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The Genocchi polynomial has been increasingly used as a convenient tool to solve some fractional calculus problems, due to their
nice properties. However, like some other members in the Appell polynomials, the nice properties are always limited to the
interval defined in ½0, 1�. In this paper, we extend the Genocchi polynomials to the general shifted Genocchi polynomials, Sða,bÞn
ðxÞ, which are defined for interval ½a, b�. New properties for this general shifted Genocchi polynomials will be introduced,
including the determinant form. This general shifted Genocchi polynomials can overcome the conventional formula of finding
the Genocchi coefficients of a function f ðxÞ that involves f ðn−1ÞðxÞ which may not be defined at x = 0, 1. Hence, we use the
general shifted Genocchi polynomials to derive the operational matrix and hence to solve the Fredholm-type fractional integro-
differential equations with arbitrary domain ½a, b�.

1. Introduction

The Genocchi polynomials, GnðxÞ, is one of the members of
the Appell polynomials, AnðxÞ, satisfying the differential
relation ðdAn ðxÞÞ/dx = nAn−1ðxÞ, n = 1, 2, 3,⋯. Besides,
many new results are obtained in the field of number theory
and combinatory [1–4], the Genocchi polynomials are also
applied successfully to solve some kind of fractional calculus
problems, and its advantages were described in [5–9] mostly
via its operational matrix. However, most of the results are
applied over the interval ½0, 1�. Furthermore, for function
approximation by using the Genocchi polynomials, the con-
ventional formula of finding the Genocchi coefficients of a
function f ðxÞ involves f ðn−1ÞðxÞ which may not be defined
at x = 0, 1. To overcome these drawbacks, we propose the
general shifted Genocchi polynomials which are more suit-
able for larger interval ½a, b�, where a, b ≥ 0. Hence, in this
paper, with the new general shifted Genocchi polynomials,
we derive its operational matrix, and then, we solve the frac-

tional integro-differential equation (FIDE) with arbitrary
domain, i.e., not limited to interval ½0, 1�.

FIDE is an equation which contains a fractional deriva-
tive term 0D

α
x f ðxÞ, where α denotes the fractional order

derivative with dαe = n, i.e., (n − 1 < α ≤ n) and an integral
kernel operator term ~Kf ðxÞ = Ð Kðx, t, f ðtÞÞdt. This paper
considers the arbitrary domain FIDE of the 2nd-kind non-
homogeneous Fredholm type of the following special class:

0D
α
x f xð Þ = h xð Þ + λ

ðb
a
K x, tð Þf tð Þdt,

f ið Þ xið Þ = yi, i = 1,⋯, n,
ð1Þ

where f ðxÞ is the unknown function to be solved, Kðx, tÞ is
the integral kernel, 0D

α
xðxÞ is Caputo’s fractional derivative,

and hðxÞ is the nonhomogeneous forced term.
On top of that, solving FIDE is always not an easy task,

and reliable numerical methods are needed. Furthermore,
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for the Fredholm-type problems, the existing numerical
methods are mostly applicable for interval ½0, 1�. Some of
the early published works which for FIDE in ½0, 1� are
including the collocation method via polynomial spline
function [10], the fractional differential transform method
[11], and the Taylor expansion method [12]. In this research
direction, some researches focus on solving the special class
of FIDE, which includes solving fractional partial integro-
differential equations by the resolvent kernel method, the
Laplace transform [13], and the Laguerre polynomial [14],
solving fractional integro-differential equations via the
fractional-order Euler polynomials [15] and the Jacobi wave-
lets [16], solving fourth-order time FIDE with a weakly sin-
gular kernel by compact finite difference scheme [17] and
nonlinear time-fractional partial integro-differential equa-
tion by finite difference scheme [18], and solving nonlinear
two-dimensional fractional integro-differential equations
via hybrid function [19]. However, the FIDE with the arbi-
trary domain is relatively less concerned by researchers,
and so far, the successful methods applied to this type of
problem are limited to the Chebyshev wavelet method
[20]. For more methods as well as theories of FIDE/FDE,
we refer the readers to some well-known books such as
[21, 22].

The rest of the paper is organized as follows: Section 2 is
devoted to preliminary results including basic definition,
properties and determinant form of the general shifted
Genocchi polynomials, Sða,bÞn ðxÞ, function approximation by
Sða,bÞn ðxÞ, and theorem for the analytical expression of the
integral of the product of the two general shifted Genocchi
polynomials Tðn,mÞ =

Ð b
aS

ða,bÞ
n ðxÞSða,bÞm ðxÞdx. Section 3 is the

main result of this paper, which includes the derivation of
a new operational matrix associated with the general shifted
Genocchi polynomials. Besides that, the procedure of
approximating the integral kernel in terms of the general
shifted Genocchi polynomials and analytical expression of
the kernel matrix is also explained in this section. Sections
4 and 5 are devoted to the procedure used in this paper
and some numerical examples. Section 6 is the conclusion
of this paper.

2. Preliminary Results

Here, first, we recall the function approximation by the orig-
inal Genocchi polynomials. For this purpose, we may
approximate a continuous function f ðxÞ in interval ½0, 1� in
terms of the Genocchi polynomials, GnðxÞ, as the basis [23,
24] as follows:

f xð Þ = 〠
∞

n=1
cnGn xð Þ, ð2Þ

where GnðxÞ are the Genocchi polynomials and the Genoc-
chi coefficients are denoted by cn. But normally, this process
is done by using the truncated Genocchi series as follows:

f xð Þ ≃〠
N

n=1
cnGn xð Þ, ð3Þ

where in matrix notation,

f xð Þ = CTG xð Þ, ð4Þ

where C = ½c1, c2,⋯,cN �T is the Genocchi coefficient matrix
and GðxÞ = ½G1ðxÞ,G2ðxÞ,⋯,GNðxÞ�T is the Genocchi basis
matrix. The Genocchi coefficients, cn, can be calculated as

cn =
1
2n! f n−1ð Þ 0ð Þ + f n−1ð Þ 1ð Þ
� �

, n = 1, 2,⋯N: ð5Þ

2.1. General Shifted Genocchi Polynomials: Definitions and
Basic Properties. Equation (5) fails to work for functions that
are not ðn − 1Þ-differentiable at the points x = 0 or x = 1. An
example is given as follows where the coefficient, c3, is
undefined:

Let N = 3, x3/2 ≈∑3
n=1cnGnðxÞ = c1G1ðxÞ + c2G2ðxÞ + c3

G3ðxÞ, we obtain

c3 =
1

2 3!ð Þ
d2

dx2
x3/2
�����
x=0

+ d2

dx2
x3/2
�����
x=1

 !

= 1
2 3!ð Þ

3
4 ffiffiffi

x
p
����
x=0

+ 3
4 ffiffiffi

x
p
����
x=1

� �
:

ð6Þ

To avoid this problem, we define the general shifted
Genocchi polynomials by shifting GnðxÞ from the interval
½0, 1� to the interval ½a, b�, 0 ≤ a ≤ b, i.e., SnðxÞ =Gnððx − aÞ
/ðb − aÞÞ, which results in the following definition:

Definition 1. The general shifted Genocchi polynomials
Sða,bÞn ðxÞ of order n is defined over the interval ½a, b� as

S a,bð Þ
n xð Þ =Gn

x − a
b − a

� �
= 〠

n

k=0

n

k

 !
gn−k

x − a
b − a

� �k
= 〠

n

r=0

n

r

 !
s a,bð Þ
n−r x

r ,

ð7Þ

where sða,bÞn−r =∑n
k=r

 
ððð−aÞk−rÞðgn−kÞÞ

n

k

 !
k

r

 !!
/
 
ðb − aÞk n

r

 !!

is the general shifted Genocchi number, and let Sða,bÞ0
ðxÞ = 0.

The generating function for the general shifted Genocchi
polynomials can be expressed as

2t
et + 1 e

x−að Þ/ b−að Þð Þt = 〠
∞

n=0
S a,bð Þ
n

tn

n!
, tj j < πð Þ: ð8Þ
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If we choose a = 2, b = 4, the first few terms of the general
shifted Genocchi polynomials are

S 2,4ð Þ
1 xð Þ = 1,

S 2,4ð Þ
2 xð Þ = x − 3,

S 2,4ð Þ
3 xð Þ = 3

4 x
2 −

9
2 x + 6,

S 2,4ð Þ
4 xð Þ = 1

2 x
3 −

9
2 x

2 + 12x − 9,

S 2,4ð Þ
5 xð Þ = 5

16 x
4 −

15
4 x3 + 15x2 − 45

2 x + 10:

ð9Þ

Figures 1 and 2 show the first few original Genocchi
polynomials and the general shifted Genocchi polynomials.

Some of the important properties inherited from the
classical Genocchi polynomials are

dS a,bð Þ
n xð Þ
dx

= n
b − a

S a,bð Þ
n−1 xð Þ, n ≥ 1, ð10Þ

dkS a,bð Þ
n xð Þ
dxk

=

0, n ≤ k,

k!
n

k

 !

b − að Þk
S a,bð Þ
n−k xð Þ, n > k,

8>>>><
>>>>:

k, n ∈ℕ ∪ 0f g,

ð11Þ

S a,bð Þ
n að Þ + S a,bð Þ

n bð Þ =Gn 0ð Þ +Gn 1ð Þ = 0, n > 1: ð12Þ

Theorem 2. Given an arbitrary integrable continuous func-
tion f ðxÞ ∈ CN−1ðRÞ, it can be approximated in terms of the
general shifted Genocchi polynomials Sða,bÞn ðxÞ up to order N
(i.e., polynomial degree = N − 1) by

f xð Þ ≈ 〠
N

j=1
cjS

a,bð Þ
j xð Þ =CTS xð Þ: ð13Þ

Then, the general shifted Genocchi coefficient cj is given
by

cj =
b − að Þj−1
2 j!ð Þ f j−1ð Þ að Þ + f j−1ð Þ bð Þ

� �
: ð14Þ

Proof. Let f ðxÞ =∑N
k=1ckS

ða,bÞ
k ðxÞ. Using Equations (11) and

(12), for 1 ≤ j

f j−1ð Þ að Þ + f j−1ð Þ bð Þ

= 〠
N

k=1
ck

dj−1

dxj−1
S a,bð Þ
k að Þ + S a,bð Þ

k bð Þ
� �

= 〠
N

k=j
ck

j − 1ð Þ!
k

j − 1

 !

b − að Þj−1
S a,bð Þ
k− j−1ð Þ að Þ + S a,bð Þ

k− j−1ð Þ bð Þ
� �

= cj

j − 1ð Þ!
j

j − 1

 !

b − að Þj−1
S a,bð Þ
1 að Þ + S a,bð Þ

1 bð Þ
� �

+ 〠
N

k=j+1
ck

j − 1ð Þ!
k

j − 1

 !

b − að Þj−1
S a,bð Þ
k− j−1ð Þ að Þ + S a,bð Þ

k− j−1ð Þ bð Þ
� �

= 2cj
j!ð Þ

b − að Þj−1
:

ð15Þ

Rearrange the above equation, we obtain cj = ððb − aÞj−1Þ
/ð2ðj!ÞÞð f ðj−1ÞðaÞ + f ðj−1ÞðbÞÞ.
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Figure 1: The first few original Genocchi polynomials (in interval
½0, 1�).
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Figure 2: The first few general shifted Genocchi polynomials (in
interval ½2, 4�).
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2.2. Determinant Form of the General Shifted Genocchi
Polynomial Sequence. In this subsection, we will explain that
this new general shifted Genocchi polynomial sequence can
be also expressed in determinant form and recurrence rela-
tion, via modifying the work in [25, 26] for the shifted Gen-
occhi polynomial sequence. For this process, we shift the
order of the general shifted Genocchi polynomial sequence

from n to n + 1; that is, we have Shða,bÞn ðxÞ = Sða,bÞn+1 ðxÞ, where
Shða,bÞn ðxÞ denotes the general shifted Genocchi polynomial
sequence.

Lemma 3. The determinant form of the general shifted Gen-
occhi polynomial sequence, Shða,bÞn ðxÞ, which n > 0, is given by

and the recurrence relation of the general shifted Genocchi
polynomial sequence, Shða,bÞn ðxÞ, can be written as

Sh a,bð Þ
n xð Þ = 1

sn,n
xn − 〠

n−1

j=0
sn,jSh

a,bð Þ
j xð Þ

 !
: ð17Þ

In order to obtain values for si,j, we follow Costabile
et al.’s method [25], which we summarize as follows:

Step 1. From Sða,bÞn ðxÞ =∑n
r=0

n

r

 !
sða,bÞn−r xr , we obtain the gen-

eral shifted Genocchi number, sða,bÞi ; hence, we calculate the
lower triangular Toeplitz matrix, TS, with entries

ti,j =
s a,bð Þ
i+1−j

i + 1 − jð Þ! : ð18Þ

Step 2. Calculate the upper triangular matrix S via

S =D−1
2 T−1

S D−1
1 , ð19Þ

where D1 = diag fði + 1Þ!∣i = 0, 1,⋯g and D2 = diag f1/i!ji
= 0, 1,⋯g. The values for si,j can be obtained using the
entries of S.

To show the result of the determinant form of the general

shifted Genocchi polynomial sequence, we present that Shð2,5Þ3
ðxÞ (a = 2, b = 5, n = 3) and Shð2,5Þ4 ðxÞ (a = 2, b = 5, n = 4) are
given by

Sh 2,5ð Þ
3 xð Þ = −1ð Þ3

1/4!

1 x
3

x2

32
x3

33

1 7
6

29
18

133
54

0 1
2

7
6

29
12

0 0 1
3

7
6

�����������������

�����������������

,

Sh 2,5ð Þ
4 xð Þ = −1ð Þ4

1/5!

1 x
3

x2

32
x3

33
x4

34

1 7
6

29
18

133
54

641
162

0 1
2

7
6

29
12

133
27

0 0 1
3

7
6

29
9

0 0 0 1
4

7
6

����������������������

����������������������

:

ð20Þ

Hence, the determinant form of the above general shifted
Genocchi polynomial sequence is as follows:

S 2,5ð Þ
4 xð Þ = Sh 2,5ð Þ

3 xð Þ = 4
27 x

3 −
14
9 x2 + 40

9 x −
77
27 ,

S 2,5ð Þ
5 xð Þ = Sh 2,5ð Þ

4 xð Þ = 5
81 x

4 −
70
81 x

3 + 100
27 x2 −

385
81 x + 50

81 :

ð21Þ

2.3. Integral of Product of the General Shifted Genocchi
Polynomials. In this subsection, we derive the analytical
expression for the integral of the product of the two general

Sh a,bð Þ
n xð Þ = −1ð ÞnQn

i=0si,i

1 x
b − a

x2

b − að Þ2 ⋯
xn−1

b − að Þ n−1ð Þ
xn

b − að Þn
s0,0 s1,0 s2,0 ⋯ sn−1,0 sn,0

0 s1,1 s2,0 ⋯ sn−1,1 sn,1

⋮ ⋱ ⋱   ⋮ ⋮

⋮   ⋱ ⋱ ⋮ ⋮

0 ⋯        

�������������������

�������������������

, ð16Þ
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shifted Genocchi polynomials which will be used frequently
in the later parts of the paper. This results in the following
theorem:

Theorem 4. Given any two general shifted Genocchi polyno-
mials Sða,bÞn ðxÞ, Sða,bÞm ðxÞ, for 0 ≤ x

γ a,bð Þ
n,m xð Þ =

ð
S a,bð Þ
n xð ÞS a,bð Þ

m xð Þdx =
ðx
0
S a,bð Þ
n xð ÞS a,bð Þ

m xð Þdx

= 〠
n−1

r=0
−1ð Þr b − að Þ n rð Þ

m + 1ð Þ r+1ð Þ

Á S a,bð Þ
n−r xð ÞS a,bð Þ

m+1+r xð Þ − S a,bð Þ
n−r 0ð ÞS a,bð Þ

m+1+r 0ð Þ
� �

,

ð22Þ

where nðrÞ is the falling factorial and ðm + 1Þðr+1Þ is the rising
factorial. For ½a, b�, 0 ≤ a ≤ b, we have

γ a,bð Þ
n,m = γ a,bð Þ

n,m bð Þ − γ a,bð Þ
n,m að Þ =

ðb
a
S a,bð Þ
n xð ÞS a,bð Þ

m xð Þdx

= 〠
n−1

r=0
−1ð Þr b − að Þ n rð Þ

m + 1ð Þ r+1ð Þ

Á S a,bð Þ
n−r bð ÞS a,bð Þ

m+1+r bð Þ − S a,bð Þ
n−r að ÞS a,bð Þ

m+1+r að Þ
� �

= 〠
n−1

r=0
−1ð Þr b − að Þ n rð Þ

m + 1ð Þ r+1ð Þ

Á S a,bð Þ
n−r bð ÞS a,bð Þ

m+1+r bð Þ − gn−rgm+1+r

� �
,

ð23Þ

where gk = Sða,bÞk ðaÞ =Gkð0Þ.

Proof. In order to prove this theorem, we need the following
expression:

dS a,bð Þ
m xð Þ
dx

= m
b − a

S a,bð Þ
m−1 xð Þ,ðx

0
S a,bð Þ
m xð Þdx = b − a

m + 1 S a,bð Þ
m+1 xð Þ − S a,bð Þ

m+1 0ð Þ
� �

:

ð24Þ

For

γ a,bð Þ
n,m xð Þ =

ðx
0
S a,bð Þ
n xð ÞS a,bð Þ

m xð Þdx, ð25Þ

and hence, using integration by parts, we have

γ a,bð Þ
n,m xð Þ = S a,bð Þ

n xð Þ
b − að Þ S a,bð Þ

m+1 xð Þ − S a,bð Þ
m+1 0ð Þ

� �
m + 1

0
@

1
A

−
ðx
0

n
b − a

S a,bð Þ
n−1 xð Þ

� � b − að Þ S a,bð Þ
m+1 xð Þ − S a,bð Þ

m+1 0ð Þ
� �

m + 1 dx

= S a,bð Þ
n xð Þ

b − að Þ S a,bð Þ
m+1 xð Þ − S a,bð Þ

m+1 0ð Þ
� �

m + 1

0
@

1
A

−
n

m + 1

ðx
0
S a,bð Þ
n−1 xð ÞS a,bð Þ

m+1 xð Þdx

+ n
m + 1 S

a,bð Þ
m+1 0ð Þ

ðx
0
S a,bð Þ
n−1 xð Þdx

= b − a
m + 1 S

a,bð Þ
n xð Þ S a,bð Þ

m+1 xð Þ − S a,bð Þ
m+1 0ð Þ

� �
−

n
m + 1

ðx
0
S a,bð Þ
n−1 xð ÞS a,bð Þ

m+1 xð Þdx

+ b − a
m + 1 S

a,bð Þ
m+1 0ð Þ S a,bð Þ

n xð Þ − S a,bð Þ
n 0ð Þ

� �
= b − a
m + 1 S a,bð Þ

n xð ÞS a,bð Þ
m+1 xð Þ − S a,bð Þ

n 0ð ÞS a,bð Þ
m+1 0ð Þ

� �
−

n
m + 1

ðx
0
S a,bð Þ
n−1 xð ÞS a,bð Þ

m+1 xð Þdx:

ð26Þ

By using Equation (25), we obtain

γ a,bð Þ
n,m xð Þ = b − að Þ S a,bð Þ

n xð ÞS a,bð Þ
m+1 xð Þ − S a,bð Þ

n 0ð ÞS a,bð Þ
m+1 0ð Þ

m + 1

 !

−
n

m + 1 γ
a,bð Þ
n−1,m+1 xð Þ

= b − að Þ S a,bð Þ
n xð ÞS a,bð Þ

m+1 xð Þ − S a,bð Þ
n 0ð ÞS a,bð Þ

m+1 0ð Þ
m + 1

 !

−
n

m + 1 b − að Þ S a,bð Þ
n−1 xð ÞS a,bð Þ

m+2 xð Þ − S a,bð Þ
n−1 0ð ÞS a,bð Þ

m+2 0ð Þ
m + 2

 ! 

−
n − 1
m + 2 γ

a,bð Þ
n−2,m+2 xð Þ

!

= b − að Þ S a,bð Þ
n xð ÞS a,bð Þ

m+1 xð Þ − S a,bð Þ
n 0ð ÞS a,bð Þ

m+1 0ð Þ
m + 1

 !

+ −1ð Þ1 b − að Þn
m + 1

S a,bð Þ
n−1 xð ÞS a,bð Þ

m+2 xð Þ − S a,bð Þ
n−1 0ð ÞS a,bð Þ

m+2 0ð Þ
m + 2

 

+ −1ð Þ2n n − 1ð Þ
m + 1ð Þ m + 2ð Þ γ

a,bð Þ
n−2,m+2 xð Þ

!
=⋯:

ð27Þ

These processes continue recursively for n times, and
then, we will obtain
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=⋯ = 〠
n−1

r=0
−1ð Þr b − að Þ n n − 1ð Þ⋯ n − r + 1ð Þ

m + 1ð Þ⋯ m + rð Þ
Á S a,bð Þ

n−r xð ÞS a,bð Þ
m+1+r xð Þ − S a,bð Þ

n−r 0ð ÞS a,bð Þ
m+1+r 0ð Þ

� �

= 〠
n−1

r=0
−1ð Þr b − að Þ n rð Þ

m + 1ð Þ r+1ð Þ

Á S a,bð Þ
n−r xð ÞS a,bð Þ

m+1+r xð Þ − S a,bð Þ
n−r 0ð ÞS a,bð Þ

m+1+r 0ð Þ
� �

:

ð28Þ

3. Main Result

3.1. General Shifted Genocchi Polynomial Operational
Matrix of Fractional Derivative. In this section, we will
derive the analytical expression of the general shifted Genoc-

chi polynomial operational matrix of fractional derivative in
the Caputo sense, which is the N ×N matrix 0Pα

S , where

0D
αS xð Þ
x = 0P

α
SS xð Þ,

0D
α
x

S a,bð Þ
1

S a,bð Þ
2

⋮

S a,bð Þ
N

2
666664

3
777775 =

ρ11 ρ12 ⋯ ρ1N

ρ21 ρ22 ⋯ ρ2N

⋮ ⋯ ⋯ ⋮

ρN1 ρN2 ⋯ ρNN

2
666664

3
777775

S a,bð Þ
1

S a,bð Þ
2

⋮

S a,bð Þ
N

2
666664

3
777775:

ð29Þ

To derive the 0Pα
S , we first prove the following Lemma 5.

Lemma 5. Caputo’s fractional derivative of fractional order α

of a general shifted Genocchi polynomial, Sða,bÞi ðxÞ, of order i
is given by

Proof. For n − 1 < α ≤ n, n = dαe

0D
α
xS

a,bð Þ
i xð Þ = 1

Γ n − αð Þ
ðx
0
x − tð Þn−α−1 dn

dtn
Gi

t − a
b − a

� �
dt

= 1
Γ n − αð Þ

ðx
0
x − tð Þn−α−1 dn

dtn
〠
i

r=0

i

r

 !
gi−r

t − a
b − a

� �r

dt

= 1
Γ n − αð Þ〠

i

r=n

i

r

 !
gi−r

b − að Þr n!
r

n

 !

Á
ðx
0
x − tð Þn−α−1 t − að Þr−ndt

= 1
Γ n − αð Þ〠

i

r=n

i

r

 !
gi−r

b − að Þr n!
r

n

 !

Á
ðx
0
x − tð Þn−α−1 〠

r−n

k=0

r − n

k

 !
tk −að Þr−n−kdt

= 1
Γ n − αð Þ〠

i

r=n
〠
r−n

k=0

−að Þr−n−k
i

r

 !
r − n

k

 !
gi−r

b − að Þr n!

Á
r

n

 !ðx
0
x − tð Þn−α−1tkdt:

ð31Þ

Substitute t = xu,

0D
α
xS

a,bð Þ
i xð Þ = 1

Γ n − αð Þ〠
i

r=n
〠
r−n

k=0

−að Þr−n−k
i

r

 !
r − n

k

 !
gi−r

b − að Þr n!

Á
r

n

 !
xn−α+k

ð1
0
1 − uð Þn−α−1ukdu

= 1
Γ n − αð Þ〠

i

r=n
〠
r−n

k=0

−að Þr−n−k
i

r

 !
r − n

k

 !
gi−r

b − að Þr n!

Á
r

n

 !
xn−α+kB k + 1, n − αð Þ = 1

Γ n − αð Þ

Á 〠
i

r=n
〠
r−n

k=0

−að Þr−n−k
i

r

 !
r − n

k

 !
gi−r

b − að Þr n!
r

n

 !
xn−α+k

Á Γ k + 1ð ÞΓ n − αð Þ
Γ n − α + k + 1ð Þ

= 〠
i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−r
b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k + 1ð Þ x

n−α+k,

ð32Þ

where Bðx, yÞ is the beta function which can be found usingÐ 1
0u

x−1ð1 − uÞy−1du for Re ðxÞ, Re ðyÞ > 0.

0D
α
xS

a,bð Þ
i xð Þ = 〠

i

r= αd e
〠
r− αd e

k=0

−að Þr− αd e−ki!gi−rx
αd e−α+k

b − að Þr i − rð Þ! r − αd e − kð Þ!Γ αd e − α + k + 1ð Þ , n − 1 < α ≤ n, n ∈ℕ, i ≥ α

0, i < α:

8>><
>>: ð30Þ
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Hence, we obtain the theorem for operational matrix 0Pα
S

as follows:

Theorem 6. Given a set Sða,bÞi ðxÞ, i = 1,⋯N of the N general
shifted Genocchi polynomials, the general shifted Genocchi
polynomial operational matrix of fractional derivative in
the Caputo sense of order α over the interval ½0, 1� is the
N ×N matrix 0P

α
S , given by

0P
α
S =M αð Þ =

0 0 ⋯ 0

⋮ ⋮ ⋯ ⋮

0 0 ⋯ 0

〠
αd e

k= αd e
ρ αd e,1 〠

αd e

k= αd e
ρ αd e,2 ⋯ 〠

αd e

k= αd e
ρ αd e,N

⋮ ⋮ ⋯ ⋮

〠
i

k= αd e
ρi,1 〠

i

k= αd e
ρi,2 ⋯ 〠

i

k= αd e
ρi,N

⋮ ⋮ ⋯ ⋮

〠
N

k= αd e
ρN ,1 〠

N

k= αd e
ρN ,2 ⋯ 〠

N

k= αd e
ρN ,N

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

,

ð33Þ

where ρi,j is given by

ρi,j =
b − að Þj−1
2 j!ð Þ 〠

i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−r an−α+k−j+1 + bn−α+k−j+1
� �

b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k − j + 2ð Þ :

ð34Þ

Proof. Let 0D
α
xS

ða,bÞ
i ðxÞ =∑N

j=1ρijS
ða,bÞ
j ðxÞ. Then, using the func-

tion approximation as in Theorem 2 and Caputo’s fractional

derivative for Sða,bÞi ðxÞ in Lemma 5, we have

ρij =
b − að Þj−1
2 j!ð Þ

dj−1

dxj−1 0D
α
xS

a,bð Þ
i xð Þ

���
x=a

+ dj−1

dxj−1 0D
α
xS

a,bð Þ
i xð Þ

���
x=b

 !

= b − að Þj−1
2 j!ð Þ

dj−1

dxj−1
〠
i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−rxn−α+k
b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k + 1ð Þ

�����
x=a

 

+ dj−1

dxj−1
〠
i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−rxn−α+k
b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k + 1ð Þ

�����
x=b

!

= b − að Þj−1
2 j!ð Þ × 〠

i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−r j − 1ð Þ!
n − α + k

j − 1

 !
xn−α+k− j+1

��
x=a + xn−α+k−j+1

��
x=b

� �
b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k + 1ð Þ

= b − að Þj−1
2 j!ð Þ 〠

i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−r an−α+k− j+1 + bn−α+k−j+1
� �

b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k − j + 2ð Þ : ð35Þ

As the formula given in Theorem 6 may fail to work for
a = 0, we use the matrix approach to derive the 0Pα

S as given
in Theorem 8. To prove Theorem 8, we need the following
lemma:

Lemma 7. The matrix ΘN defined as ΘN = Ð 10ð0Dα
xSðxÞÞ ∗

STðxÞdx is given by

ΘN = θik½ �N×N =
ð1
0
0D

α
xGi xð ÞGk xð Þdx

� �
N×N

, ð36Þ

where

θik = 〠
i

r= αd e
〠
k

p=0

i!
k

p

 !
gi−rgk−p

i − rð Þ! r − α + p + 1ð ÞΓ r − α + 1ð Þ :
ð37Þ

Proof. From Caputo’s fractional derivative of the Genocchi
polynomials [5, 23, 24], we have

0D
α
xGi xð Þ = 〠

i

r= αd e

i!gi−r
i − rð Þ!Γ r − α + 1ð Þ x

r−α

0D
α
xGi xð ÞGk xð Þ = 〠

i

r= αd e

i!gi−r
i − rð Þ!Γ r − α + 1ð Þ x

r−α

 !
〠
k

p=0

k

p

 !
gk−px

p

 !

= 〠
i

r= αd e
〠
k

p=0

i!gi−r
i − rð Þ!Γ r − α + 1ð Þ

k

p

 !
gk−px

r−α+p:

ð38Þ

Integrate both sides, and we obtain

ð1
0
0D

α
xGi xð ÞGk xð Þdx = 〠

i

r=
〠
k

p=0

i!gi−r
i − rð Þ!Γ r − α + 1ð Þ

k

p

 !
gk−p

ð1
0
xr−α+pdx

= 〠
i

r= αd e
〠
k

p=0

i!
k

p

 !
gi−rgk−p

i − rð Þ! r − α + p + 1ð ÞΓ r − α + 1ð Þ :

ð39Þ

Theorem 8. Given a set Sða,bÞi ðxÞ, i = 1,⋯N of the N general
shifted Genocchi polynomials, the general shifted Genocchi
polynomial operational matrix of Caputo’s fractional deriva-
tive of order α over the interval ½a, b� is the N ×N matrix 0P

α
S ,

given by

0P
α
S =ΘNT a,bð Þ−1 , ð40Þ

where ΘN is given in Lemma 7 and Tða,bÞ = ½γða,bÞnm �N×N with
elements γða,bÞnm is given in Theorem 4.
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Proof. From Equation (29),

0D
α
xS xð Þ = 0Pα

SS xð Þ,
0D

α
xS xð Þð ÞST xð Þ = 0Pα

SS xð ÞST xð Þ,ð1
0

0D
α
xS xð Þð ÞST xð Þdx = 0Pα

S

ð1
0
S xð ÞST xð Þdx

� �
,

ΘN = 0Pα
ST

0,1ð Þ
0 ,

Pα
S =ΘNT 0,1ð Þ−1 :

ð41Þ

3.2. Approximation of Integral Kernel by the General Shifted
Genocchi Polynomials. Here, we approximate the integral
kernel Kðx, tÞ in terms of the truncated series of the general
shifted Genocchi polynomials Sða,bÞn ðxÞ:

K x, tð Þ = 〠
∞

i=1
〠
∞

j=1
kijS

a,bð Þ
i xð ÞS a,bð Þ

j tð Þ ≈ 〠
N

i=1
〠
N

j=1
kijS

a,bð Þ
i xð ÞS a,bð Þ

j tð Þ

= ST xð ÞKSS tð Þ:
ð42Þ

We present two approaches for obtaining the kernel
matrix KS.

3.2.1. Method 1: Conventional Genocchi Coefficient Formula.
Using the conventional method of finding the Genocchi
coefficients for a single variable function f ðxÞ, we can extend
the formula to a two-variable function Kðx, tÞ which is con-
tinuous and ðN − 1Þ differentiable in interval ½0, 1�. This
results in the following theorem:

Theorem 9. Let Kðx, tÞ be a two-variable continuous func-
tion in CN−1ð½0, 1�Þ. Then, Kðx, tÞ can be approximated in
terms of the general shifted Genocchi polynomials up to order

N , i.e., Kðx, tÞ ≈∑N
i=1∑

N
j=1kijS

ða,bÞ
i ðxÞSða,bÞj ðtÞ = STðxÞKSSðtÞ,

N ∈ℕ, where S is the general shifted Genocchi polynomial
basis matrix and KS is the N ×N integral kernel matrix in
the general shifted Genocchi basis given by

KS = kij
Â Ã

N×N ,

kij =
b − að Þi+j−2
4 i!j!ð Þ K i−1,j−1ð Þ

x,tð Þ a, að Þ + K i−1,j−1ð Þ
x,tð Þ a, bð Þ

�
+ K i−1,j−1ð Þ

x,tð Þ b, að Þ + K i−1,j−1ð Þ
x,tð Þ b, bð Þ

�
,

ð43Þ

where

K i−1,j−1ð Þ
x,tð Þ a, bð Þ = ∂i−1

∂xi−1
∂j−1

∂t j−1
K x, tð Þ

�����
x=a,t=b

: ð44Þ

Proof. Assume that the kernel Kðx, tÞ is approximated using
N number of the general shifted Genocchi polynomials, i.e.,

K x, tð Þ ≈ = 〠
N

i=1
〠
N

j=1
kijS

a,bð Þ
i xð ÞS a,bð Þ

j tð Þ

= 〠
N

j=1
〠
N

i=1
kijS

a,bð Þ
i xð Þ

 !
S a,bð Þ
j tð Þ:

ð45Þ

Set ϕjðxÞ =∑N
i=1kijS

ða,bÞ
i ðxÞ. Hence, Kðx, tÞ =∑N

j=1ϕjðxÞ
Sða,bÞj ðtÞ. Using the formula of the general shifted Genocchi

coefficients for Sða,bÞj ðtÞ (i.e., Theorem 2 with respect to t var-
iable),

ϕj xð Þ = b − að Þj−1
2 j!ð Þ

∂j−1K x, tð Þ
∂t j−1

�����
t=a

+ ∂j−1K x, tð Þ
∂t j−1

�����
t=b

 !
:

ð46Þ

Now using the above expression of ϕjðxÞ together with
the formula of the general shifted Genocchi coefficients for

Sða,bÞi ðxÞ (i.e., with respect to x variable) instead, we obtain

kij =
b − að Þi−1
2 i!ð Þ

∂i−1ϕj xð Þ
∂xi−1

�����
x=a

+
∂i−1ϕj xð Þ
∂xi−1

�����
x=b

 !

= b − að Þi−1
2 i!ð Þ

∂i−1

∂xi−1
b − að Þ j−1
2 j!ð Þ

∂j−1K x, tð Þ
∂t j−1

�����
t=a

+ ∂j−1K x, tð Þ
∂t j−1

�����
t=b

 !�����
x=a

"

+ ∂i−1

∂xi−1
b − að Þj−1
2 j!ð Þ

∂j−1K x, tð Þ
∂t j−1

�����
t=a

+ ∂j−1K x, tð Þ
∂t j−1

�����
t=b

 !�����
x=b

#

= b − að Þi−1 b − að Þ j−1
4 i!j!ð Þ

∂i−1

∂xi−1
∂j−1K x, tð Þ

∂t j−1

�����
x=a,t=a

 "

+ ∂i−1

∂xi−1
∂j−1K x, tð Þ

∂t j−1

�����
x=a,t=b

!
+ ∂i−1

∂xi−1
∂j−1K x, tð Þ

∂t j−1

�����
x=b,t=a

 

+ ∂i−1

∂xi−1
∂j−1K x, tð Þ

∂t j−1

�����
x=b,t=b

!#
:

ð47Þ

In a similar way, the above approach can be extended to
finding the general shifted Genocchi coefficients for the
approximation of a multivariable function.

3.2.2. Method 2: Matrix Method. The classical way will not
work for the kernel function not differentiable at x, t = 0, 1;
then, we can adopt the matrix approach similar to that of
finding the general shifted Genocchi coefficients in Theorem
2 to arrive at the following theorem:

Theorem 10. Let Kðx, tÞ be a two-variable continuous func-
tion in CN−1ð½a, b�Þ. Then, Kðx, tÞ can be approximated in
terms of the general shifted Genocchi polynomials up to order

N , i.e., Kðx, tÞ ≈ ∑N
i=1∑

N
j=1kijS

ða,bÞ
i ðxÞSða,bÞj ðtÞ = STðxÞKSSðtÞ,

N ∈ℕ, where S is the general shifted Genocchi polynomial
basis matrix and KS is the N ×N integral kernel matrix in
the general shifted Genocchi basis given by
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KS = T a,bð Þ
� �−1

NS T a,bð Þ
� �−1

, ð48Þ

where

NS = ηpq

h i
N×N

=
ðb
a

ðb
a
K x, tð ÞS a,bð Þ

p xð ÞS a,bð Þ
q tð Þdxdt

� �
N×N

,

T a,bð Þ
� �−1

= γ a,bð Þ
n,m

h i
N×N

� �−1

= 〠
n−1

r=0

−1ð Þr b − að Þn rð Þ
m + 1ð Þ r+1ð Þ S a,bð Þ

n−r bð ÞS a,bð Þ
m+1+r bð Þ − gn−rgm+1+r

� �" #
N×N

 !−1

:

ð49Þ

Proof. From, Kðx, tÞ ≈ STðxÞKSSðtÞ,

S xð ÞK x, tð Þ = S xð ÞST xð ÞKSS tð Þ,ðb
a
S xð ÞK x, tð Þdx =

ðb
a
S xð ÞST xð Þdx

� �
KSS tð Þ

= T a,bð ÞKSS tð Þ,ðb
a
S xð ÞK x, tð Þdx

� �
ST tð Þ = T a,bð ÞKSS tð ÞST tð Þ,

ðb
a

ðb
a
K x, tð ÞS xð ÞST tð Þdxdt = T a,bð ÞKS

ðb
a
S tð ÞST tð Þdt

� �
,

ð50Þ

where Tða,bÞ =
Ð b
aSðxÞSTðxÞdx =

Ð b
aSðtÞSTðtÞdt. Define NS =Ð b

a

Ð b
aKðx, tÞSðxÞSTðtÞdxdt. Thus,

NS = T a,bð ÞKST a,bð Þ,

KS = T a,bð Þ
� �−1

NS T a,bð Þ
� �−1

:
ð51Þ
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Exact solution
Approximate solution

1.4 1.6
x

1.8 2

Example 1: Graph of exact solution versus approximate solution

Figure 3: Comparison of exact solution f ðxÞ (red colour) and approximate solution f ∗ðxÞ (dot line) of Example 1 for N = 4:

Table 1: Comparison of the approximate solution f ∗ðxÞ using
N = 4 with exact solution f ðxÞ = 2x2 + 3x + 2 and absolute errors
for Example 1.

t Exact sol. f xð Þ Approx. sol. f ∗ xð Þ Abs. error
f xð Þ − f ∗ xð Þj j

1.0 7.0000000000 7.0000000000 0

1.1 7.7200000000 7.7200000000 0

1.2 8.4800000000 8.4800000000 0

1.3 9.2800000000 9.2800000000 0

1.4 10.1200000000 10.1200000000 0

1.5 11.0000000000 11.0000000000 0

1.6 11.9200000000 11.9200000000 0

1.7 12.8800000000 12.8800000000 0

1.8 13.8800000000 13.8800000000 0

1.9 14.9200000000 14.9200000000 0

2.0 16.0000000000 16.0000000000 0
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4. Procedure of Solving Arbitrary Domain
Fractional Integro-differential Equation

We will adopt the same approach as the other operational
matrix methods for solving FIDE by approximating each term
in the equation by the general shifted Genocchi polynomials.
From the following class of the 2nd-kind Fredholm FIDE,

0D
α
x f xð Þ = h xð Þ + λ

ðb
a
K x, tð Þf tð Þdt, ð52Þ

f ið Þ xið Þ = yi, i = 1,⋯,m: ð53Þ
Now, we approximate each term in Equation (52) with the

corresponding approximation using theN order of the general
shifted Genocchi polynomials,

0D
α
x f xð Þ ≈CT

0 P
α
SS xð Þ,

h xð Þ ≈HTS xð Þ,
K x, tð Þ ≈ ST xð ÞKSS tð Þ:

ð54Þ

Hence, FIDE in Equation (52) in matrix form becomes:

ST xð Þ 0Pα
Sð ÞTC = ST xð ÞH + λ

ðb
a
ST xð ÞKSS tð ÞST tð ÞCdt,

ST xð Þ 0Pα
Sð ÞTC = ST xð ÞH + λST xð ÞKS

ðb
a
S tð ÞST tð Þdt

� �
C,

ST xð Þ 0Pα
Sð ÞTC −H − λKST

a,bð ÞC
� �

= 0,

ð55Þ

where Tða,bÞ = Ð baSðtÞSTðtÞdt = ½γða,bÞnm �N×N . Then, we select the
N equally spaced points within the interval ½a, b�, i.e., vr = a
+ ððb − aÞðr − 1ÞÞ/ðN − 1Þ, r = 1,⋯,N as the collocation
points and substituting these into Equation (55), and we
obtain a system of N + 1 algebraic equations in terms of the
N general shifted Genocchi coefficients C = ½c1 ⋯ cN �T .
Choosing anyN − 1 equations from the above system together
with the initial conditions, f ðx0Þ = STðxÞC = y0, we can solve
for the general shifted Genocchi coefficients C = ½c1 ⋯ cN �T
of the unknown function f ðxÞ. The approximate solution f ∗

ðxÞ =CTSðxÞ will be compared to the exact solution f ðxÞ over
the interval ½a, b�.

5. Numerical Examples

Here are two examples of FIDE of Equation (1) which are
solved using the proposed method via the general shifted
Genocchi polynomials and its operational matrix. The com-
putation was done via Maple software.

Example 1. Consider the following FIDE:

0D
5/3ð Þ
x f xð Þ = 6x1/3

ffiffiffi
3

p
Γ 2/3ð Þ
π

−
471
10 x2 +

ð2
1
x2t3 f tð Þdt:

ð56Þ

Let f ð1Þ = 7, the exact solution is f ðxÞ = 2x2 + 3x + 2.
Since ½a, b� = ½1, 2�, we use the general shifted Genocchi

0.80

0.78

0.76

0.74

0.72

0.70

0.68

2 2.5

Exact solution
Approximate solution for N = 4

3
x

3.5 4

Example 2: Graph of exact solution versus approximate solution for 
N = 4 over interval [2,4]

Figure 4: Comparison of exact solution f ðxÞ (red colour) and approximate solution f ∗ðxÞ (dot line) of Example 2 for N = 4.
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polynomials over the interval ½1, 2�, i.e., Sð1,2Þi ðxÞ to solve the

problem. Let us choose N = 4 to approximate f ðxÞ ≈∑4
i=1ci

Sð1,2Þi ðxÞ.

The proposed method gives the general shifted Genoc-
chi coefficients as c1 = 23/2, c2 = 9/2, c3 = 2/3, c4 = 0, and

therefore, the approximate solution produced is f ∗ðxÞ = c1
Sð1,2Þ1 ðxÞ + c2S

ð1,2Þ
2 ðxÞ + c3S

ð1,2Þ
3 ðxÞ + c4S

ð1,2Þ
4 ðxÞ = 2x2 + 3x + 2

which reproduces the exact solution over the interval ½1, 2�.
Figure 3 shows both f ðxÞ and f ∗ðxÞ over the interval ½1, 2�.
The numerical results and absolute errors are shown in
Table 1.

Example 2. Consider the following FIDE:

0D
1/2
x f xð Þ =

ffiffiffi
x

p
x + 1ð Þ3/2 + x + 1ð Þ tan h−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x/ x + 1ð Þp� �

x + 1ð Þ5/2 ffiffiffi
π

p

+ x ln 3
5

� �
− 4

� �
+
ð4
2
xtf tð Þdt:

ð57Þ

Let f ð2Þ = 2/3, the exact solution is f ðxÞ = x/ðx + 1Þ. Let
us choose orders of N = 4 of the general shifted Genocchi

polynomials over the interval ½a, b� = ½2, 4� to approximate
f ðxÞ and compare the graphs and absolute errors between
the exact solution and approximate solutions of orders
N = 4. Figure 4 shows both f ðxÞ and f ∗ðxÞ of orders N = 4
over the interval ½2, 4�. The numerical results and absolute
errors are shown in Table 2, which shows our method of high
accuracy.

6. Conclusion

In this paper, the 2nd-kind nonhomogeneous Fredholm
FIDE is solved using the general shifted Genocchi polyno-
mials Sða,bÞn ðxÞ. We introduce the general shifted Genocchi
polynomials and derive the formula for computing the gen-
eral shifted Genocchi coefficients. Some new properties for
the general shifted Genocchi polynomials were introduced
including the determinant form. Also, we derive the analyt-
ical expression of the integral of the product of the general
shifted Genocchi polynomials, Tðn,mÞ; the integral kernel
matrix, KS; and the general shifted Genocchi polynomial
operational matrix of Caputo’s fractional derivatives, 0Pα

S .
By approximating each term in the FIDE in terms of the
general shifted Genocchi polynomials, the equation is trans-
formed into a system of algebraic equations. With the use of
the collocation method over the interval ½a, b� and the initial
condition given, the arbitrary domain Fredholm FIDE can
be solved with very high accuracy with only few terms of
the general shifted Genocchi polynomials. For future work,
we hope we can extend this approach to other types of
Appell polynomials, such as the Bernoulli polynomials
which had been used widely such as in [27]. Apart from that,
we hope we can use this general shifted Genocchi polyno-
mial approach to solve other kinds of fractional calculus
problems, such as those in [28, 29], or inverse fractional cal-
culus problems [30, 31].
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