0.7 2.97621e-01 2.93823¢-01 3.79685¢e-03
0.8 2.16234¢-01 2.12703e-01 3.53099¢-03
0.9 1.13681e-01 1.10387e-01 3.29353e-03

1 4.50522¢e-17 -3.19398e-03 3.19398e-03

Table 3: L, and L., error norm obtained from problem 1
h L, error Lo, error
1/8 5.99598e-03 6.35888¢-03
1/16 1.46332e-03 1.59188e-03
1/32 3.61537e-04 3.98094¢-04
1/64 8.98544e-05 9.95313e-05
1/128 2.23977e-05 2.48833e-05
Table 4: Maximum absolute error obtained for problem 1
h t=0.2 t=04 t=20.6 t=0.8
1/8 2.12022e-03 | 3.56016e-03 | 4.64353e-03 | 5.54634e-03
1/16 5.29112e-04 | 8.90835e-04 | 1.16286e-03 | 1.38891e-03
1/32 1.32213e-04 | 2.22740e-04 | 2.90821e-04 | 3.47360e-04
1/64 3.30490e-05 | 5.56869e-05 | 7.27116e-05 | 8.68480e-05
1/128 | 8.26199¢-06 | 1.39219¢-05 | 1.81783e-05 | 2.17125e-05
Problem 2: we consider the heat equation (1) when o = 1,
ou 0%°u
=— 0<x<1, t>0

ot  ox?’
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With boundary and initial conditions
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u(x,0) = sin(mx), u(0,t) =u(1,t) =0 t=>0,
The exact solution of this problem is u(x,t) = e(‘”zt)sin(nx).
Table 5: Pointwise error for problem 2

x u(x, t) U(x, t) E.(x, t)

0 0.00000000 -6.06765¢-03 6.06765¢-03
0.1 4.29259¢-02 3.68093e-02 6.11655e-03
0.2 8.16499¢-02 7.54147¢-02 6.23519¢-03
0.3 1.12381e-01 1.06013e-01 6.36777¢-03
0.4 1.32112¢-01 1.25644e-01 6.46823¢-03
0.5 1.38911e-01 1.32405e-01 6.50554¢-03
0.6 1.32112e-01 1.25644¢-01 6.46823¢-03
0.7 1.12381e-01 1.06013e-01 6.36777e-03
0.8 8.16499¢-02 7.54147¢-02 6.23519¢-03
0.9 4.29259¢-02 3.68093¢-02 6.11655¢-03

1 1.70117e-17 -6.06765e-03 6.06765¢-03

Table 6: L, and L, error norm obtained for problem 2

h L, error L, error
1/10 6.58262¢-03 6.50555e-03
1/20 1.60905¢-03 1.62641e-03
1/40 3.97711e-04 4.06605¢-04
1/80 9.88593¢-05 1.01652¢-04

1/160 2.46438e-05 2.54129¢-05

Figure 1: Exact and approximate solution of problem 1 in the domains 0<x<1, 0<t<I,
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Figure 4: Comparison between the exact solution u(x,t) and numerical solution U(x,t) for problem 1
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Figure 5: Comparison between the exact solution u(x,t) and numerical solution U(x,t) for problem 2

he numerical solutions are obtained for domains [0, 1] at different time levels t = 0.2,0.4,0.6,0.8
with different levels of N. In Table 3 and 6, the L, and L, errors norm are calculated for different
space levels. Furthermore, the pointwise error is measured in domain 0 < x < 1. These results show
that it is close form the exact solution. The comparison of the numerical with the exact solutions is
shown graphically in Figs.1- 5. These figures show that there is a good agreement between exact and
numerical solutions.

7. Conclusion

This paper aims to investigate a numerical solution for the heat equation. The proposed approach is
based on a finite difference method with the cubic B-splines function. More specifically, the cubic B
spline method used the space variable and the finite difference method for the time variable for the
partial differential equation case. The stability analysis of the method is shown to be unconditionally
stable. The precision of the scheme has been measured by considering two test problems and
calculating and error norms for different time levels. Numerical experiments demonstrated that the
results that are obtained from the proposed method is efficient, reliable, fruitful, and powerful.
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