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Rudolf Virchow was the first person to point out the important link between
immune function and cancer. He did this by noticing that leukocytes were often
found in tumors. Overexpression of arginase 1 (ARG1) and inducible nitric oxide
synthase (iNOS) in myeloid-derived suppressor cells (MDSCs) and tumour-
associated macrophages (TAMs) depletes both intracellular and extracellular
arginine. TCR signalling is slowed as a result, and the same types of cells
produce reactive oxygen and nitrogen species (ROS and RNS), which
aggravates the situation. Human arginase I is a double-stranded manganese
metalloenzyme that helps L-arginine break down into L-ornithine and urea.
Thus, a quantitative structure-activity relationship (QSAR) analysis was
performed to unearth the unrecognised structural aspects crucial for arginase-
I inhibition. In this work, a balanced QSAR model with good prediction
performance and clear mechanistic interpretation was developed using a
dataset of 149 molecules encompassing a broad range of structural scaffolds
and compositions. The model was made to meet OECD standards, and all of its
validation parameters have values that are higher than theminimum requirements
(R2

tr = 0.89, Q2
LMO = 0.86, and R2

ex = 0.85). The present QSAR study linked
structural factors to arginase-I inhibitory action, including the proximity of
lipophilic atoms to the molecule’s centre of mass (within 3A), the position of
the donor to the ring nitrogen (exactly 3 bonds away), and the surface area ratio. As
OAT-1746 and two others are the only arginase-I inhibitors in development at the
time, we have performed a QSAR-based virtual screening with 1650 FDA
compounds taken from the zinc database. In this screening, 112 potential hit
compounds were found to have a PIC50 value of less than 10 nm against the
arginase-I receptor. The created QSARmodel’s application domain was evaluated
in relation to the most active hit molecules identified using QSAR-based virtual
screening, utilising a training set of 149 compounds and a prediction set of 112 hit
molecules. As shown in the Williams plot, the top hit molecule,
ZINC000252286875, has a low leverage value of HAT i/i h* = 0.140, placing it
towards the boundary of the usable range. Furthermore, one of 112 hit molecules
with a docking score of −10.891 kcal/mol (PIC50 = 10.023 M) was isolated from a
study of arginase-I using molecular docking. Protonated ZINC000252286875-
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linked arginase-1 showed 2.9 RMSD, whereas non-protonated had 1.8. RMSD plots
illustrate protein stability in protonated and non-protonated ZINC000252286875-
bound states. Protonated-ZINC000252286875-bound proteins contain 25 Rg. The
non-protonated protein-ligand combination exhibits a 25.2-Rg, indicating
compactness. Protonated and non-protonated ZINC000252286875 stabilised
protein targets in binding cavities posthumously. Significant root mean square
fluctuations (RMSF) were seen in the arginase-1 protein at a small number of
residues for a time function of 500 ns in both the protonated and unprotonated
states. Protonated and non-protonated ligands interacted with proteins
throughout the simulation. ZINC000252286875 bound Lys64, Asp124, Ala171,
Arg222, Asp232, and Gly250. Aspartic acid residue 232 exhibited 200% ionic
contact. 500-ns simulations-maintained ions. Salt bridges for
ZINC000252286875 aided docking. ZINC000252286875 created six ionic bonds
with Lys68, Asp117, His126, Ala171, Lys224, and Asp232 residues. Asp117, His126,
and Lys224 showed 200% ionic interactions. In protonated and deprotonated
states, GbindvdW, GbindLipo, and GbindCoulomb energies played crucial role.
Moreover, ZINC000252286875 meets all of the ADMET standards to serve as a
drug. As a result, the current analyses were successful in locating a novel and potent
hit molecule that inhibits arginase-I effectively at nanomolar concentrations. The
results of this investigation can be used to develop brand-new arginase I inhibitors
as an alternative immune-modulating cancer therapy.
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GRAPHICAL ABSTRACT

Introduction

Immunotherapy for cancer has become a successful treatment
modality. Checkpoint inhibitors disable immune response-
regulating pathways to treat several solid tumours (Sosnowska
et al., 2021). For a century, researchers have tried to use the
immune system to fight cancer. Recently discovered molecular
processes help tumour elude anti-tumor immunity (O’Donnell
et al., 2018). Amino acid metabolism controls immune response.
Increased amino acid degradation hinders T cell activation,
proliferation, and effector function (Murray, 2016). Modulating
amino acid metabolism is promise in several immunotherapies

since it controls the immune response. Essential amino acids
inhibit T cell activation and growth. Cancer upregulates only
L-arginine-degrading arginases and tryptophan hydrolyzing
enzymes (Grzywa et al., 2020). In 1904, Kossel and Dankin
discovered arginase and found it in all species. ARG-1 and ARG-
2 are manganese-containing arginase enzymes and share 58% amino
acid homology and 100% in the active sites (Yang and Ming, 2013).
Trimers of mammalian arginases are the active form (Cama et al.,
2003; Cama et al., 2004). Although they both hydrolyze L-arginine
into L-ornithine and urea, their cellular expression, regulation, and
subcellular localization are distinct (Jenkinson et al., 1996). A high
level of arginase (Arg1 or Arg2) expression is associated with a
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dismal prognosis in several cancers, including lung (Miret et al.,
2019), head and neck (Bron et al., 2013), neuroblastoma (Mussai
et al., 2015), acute myeloid leukaemia (Mussai et al., 2013),
pancreatic ductal carcinoma (Algül et al., 2013), ovarian
(Czystowska-Kuzmicz et al., 2019), and colorectal malignancies
(Ma et al., 2019). However, the clear impact of increased Arg
activity on patients’ prognoses has not been reported in these
tumour types. In addition, increased Arg activity was found in
the skin (Gökmen et al., 2001), cervical, thyroid (follicular, papillary,
and follicular variant of papillary) (Cerutti et al., 2004), gastric
(Akiba et al., 2016), bile duct, hepatocellular (Obiorah et al., 2019),
breast (Porembska et al., 2003) cancer (Gabitass et al., 2011). In
addition to melanoma (Ascierto et al., 2005; Gabitass et al., 2011)
and renal carcinoma (Yoon et al., 2007), (Ochocki et al., 2018),
which are both Arg auxotrophic malignancies, no associations
between Arg concentrations and survival have been reported.

The number of studies discussing the role of arginase in the
immune system has exploded in the last few years. This is due to the
enzyme’s importance in a variety of inflammation. Researchers
discovered that arginase is responsible for or involved in
regulating a wide range of physiological processes, including
inflammation-dysfunctional immunological response, tumour
immune evasion, inflammation, fibrosis, and immunopathology
of serious infection illnesses (Bronte and Zanovello, 2005).
L-arginine is broken down by the arginase enzyme into urea and
L-ornithine (see Figure 1). While both types of arginase serve as
catalysts, their cellular expression, regulation, metabolic response,
and intracellular location are distinct (Jenkinson et al., 1996). One of
the liver’s main sources of expression for the urea cycle is the
L-arginine urea hydrolase, AI (EC 3.5.3.1), and isoform arginase I
detoxifies ammonia. The cycle is distributed across two cellular
compartments. The (mitochondrion/cytosol) protein uses arginine
as a cytosolic enzyme (Jenkinson et al., 1996). Rat liver arginine
crystallised as a trimeric enzyme with a cleft at the catalytic site and a
binuclear manganese cluster (Kanyo et al., 1996). Arginase I, a 322-

amino-acid protein from humans, and Arginase II have 58% of the
same amino acid sequence. The human arginase I gene was found to
be placed on chromosome 6q23 more than 20 years ago, if not more
(Dizikes et al., 1986) (Haraguchi et al., 1987).

Arginase overexpression in immune cells (T-cells) may contribute
to disease pathogenesis because it reduces NO-mediated cytotoxicity by
consuming L-arginine, boosts collagen production and fibrosis by
creating proline, and promotes cellular proliferation by generating
polyamines. Arginase is crucial to tumour immunology, according
to years of research (Sica and Bronte, 2007); (Rodríguez and Ochoa,
2008). Earlier research have focused on arginase expression in primitive
tumours’ from mice or humans, carcinogenic tissue, and cell culture
(Wu et al., 1996) and how it may promote tumour development,
polyamine synthesis, or NO-mediated tumour cytotoxicity.

Arginase has been found in a number of human tissues and
bodily fluids, including post-injury PBMCs (Ochoa et al., 2001),
inflammatory synovial fluid macrophages (due to arginase II) of
patients with arthritis, and inflammatory cells in bronchoalveolar
lavage fluid of patients with asthma (Zimmermann et al., 2003) (Zea
et al., 2006). Only PMN, which are found only in normal blood
donors’ peripherally circulating human leukocytes, are capable of
expressing arginase (Munder, 2005). It was proven that the enzyme
is constitutively present in the azurophil granules of human PMN by
using biochemical fractionation and immunoelectron microscopy.
Thus, the enzyme provides a unique oxygen-independent anti-
microbial defence mechanism (Munder, 2005).

Various publications reported N-hydroxy-nor-arginine (nor-
NOHA), a micromolar inhibitor of arginase, which was derived
from the NO production intermediate N-hydroxy-L-arginine
(NOHA). Subsequently, two more molecules, 2(S)-amino-6-
boronohexanoic acid (ABH) and S-(2-boronoethyl)-L-cysteine (40,
BEC), are currently used as standards for arginase inhibition since
they were inspired by borate’s established role in manganese and
arginase binding (Pudlo et al., 2017). Unfortunately, there is a
shortfall of drug-like hARGI inhibitors; to date, only a small
number of inhibitor families have been explored against this
protein’s action (Pudlo et al., 2017). The theoretical effort only
analysed experimental structural data from many drugs’ crystal
structures in the hARGI and hARG binding sites. Hence, in silico
methods like QSAR help uncover a new arginase inhibitor by
discovering a molecule’s unrecognised arginase-inhibiting
characteristics. Low-cost computational methods like QSAR (3D-
quantitative structure-activity relationships), protein-ligand molecular
docking, QSAR-based virtual screening, MD simulation, molecular
mechanics generalised borne surface area, and others can process
experimental data and provide useful information about compound
properties that affect their activities. So, this study usesQSAR analysis of
149 Arginase I inhibitors with correct experimental half-minimal
inhibitory concentrations (IC50) and virtual screening to find a new
target. The results may assist to develop an arginase I inhibitor.

Materials and methods

Data collection and curation

In this investigation, a QSAR evaluation was performed using a
curated dataset of 149 Arginase I inhibitors with correct

FIGURE 1
Presentation of the involvement of arginase-I in the cancer
development, and immune mechanism.
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experimental half-minimum inhibitory doses (IC50) reported in nM
units that were retrieved from the binding database (https://www.
binding.org/bind/chemsearch, accessed on 2 May 2022) (Liu et al.,
2007). This data set includes not only a wide chemical space
comprised of compounds with a variety of pharmacophoric
features, but also a very unique range of bioactivity values
provided in IC50 and covering the range 0.1-1176000 nM (See
Supplementary Table S1).

The experimentally reported IC50 values in nanomolar units
were converted to equivalent molar units and then converted to
pIC50 values using the formula pIC50 = -logIC50 for statistical
purposes. Figure 2 is a representation of the five most active and
five least active substances in the dataset.

Molecular descriptor calculation and
objective feature selection (OFS)

The 3D structures of all the molecules in the current dataset are
generated and geometrically optimised using the MMFF94 force field
(O’Boyle et al., 2011; Tosco et al., 2011). These geometry-optimized
molecules were then run via PyDescriptor, a plugin for the molecular
modelling programme PyMOL that has a database of over
40,000 chemical descriptors, ranging in dimension from 1D to 3D
(Masand and Rastija, 2017). Data pruning is necessary when dealing
with such a vast number of molecular descriptors. To accomplish the
goal, an objective feature selection (OFS) in QSARINS v2.2.4 was
employed (Gramatica et al., 2013). A limited pool of 694 distinct
molecular descriptors were provided by the OFS technique, after
excluding out near-constant, constant, or highly correlated (|R|>
0.90) molecular descriptors (The computed characterizations are
included in Supplementary Table S2).

Splitting of the data set molecules into
training and external sets and subjective
feature selection

The entire dataset was arbitrarily split into a training set of
119 molecules (an 80%) used to develop a QSAR model and a
prediction set of 30 molecules (an 20%) used to rigorously validate
the developed QSAR models for reliability and predictiveness using
QSARINS v2.2.4’s random splitting feature. Methods for subjective
feature selection using genetic algorithm-reinforced multi-linear
regression (GA-MLR) have been implemented in QSARINS
v2.2.4 using Q2

LOO as the fitness parameter (SFS) (Gramatica
et al., 2012; Gramatica et al., 2013). The created QSAR models
are put to the test by using a range of different validation criteria,
including the coefficient of determination (r2), leave-one-out
(Q2

LOO), and leave-many-out (Q2
LMO), all of which have been

documented in the literature. Reducing the intercorrelation
between the descriptors is facilitated by a QUIK (Q under the
influence of K) value of 0.05. The data-fitting hypothesis is tested
at 2,000 iterations of Y randomization by computing correlation
coefficients (Dearden et al., 2009). The predictiveness of the QSAR
model is measured by how well the predicted value matches the
anticipated or experimental value, and it may decrease even in the
presence of a single outlier. We have thus made an effort to draw
attention to the outlier using these molecules, which validated a
noticeably high residual value in GA-MLR QSAR models.
Additionally, by contrasting the predicted value with the
standard residual values, we were able to identify outlier
compounds. Similar structural variations were found in database
compounds using the Williams plot’s leverage effect. It is possible to
identify the application domain of the advanced QSAR model by
combining the leverage and the typical residuals.

FIGURE 2
Depiction of the chemical structures for the five most active and five least active Arginase I inhibitors from the present dataset.
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Building regression model and its validation

A good QSAR model that has been correctly verified using
various approaches such as cross-validation, external validation,
Y-randomization, and the applicability domain (Williams’s plot) is
useful for future applications in virtual screening, molecular
optimization, decision-making, and so on. The statistical
parameters mentioned below are typically used to verify a model,
along with their suggested threshold values (Martin et al., 2012;
Masand et al., 2014; Fujita andWinkler, 2016; Gramatica, 2020). The
formulas for obtaining these statistical characteristics are presented
in the (Supplementary Table S3). Williams’ plots were also used to
evaluate the QSAR model’s applicability domain (Consonni et al.,
2009; Chirico and Gramatica, 2011; Consonni et al., 2019). A genetic
functional algorithm in conjunction with multiple linear regression
was used to develop a robust and accurately validated QSAR model,
which provided a deep understanding of the understated and hidden
pharmacophoric features that control certain biological activity and
lend a sufficient external predictive capability. As a consequence, a
novel approach was used, in which several models were built using
80% of the training set and verified using random splitting on the
remaining set (20% prediction set). As a consequence, a QSAR
model based on six descriptors was built and tested on a prediction
set (which was initially the training set), and the best predicted
model is reported for analysis.

QSAR based virtual screening

A database of 1615 FDA molecules was obtained from the Zinc
database for QSAR-based VS. Before calculating molecular
descriptors, 3D-structures of molecules were generated in the
same way that the modelling set was. Based on the estimated
chemical descriptors, a well-validated six-parametric division set
QSARmodel was used to predict the arginase-I inhibitory activity of
1615 FDA molecules obtained from the zinc database (Jawarkar
et al., 2022a; Bakal et al., 2022; Jawarkar et al., 2022b; Ghosh et al.,
2022).

Target preparation

Arginase-I (PDB ID: 3kv2), the primary protease of interest, was
retrieved from the Protein Data Bank’s structural database (https://
www.rcsb.org/structure/3kv2) and imported into a molecular editor
with an open-source licence (Discovery Studio Visualizer 4.0). The
UCSF Chimera employed the steepest descent approach to identify
1,000 steps and then the conjugate gradient of energy minimization
strategy to optimise the structure of the hit (FDA) molecules, which
were retrieved from a ZINC database after QSAR-based virtual
screening.

Molecular docking analysis

The primary arginase I pdb file was retrieved from the Protein
Data Bank’s structural database (https://www.rcsb.org/structure/
3kv2; viewed on 7 May 2022). Based on X-ray resolution and

sequence completeness, pdb 3kv2 was selected. Ramachandran’s
plot was prepared before actual docking simulations to guarantee the
protein’s health. The improved protein was subjected to docking
analysis. Although all of the compounds were docked in the active
site, for the sake of brevity, just the docking stance of the most active
molecule, number 4, is detailed here. For molecular docking
analysis, the NRG Suite software was employed. This open-
source programme is available as a PyMOL plugin (www.pymol.
org). FlexAID may be used in docking simulations to identify
protein surface cavities and target binding locations (Gaudreault
et al., 2015). It employs genetic algorithms to retrieve
conformational information and simulates ligand and side chain
flexibility and covalent docking. To get the best performance with
NRGSuite, we used a flexible rigid docking technique with the
following default parameters: Compliance of Ligands Ligand is
denoted by a reference number. No limit exists. Spherical
binding site input method, 0.385 3D grid spacing, and side chain
rigidity. A reference number is used to reflect Ligands’ adaptability.
No limit exists. Water molecules are encased by the HET group. 0.
1% was van der Wall’s magnetic permeability. And there is no
indication of the solvent type; number of chromosomes: 1,000;
number of generations: 1,000; fitness model: share; reproduction
model: population explosion; number of TOP complexes: five. For
the purpose of validating molecular docking, a known
peptidomimetic inhibitor of Mpro was used to validate the
docking methodology.

Molecular dynamics simulation (MD-
Simulation) and free energy landscape (FEL)
analysis

The MD simulations were carried out in triplicate using the
Desmond 2020.1 from Schrödinger, LLC, on dock complexes for
arginase-I (PDB I.D.: 3kv2) and ZINC000252286877. To ensure that
the results were repeatable, duplicate samplings were performed
with the same parameters for each MD run. This system utilises the
OPLS-2005 force field (Shivakumar et al., 2010) and an explicit
solvent model with SPCwater molecules. To neutralise the charge,
Na+ ions were added. To imitate the physiological environment,
0.15 M NaCl solutions were introduced to the system. To retrain the
system over the protein-ZINC000252286877 complex, the system
was first equilibrated using an NVT ensemble for 500 ns Following
the preceding phase, an NPT ensemble was used to execute a short
equilibration and minimization run for 12 ns In all simulations, the
NPT ensemble was set up using the Nose-Hoover chain coupling
scheme (Jorgensen et al., 1983), with a temperature of 27°C, a
relaxation duration of 1.0 ps, and a pressure of 1 bar. A 2 FS time
step was chosen. With a relaxation duration of 2 ps, the
Martyna–Tuckerman–Klein chain coupling scheme (Martyna
et al., 1992) barostat method was employed for pressure control.
Long-range electrostatic interactions were calculated using the
particle mesh Ewald method (Toukmaji and Board, 1996), with
the Coulomb interaction radius set at 9. The bonded forces were
calculated using the RESPA integrator with a time step of 2 fs for
each trajectory. To check the stability of the MD simulations, the
root mean square deviation (RMSD), radius of gyration (Rg), root
mean square fluctuation (RMSF), and quantity of hydrogen
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(H-bonds) were computed. Geo measures v 0.872 was used to
calculate the free energy landscape of protein folding on a
chemically 4-bound complex (Kagami et al., 2020). The MD
trajectory versus RMSD and Radius of Gyration (Rg) energy
profile of folding was recorded in a 3D plot using the matplotlib
python package utilising Geo measures, which includes a
sophisticated library of g_sham (Ghosh et al., 2022).

Molecular mechanics generalized born and
surface area (MMGBSA) calculations

Using the premier molecular mechanics generalised Born
surface area (MM-GBSA) module, the binding free energy
(Gbind) of docked complexes was determined during MD
simulations of arginase I complexed with ZINC000252286877.
(Schrodinger Suite, LLC, New York, NY, 2017-4). OPLS
2005 force field, VSGB solvent model, and rotamer search
methods were used to compute the binding free energy. The MD
trajectory frames were chosen at 10-ns intervals after the MD run.
Equation 1 was used to compute the total free energy of binding.:

ΔGbind � Gcomplex – Gprotein + Gligand( )
Where, ΔGbind = binding free energy, Gcomplex = free energy of
the complex, Gprotein = free energy of the target protein, and
Gligand = free energy of the ligand.

The MMGBSA result trajectories were further examined for
post-dynamic structure modifications.

Results

As mentioned in the introduction, the goal was to create a GA-
MLR model with a combination of mechanistic explanations and
high predictive power. In the present analysis, we have uncovered a
lot of structural traits. The following are the parameters of the newly
created six-parameter model and their statistical validation.

QSAR model

PIC50 = −7.008 (±2.115) + 19.791 (±3.496) * rsa + 0.344 (±0.067)
* com_lipohyd_3A + 0.905 (±0.125) * fringNdon3B + 0.402 (±0.16)
* fsp2OC9B + −0.375 (±0.069) * fHringC2B + −0.567 (±0.205) *
fringCC3B +.

Statistical parameters associated withmodel

R2: 0.8926, R2
adj: 0.8867, R2-R2

adj:0.0059, LOF:0.3073, Kxx:
0.3352, Delta K: 0741, RMSE tr:0.4970, MAEtr:0.4178, RSStr:
28.6575,CCCtr:0.9432, s: 0.5128, F: 150.9529, Q2

loo: 0.8779,R2-
Q2

loo: 0.0146, RMSEcv: 0.5298, MAEcv: 0.4450, PRESScv: 32.5651,
CCCcv: 0.9356, Q

2
LMO: 0.8761, R

2
Yscr: 0.0515, Q

2
Yscr: −0.0752, RMSE

AV Yscr: 1.4768, RMSEext: 0.5899, MAEext: 0.4993,PRESSext: 9.7450,
R2

ext: 0.8585, Q
2-F1: 0.8503, Q

2-F2: 0.8486, Q
2-F3: 0.8487, CCCext:

0.9260, r2m aver.: 0.7970, r2m delta: 0.0480, Calc. External data regr.
Angle from diagonal: −1.5552°, Exp(x) vs. Pred(y): R2: 0.8780, R′2o:

0.8646, k′: 0.9934, Clos’: 0.0152, r’2m: 0.7765, Pred(x) vs. Exp(y): R2:
0.8780, R2o: 0.8779, k: 0.9997, Clos: 0.0001, r2m: 0.8696, Exp(x) vs.
Pred(y): R2: 0.8585, R′2o: 0.8566, k′: 0.9904, Clos’: 0.0022, r′2m:
0.8210, Pred(x) vs. Exp(y): R2: 0.8585, R2o: 0.8486, k: 1.0007, Clos:
0.0115, r2m: 0.7730.

Numerous statistical parameters, including R2 (coefficient of
determination), R2

adj. (adjusted coefficient of determination), R2
cv

(Q2
LOO) (cross-validated coefficient of determination for leave-one-

out), R2
ex (external coefficient of determination), Q2-Fn, and CCCex

(concordance correlation coefficient), etc., have high values,
indicating that the developed QSAR model is statistically robust
(mean absolute error).

Because of this, the model has a high level of external prediction
accuracy, no spurious correlations, and passes the required
minimum values for its most critical parameters. In the
Supplemental Materials, the necessary method for determining
these parameters is provided. Williams plots were used to assess
the range of this model’s applicability. Therefore, it satisfies all the
criteria for creating a reliable QSAR model as proposed by the
OECD. A variety of model-related graphs are shown in Figure 3.

There are six descriptors used in the QSAR model, which are
listed in Table 1. Three of the descriptors, com_lipohyd_3A,
fringNdon3B, and fsp2OC9B, all exhibit positive coefficients in
the QSAR model, suggesting that boosting their values might
improve the activity profile, whereas the other three, rsa,
fHringC2B, and fringCC3B, all have negative coefficients (see
Table 1). Different forms of pharmacophoric properties, which
determine the inhibitory profile, are correlated with each
molecular descriptor, which is a numerical representation of
structural features. However, it should be remembered that the
ultimate biological activity (IC50) of a molecule cannot be explained
or decided by a single structural property alone. Combinations of
diverse structural traits and as-yet-unknown components provide
the IC50, biological activity, etc. Different properties either promote
or inhibit the intended pharmacological effect. It is generally agreed
that the biological activity of a compound is determined by the
presence of two or more pharmacophoric groups (pharmacophore
synergism).

Correlation matrix

An inter-correlation coefficient threshold of 0.95 was included
in the current QSAR model to avoid overfitting. There is no
association between the various descriptors used in the current
QSAR model, according to the correlation matrix between the
descriptors that is also shown in Table 2.

Discussion

Three of the six descriptors in the developed QSAR model
displayed a positive coefficient, so increases in their value
enhance the biological activity. Amongst these descriptors, viz.,
fsp2OC9B, fHringC2B, and fRingCC3B, the kind of carbon atom,
ring or non-ring, plays a significant role in determining the
araginase I inhibitory activity. Nevertheless, it is important to
keep in mind that the descriptors in the created QSAR model are
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FIGURE 3
Different graphs related to model (A) experimental vs. predicted pKi (the solid line represents the regression line); (B) experimental vs. residuals; (C)
William’s plot for applicability domain (the vertical solid line represents h* = 0.021 and horizontal dashed lines represent the upper and lower boundaries
for applicability domain); (D) Y-randomization plot.

TABLE 1 Different molecular descriptors present in the developed QSAR model and their description.

Molecular descriptor Description

com_lipohyd_3A Occurrence of lipophilic hydrogen atoms within 3A from the centre of mass of the molecule

fringNdon3B Frequency of occurrence of donor atom exactly at 3 bonds from the ring nitrogen atom

fsp2OC9B Frequency of occurrence of carbon atoms exactly at 9 bonds from the sp2 hybridized oxygen atoms

rsa Ratio of molecular surface area to the solvent accessible surface area

fHringC2B Frequency of occurrence of ring carbon atoms exactly at 2 bonds from the hydrogen atoms

fringCC3B Frequency of occurrence of carbon atom exactly at 3 bonds from the ring carbon atoms

TABLE 2 Presentation of the correlation matrix for the descriptor used to developed QSAR Model.

rsa com_lipohyd_3A fringNdon3B fsp2OC9B fHringC2B fringCC3B

rsa 1

com_lipohyd_3A 0.0015 1

fringNdon3B 0.3549 −0.3973 1

fsp2OC9B 0.3452 −0.3594 0.1067 1

fHringC2B −0.3015 −0.224 −0.1 0.2535 1

fringCC3B 0.6016 0.0477 0.4928 0.189 −0.2484 1
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intricately interrelated, meaning that improving the value of one
descriptor might drastically alter the value of another descriptor.
Given that molecular descriptors are a mathematical description of
pharmacophores, this results in a significant alteration in a
molecule’s biological profile and suggests pharmacophore
synergism.

Mechanistic interpretation

rsa-The chemical descriptor rsa (ratio of surface area) encodes
information on the molecular surface area to solvent accessible
surface area ratio and shows a negative correlation with araginase
inhibitory efficacy. The inhibitory activity of araginase 1 is greatly
affected by even a minor change in rsa. Because rsa is the ratio of the
values of All_MSA and All_SASA, the big probable value of All_
SASA to the tiny value of All_MSA will set rsa to the lower value,
hence boosting the molecule’s araginase inhibitory activity (IC50).
Comparing molecule 14 (IC50 = 4.07 nm, rsa = 0.6488, All_MSA =
265.8, All_ SASA = 442.03) to molecule 29 (PIC50 = 16.98 nm, rsa =
0.6788, All_MSA = 460.1, All_SASA = 677.8) and molecule 45
(IC50 = 31.63 nm, rsa = 0.6877, All_MSA = 446.01, All_ SASA =
648 support this observation (see Figure 4).

Moreover, variations in the number of carbon atoms have a
significant effect on the polarity and lipophilicity of the molecule, as
shown by molecule 14s ClogP of 0.600 and molecules 29 and 45s
ClogP of −2.27 and −2.83, respectively. This finding suggests that
even minute differences in the number of carbon atoms may alter
the rsa, which has a major effect on both lipophilicity and polarity,
thus highlighting the importance of a balance between polarity and
lipophilicity in arginase inhibitory activity. Interestingly, the
Christianson group at the University of Pennsylvania synthesised

the first boron-containing arginase inhibitor, 2-(S)-amino-6-
boronohexanoic acid, and noticed that since the active site of the
araginase 1 enzyme contains several polar amino acid residues, the
ligands must also be very polar. This observation aligns perfectly
with the QSAR results. Consequently, QSAR findings demonstrated
the relevance of polarity and lipophilicity in araginase 1 inhibitory
action by revealing the same feature (Baggio et al., 1997).

com_lipohyd_3A-The com_lipohyd_3A molecular descriptor
reflects the total amount of lipophilic hydrogen atoms with
partial charges in the range ± 0.200 and located within 3 Å of
the molecule’s center of mass (com). As the partial charge must be
within the range of 0.200, this descriptor describes the function of
non-polar hydrogens present within 3 of the molecule’s centre of
mass (Todeschini and Consonni, 2009). In the constructed QSAR
model, the descriptor com_lipohyd_3A has a positive coefficient,
indicating that the higher the value of such lipophilic hydrogens, the
greater will be their activity. This could be achieved by sustaining the
lipophilic (non-polar hydrogen) atoms in future drug designs. This
indirectly points out that the presence of lipophilic hydrogens, in
turn, causes hydrophobic groups nearer the centre of mass of the
molecule to be beneficial for increasing the IC50 value. Because
hydrogen is a very small element in comparison to other elements
and because replacing it with any other element would result in an
increase in steric bulk, bulkiness near the centre of mass of the
molecule is extremely unfavourable for increasing arginase
inhibitory activity. In addition, the value of com_lipohyd_3A is
determined by the location of the centre of mass, which shifts
depending on where the various groups and atoms are located
(positional isomers). Because of this, the value of com_lipohyd_
3A varies depending on the positional isomer. Take, for example,
molecules 15 (IC50 = 5.02 nM, com_lipohyd_3A = 8) and 125
(IC50 = 1999.8 nM, com_lipohyd_3A = 5) (depicted in Figure 5).

FIGURE 4
Illustration of the molecular descriptor rsa for the molecular pair 14, 29, and 45 only.
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Therefore, the descriptor does an excellent job of capturing the
importance of positional isomerism in relation to the calculation of
the PIC50 value. Thus, the descriptor com_lipohyd_3A and its
positive connection (correlation coefficient R = 0.20) with PIC50

underline the critical role played by the presence of lipophilic

groups, steric bulkiness close to the molecule’s centre of mass,
and positional isomerism. This observation is further confirmed
by comparing following pairs of molecules: 2 (IC50 = 0.85 nM, com_
lipohyd_3A = 2) with 21 (IC50 = 10 nM, com_lipohyd_3A = 1), 13
(IC50 = 3.23 nM, com_lipohyd_3A = 4) with 28 (IC50 = 16.28 nM,

FIGURE 5
Depiction of com_Hhyd_3A usingmolecule 15 (IC50 = 5.02 nM, com_lipohyd_3A = 8) andmolecule 125 (IC50 = 1999.8 nM, com_lipohyd_3A = 5) as
representative examples only (Radius of gray sphere is 3 Å).

FIGURE 6
Presentation of the molecular descriptor fringNdon3B for the molecular pairs; 103 and 149, and for 21 and 25 only.
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com_lipohyd_3A = 3), 34 (IC50 = 20.41 nM, com_lipohyd_3A = 7)
with 81 (IC50 = 346.7 nM, com_lipohyd_3A = 4), 53 (IC50 =
77.98 nM, com_lipohyd_3A = 3) vs. 122 (IC50 = 1,399.5 nM,
com_lipohyd_3A = 1), 16 (IC50 = 6.02 nM, com_lipohyd_3A =
4) vs. 31 (IC50 = 18.19 nM, com_lipohyd_3A = 1), to list a few.

As a consequence, for the first time, com has been used to
explain the difference in the inhibitory activity of several ligands for
arginase I. In addition, the innovative approach gives a previously
unavailable explanation for discrepancies in the activity of positional
isomers.

fringNdon3B- The frequency of occurrence of a donor atom
precisely 3 bonds away from the ring nitrogen atom is indicated by
the chemical descriptor fringNdon3B. This descriptor offers vital
information on themaximum amount of separation needed between
the two polar (ring nitrogen atoms and donor atoms) moieties to
provide a superior araginase inhibitory activity profile. A ring
nitrogen atom makes a positive contribution if it is precisely
three bonds away from a donor atom; as a result, this
combination must be maintained for a better activity profile. On
the other hand, the araginase inhibitory action may be decreased by
narrowing the bond gap between the ring nitrogen and donor atom.
The obtained results correspond precisely to the pharmacophores
(descriptors) described in the QSAR model. Furthermore, the most
active molecules had the highest values for the descriptors
fringNdon3B and rsa. This shows that increasing the number of
donor atoms may also increase the rsa value if the value of
fringNdon3B is raised. This observation is well supported by the
molecular pair: 103 and 149, 21 and 25 (see Figure 6).

Merck Sharp and Dohme, AstraZeneca, and Sichuan Kelun-
Biotech Biopharmaceuticals have independently developed an
additional class of arginase inhibitors comprising a proline
(pyrrolidine ring) scaffold. They noted that the proline
containing an amino group at position 4 (compound 28) was
positioned precisely three bonds from the donor hydroxy
segment of the carboxyl moiety and had an IC50 value of 3.2 nM

for human ARG-1 in the TOGA experiment (Mitcheltree et al.,
2020). This observation highlights the importance of the molecular
descriptor fringNdon3B, and the QSAR results are perfectly aligned
with the reported findings.

fsp2OC9B-This descriptor refers to the frequency of occurrence of
carbon atoms precisely at 9 bonds from the sp2 hybridised oxygen
atom, and it has a positive coefficient in the developed QSAR model. If
the same carbon atom can be found at 9 bonds from the sp2 hybridised
oxygen atom or any other oxygen atom along any route, it was omitted
when calculating fsp2OC9B. The importance of fsp2OC9B is
demonstrated by the fact that one or more of the most active
compounds, such as 10, 11, 21, and 20, with IC50 values ranging
from 10.0 to 2.51 nM, contained a carbon and a sp2 hybridised oxygen
atom (see Figure 7). With a few exceptions, such as molecule numbers
34, 175, 176, 177, 178, and 179, the reverse is true for less active
compounds (IC50 = 7943–870963590 nM).

Van Zandt M. and colleagues have identified a broad family of
N-substituted 3-amino-4-(3-boronopropyl) pyrrolidine-3-
carboxylic acids as potent third-generation inhibitors of human
arginase I and II (Van Zandt et al., 2019). The reported compounds
had a sp2-hybridized oxygen atom and precisely nine bonds from
the second and sixth carbon atoms of the phenyl ring system, with
an IC50 of 1.3 nM for the arginase I receptor. Similar
pharmacophoric features have been captured in the developed
QSAR model as well. Therefore, QSAR results align perfectly
with the reported findings.

fHringC2B-This descriptor indicates the frequency of
occurrence of ring carbon atoms precisely 2 bonds from the
hydrogen atoms. The negative value for fHringC2B suggests that
the presence of hydrogen close to the ring carbon reduces the
inhibitory action of arginase I. In the majority of reported
molecules, fHringC2B exists owing to the direct attachment of
hydrogen to the carbon atom (C-H) or due to hydrogen atoms
linked to carbon atoms next to the ring carbon atom (C-CHn
fragment). This can be observed by comparing the molecules
10 and 105 (see Figure 8).

fHringC2B favours two structural characteristics that might
result in an improved arginase inhibitory profile: 1) the presence
of hydrophobic hydrogen atoms in C-H or H-C-C fragments 2)
steric hindrance or bulkiness in the region of ring carbon atoms due
to the fact that hydrogen is the smallest element. Less bulkiness
around ring carbon atoms results in a more potent arginase
inhibitory profile. These two structural characteristics permit the
formation of hydrophobic contacts or arene-cation interactions
between the ligand and the receptor.

fringCC3B- The descriptor is related to two characteristics,
namely, carbon atoms and ring carbon atoms. As its coefficient
in the proposed QSAR model is negative, increasing the amount of
these carbon atoms decreased the pIC50 value. As these descriptors
are also related to carbon, the value of fHringC2B and com_Lipo_
hyd 3A might be affected by an increase in fringCC3B. This suggests
that pharmacophore synergism determines the ultimate inhibitory
ability of a drug towards arginase I receptor. When molecule 14
(IC50 = 4.07 nM, fHringC2B = 1, com_Lipo_hyd 3A = 7) is
compared to molecule 105 (PIC50 = 1,000 nM, fHringC2B = 4),
this is evident (see Figure 9).

There are 16 compounds in the current dataset that include at
least one such carbon and ring carbon combination (fringCC3B).

FIGURE 7
Illustration of the molecular descriptor fsp2OC9B for the
molecule 10 (IC50 = 2.51 nM, fsp2OC9B = 2), 34 (IC50 = 20.4 nM,
fsp2OC9B = 0), and 11 (IC50 = 2.63 nM, fsp2OC9B = 1) only.
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Similarly, 14 of the most active compounds with pIC50 values
between 8 and 9.09 M, excluding molecules 3 and 9, have
fringCC3B > 1. A comparison between molecules 14 and
105 reinforces this conclusion.

QSAR based virtual screening and drug
repositioning

In this investigation, the most modern methodologies, namely,
QSAR-based virtual screening and drug repositioning, were combined
by estimating the arginase I inhibitory activity (pIC50) of 1,615 clinically
approved ZINC FDA compounds. The QSARVS. predicts the arginase
I inhibitory activity (pIC50) of all 1615 FDA compounds, of which
112 have a pIC50 in the range of 8.07–10.023M. Therefore, a molecular
docking study was conducted to determine the binding pattern of these
112 FDA molecules. Interestingly, one of the topmost predicted FDA
molecules (ZINC000252286875) has a docking score of −10,801 kcal/
mol and a pIC50 of 10.023 M. While other FDA compounds had a
higher docking score, they had a relatively low pIC50. As a result, the
molecule ZINC000252286875 was chosen as a significant repurposed
hit in QSAR vs. Table 3 contains the pIC50 values for the top 10 FDA
compounds, as well as their smiles notations, docking scores, and zinc
IDs (See Supplementary Table S4 for the calculated 1,615 molecular
descriptors).

Applicability domain analysis of the hit
molecules identified in QSAR based VS

We evaluated the applicability domain of the created QSAR
model with respect to the top most active hit molecules found in the
QSAR-based virtual screening using a training set of 149 molecules
and a prediction set of 112 hit molecules. The top hit molecule,
ZINC000252286875, was found in the Williams plot with a low
leverage value of HAT i/i h* = 0.140, which is on the edge of the
applicability domain (see Figure 10).

The leverage figures demonstrate how much each chemical’s
structure affects the model. The predicted data for the top hit
molecule, ZINC000252286875, is therefore acceptable because the
low value of leverage suggests that the prediction set is detected as
being near the chemical domain of the training set molecules.

Molecular docking analysis

Using docking simulations on hARG I, the binding modes of the
most active hit molecule, ZINC000252286875, were identified in
order to learn more about the inhibitory mechanism (pdb id: 3kv2).
Although b-ARG I’s structure is not included in the Protein Data
Bank, the active site of the two molecules is 100% identical. Docking
simulations were used to identify the binding modes of the identified

FIGURE 8
Presentation of the molecular descriptor fHringC2B for the molecules 10 and 105 only.

FIGURE 9
Presentation of the molecular descriptor fringCC3B for the molecules 105 and 14 only.
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TABLE 3 Presentation of zinc id, structures, PIC50 Predicted by QSAR vs, Docking Score (Kcal/mol), and RMSD(Å) for top 10 FDA molecules.

S. No zinc_id Smiles notations PIC50 by QSAR Docking score (kcal/mol) RMSD(Å)

1 ZINC000252286875 10.023 −10.80 2.130

2 ZINC000252286877 10.156 −10.27 2.58

3 ZINC000169621228 8.048 −9.92 1.74

4 ZINC000218037687 9.89 −9.78 1.74

(Continued on following page)
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TABLE 3 (Continued) Presentation of zinc id, structures, PIC50 Predicted by QSAR vs, Docking Score (Kcal/mol), and RMSD(Å) for top 10 FDA molecules.

S. No zinc_id Smiles notations PIC50 by QSAR Docking score (kcal/mol) RMSD(Å)

5 ZINC000203757351 8.643 −9.43 1.66

6 ZINC000095551509 8.351 −9.36 1.53

7 ZINC000252286876 9.937 −9.24 2.21

8 ZINC000150601177 10.709 −9.23 2.09

9 ZINC000028108825 8.473 −9.20 2.60

(Continued on following page)
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hit molecule ZINC000252286875 in the QSAR-based VS. (pdb id:
3kv2) to gain more insight into the inhibitory mechanism. Using an
NRG Suite docking software accessible as a PyMOL plugin, the top
active hit molecule, ZINC000252286875, and the pdb-3kv2 ligands
were docked successfully into the active pocket of h-ARG I. Table 3
shows the structures, docking score (kcal/mol), RMSD, and
predicted pIC50 values from QSAR-based virtual screening. We
chose the most active molecule based on the highest docking
score as well as the highest pIC50 value. As a result, we picked
the compound ZINC000252286875 for the drug receptor interaction
study. The docking findings revealed that the
ZINC000252286875 molecule had polar and non-polar
interactions with arginase I. The docking score
was −10.8010 kcal/mol (RMSD = 2.13) (see Figure 11).
Intriguingly, ZINC000252286875 entered the protonation state
during drug-receptor interactions. It formed hydrogen bonds
with arginase I in both protomeric forms, but the number of

H-bonds varied. In its natural state, a molecule exhibits hydrogen
bonding connections with Lys284 and Arg21 through its hydroxy
group and forms a coordination complex with the MN3:514 metal.
Furthermore, in its natural state, the molecule induced ionisation of
the O-Hmoiety, resulting in metal-bridging oxyanion. Interestingly,
L. Di Costanzo et al. noted the potential of the same finding (Di
Costanzo et al., 2010). However, hydrogen atom positions cannot be
determined by x-ray crystallography, hence theoretical predictions
of protonation states are necessary (ten Brink and Exner, 2009).

The protonation state of the molecule is associated with the
fluctuation in the PH in the receptor binding pocket. Particularly,
each amino acid’s functional group becomes protonated at a
pH value below its pKa. A functional group is deprotonated
when the pH rises over its pKa. When the pH is equal to the
pKa, the functional group is neutral, with equal numbers of protons
and negative ions. The ASP128 residue is only connected to the
molecule ZINC000252286875 via interactions with the amine and
OHmoiety on the pyran ring (see Figure 11B). Based on this finding,
it is possible that proton uptake is the key regulatory switch for
modulating the function of the arginase 1 receptor. In the
protonation state, the NH2 moiety underwent protonation,
resulting in the formation of NH3

+. Based on this observation,
the molecule ZINC000252286875 displayed more firm binding in
its protonated state than in its native form. The increased frequency
of H-bond interactions reveals this. In its protonated state, the
hydroxy group of the molecule ZINC000252286875 formed two
hydrogen bonds with Arg21 and Lys284, while another hydroxy
group and protonated amino moiety (NH3+) formed two more
hydrogen bonding connections with Asp128. In addition to this, it
formed an additional hydrogen bond with the residue Thr246.
Moreover, the protonated version of the molecule formed a metal
coordination complex with MN3514 through a 2-hydroxy group on
the pyran ring. The effects of molecule pKi and protonation state on
the ligand’s affinity for the receptor are shown by Alexey V. Onufriev
and colleagues (Onufriev and Alexov, 2013). They further went on to
explain that the receptor-ligand binding becomes pH-dependent
when the protonation state changes at a certain pH. Subsequently,
the researchers claimed that the drug receptor interactions in the
protonated state result in a structural reorganisation (change in
conformation). This was discovered to be true in the case of
molecule ZINC000252286875 in terms of protonation and non-
protonation states. Further, a literature survey revealed that these
modifications (structural reorganization) are the direct result of
binding-induced alterations in the pKi values of ionizable groups in

TABLE 3 (Continued) Presentation of zinc id, structures, PIC50 Predicted by QSAR vs, Docking Score (Kcal/mol), and RMSD(Å) for top 10 FDA molecules.

S. No zinc_id Smiles notations PIC50 by QSAR Docking score (kcal/mol) RMSD(Å)

10 ZINC000085537011 8.172 −8.83 2.12

FIGURE 10
Williams plot for the applicability domain of the top hit molecule
(ZINC000252286875) identified in the QSAR based virtual screening
(blue dots indicates the hit molecules).
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proteins and their respective ligands (Onufriev and Alexov, 2013).
Therefore, the reported observation was supporting the protonation
state acquired by the molecule ZINC000252286875 during the drug
receptor interactions. Further, the protonation state of the molecule
ZINC000252286875 is only linked to the alteration in the pKi value
of the ASP128 residue through interactions with the amine and OH
groups on the pyran ring. Furthermore, this observation revealed
that the structure reorganization (change in conformation) in
protonated and non-protonated states was linked with the
fluctuation in pki values of the amino acid residues in arginase-1
protein. This observation was supported by the results reported by
Alexey V. Onufriev and colleagues (Onufriev and Alexov, 2013).

Molecular dynamics simulation (MD)
analysis

Molecular dynamics and simulation (MD) studies were done to
figure out the stability and convergence of the ZINC000252286875-
bound Arginase-1 (PDB ID: 3KV2) complex. Root mean square
deviation (RMSD) values showed that the conformation at each 500-
ns simulation was stable. The root mean square deviation (RMSD) is
a way to figure out how much a group of atoms moves away from a
reference frame on average. It is worked out for every single frame of
the trajectory. The RMSD for frame x is:

RMSDx �

��������������������
1
N

∑N
i�1

r′i tx( ) − ri tref( )( )2
√√

Where N is the number of atoms in the atom selection; tref is the
reference time (the first frame is usually used as the reference and is
treated as time t = 0); and where r’ is the position of the selected

atoms after superimposing on the reference frame in frame x, where
frame x is recorded at time tx. Every frame in the simulation
trajectory is subjected to the same technique (Brown et al., 1996).
For characterising local changes along the protein chain, the Root
Mean Square Fluctuation (RMSF) is useful. The RMSF for residue
I is:

RMSFi �

��������������������
1
T
∑T
i�1
〈 r′i t( ) − ri tref( )( )2〉

√√
The angle brackets indicate that the square distance is averaged

over the residue’s atom selection.Where T is the trajectory time used
to calculate the RMSF, tref is the reference time, and ri is the position
of the residue. The position of atoms in residue I after superposition
on the reference is given by r′. Desmond’s simulation paths were
investigated. The root mean square deviation (RMSD), root mean
square fluctuation (RMSF), and protein-ligand interactions were
calculated using MD trajectory analysis. Protein RMSD evolution:
The graphs show the evolution of a protein’s RMSD (left Y-axis).
Once all protein frames are aligned on the reference frame backbone,
the RMSD is calculated based on atom selection.

The C-backbone of arginase-1 bound to protonated
ZINC000252286875 exhibited a deviation of 2.9 (Figure 12A R1,
R2, and R3), while non-protonated ZINC000252286875 displayed a
RMSD of 1.8. RMSD plots are within the acceptable range, signifying
the stability of proteins in the protonated as well as non-protonated
ZINC000252286875 bound state before and after simulation, and it
can also be suggested that the fact that the non-protonated
ZINC000252286875 bound arginase-1 (PDB I.D.: 3KV2) is quite
stable in complex might be due to significant binding of the ligand.
Additionally, the radius of gyration is a measure of the compactness
of the protein. Proteins had a Rg value of 25 in the protonated-

FIGURE 11
Representation of the 2D interactions of the (A) protonated ZINC000252286875 and (B) Non-Protonated ZINC000252286875 ligand with the
arginase-1 protein (pdb-3KV2).
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ZINC000252286875 bound state, indicating a decrease in the radius
of gyration (Rg) (Figure 12B; R1, R2, and R3), whereas non-
protonated-ZINC000252286875 had a Rg of 25.2, indicating the

compactness of the protein-ligand complex in both the protonated
and non-protonated states. From the overall quality analysis from
RMSD and Rg, it can be suggested that protonated as well as non-

FIGURE 12
(A)MD simulation trajectory analysis of RMSD of ZINC000252286875 bound with 3KV2, i.e., Arginase-1,500 ns time frame in triplicate displayed: R1
(replicate 1) RMSD plot of ZINC000252286875 bound Arginase-1 (PDB I.D: 3KV2) in Protonated (green) versus non-Protonated protein Arginase-1 (PDB
I.D: 3KV2) (blue); R2 (replicate 2) RMSD plot of ZINC000252286875 bound Arginase-1 (PDB I.D: 3KV2) R1 (replicate 1) ROG plot of
ZINC000252286875 bound Arginase-1 (PDB I.D.: 3KV2) in protonated state (light grey) versus non-protonated bound protein Arginase-1 (PDB I.D.:
3KV2) (chocolate brown); R2 (replicate 2) Arginase-1 (PDB I.D.: 3KV2) in protonated state (navy blue) with non-protonated bound Arginase-1 (PDB I.D.:
3KV2) (light olive); R3 (replicate 3) ROG plot of ZINC000252286875 bound Arginase-1 (PDB I.D.: 3KV2) in protonated state (pink) with non-protonated
bound protein C. MD simulation trajectory analysis of Salt Bridge of ZINC000252286875 bound with Arginase-1 in protonated state (PDB I.D.: 3KV2) with
non-protonated state at 500 ns time frame in triplicate displayed: R1 (replicate 1) ZINC000252286875s Salt Bride plot is bound. Arginase-1 (PDB I.D.:
3KV2) in protonated state (PDB I.D.: 3KV2) (navy blue) with non-protonated bound protein R2 (replicate 2) Salt bridge plot of ZINC000252286875 bound
Arginase-1 (PDB I.D.: 3KV2) in protonated state (teal) versus non-protonated bound state with protein Arginase-1 (PDB I.D.: 3KV2) (red); R3 (replicate 3)
Salt Bridge plot of ZINC000252286875 bound Arginase-1 (PDB I.D.: 2ZHV) in protonated state (lime green) with protein Arginase-1 (PDB I.D.: 3KV2) (blue);
(D)MD simulation trajectory analysis of Arginase-1 (PDB I.D. R1 (replicate 1) R2 (replicate 2) H-bond plot of ZINC000252286875 bound protonated ligand
(red) and non-protonated ligand (green) with Arginase-1 (PDB I.D.: 3KV2) (red). R3 (replicate 3) H-bond plot of ZINC000252286875 bound protonated
ligand (dark grey) and non-protonated ligand (magenta) with Arginase-1 (PDB I.D.: 3KV2). ZINC000252286875 H-bond plot with Arginase-1 bound
protonated ligand (cyan) and non-protonated ligand (magenta) (PDB I.D.: 3KV2). R1 (replicate 1) RMSF plot of ZINC000252286875 bound Arginase-1 (PDB
I.D: 3KV2) in protonated form (magenta) and non-protonated bound form with protein Arginase-1 (PDB I.D: 3KV2) (blue); R2 (replicate 2) RMSF plot of
ZINC000252286875 bound Arginase-1 (PDB I.D: 3KV2).
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protonated ZINC000252286875 bound to the protein targets
posthumously in the binding cavities and played a significant
role in the stability of the proteins.

Significant root mean square fluctuations (RMSF) were seen in
the arginase-1 protein at a small number of residues for a time
function of 500 ns in both the protonated and unprotonated states.
On the RMSF plot, peaks represented regions of the protein that
experienced the most change throughout the course of the
simulation. Protein tails (both N- and C-terminal) are the most
dynamic regions of the molecule. Secondary protein structures like
alpha helices and beta strands are often more stable than loop
regions and less flexible than the unstructured protein core.

Based on MD trajectories, we know that the residues with the
highest peaks are located in loop regions or the N- and C-terminal
zones. (Figure 12E, R1, R2, and R3). Low RMSF values of binding site
residues are indicative of stable ligand binding to the protein. Figure 6
shows results obtained from three distinct arginase-1 studies. Figure 6
shows that the complex is stabilized, despite the presence of a few
fluctuating peaks. In this case, the RMSF values are suitable for
stabilising the protein-ligand complex. Protein structures were
shown to fluctuate more in the non-protonated state than in the
protonated state during simulation in the ZINC000252286875-
bound conformation, as demonstrated by RMSF plots.

During the 500-ns simulation, the average number of hydrogen
bonds and salt bridge contacts established between
ZINC000252286875 and the corresponding protein, arginase-1
(PDB I.D.: 3kv2), were also recorded (Figures 12C, D). Tri-
replicate MD simulations of ZINC000252286875 with arginase-1
showed hydrogen bond formation from 0 to 500 ns (Figure 12D; R1,
R2, and R3). Following 500 ns of molecular dynamics, the number of
hydrogen plots analysed confirmed the docking pattern of two
hydrogen bond formation with arginase-1 (PDB I.D.: 3kv2)
(Figure 12D). While in simulation, the binding of arginase-1 to
ZINC000252286875 was reinforced by the number of hydrogen
bonds and salt bridges (Figure 12C; R1, R2, and R3) formed between
the two molecules. The “Simulation Interactions Diagram” tab in
Maestro shows the various subtypes of each interaction type (see
Figure 13A). The stacked bar charts have a consistent appearance
throughout the trajectory. Because the same type of interaction can
occur multiple times between the ligand and the same protein
residue, values greater than 1.0 are possible.

Protein–ligand interactions were seen throughout the
simulation for both protonated and non-protonated ligands.
These interactions can be grouped and summarised according to
the types shown in the preceding graph. Protein-ligand interactions
(or “contacts”) come in four different types: hydrogen bonds,

FIGURE 13
(A) Protein-ligand contact histogram (H-bonds, Hydrophobic, Ionic, Water bridges) of the PROTONATED STATE OF THE ligand,
ZINC000252286875 boundwith 3KV2 recorded in a 500 ns simulation interval; (B) Ligand atom interactionswith the protein residues of 3KV2 boundwith
ZINC000252286875; (C) Secondary Structure element distribution by residue index throughout the protein structure. Red indicates alpha helices, and
blue indicate beta-strands of 3KV2 bound with protonated ZINC000252286875.
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hydrophobic interactions, ionic interactions, and water bridges. In
its protonated form, the ligand ZINC000252286875 exhibited six
ionic interactions with Lys64, Asp124, Ala171, Arg222, Asp232, and
Gly250. Aspartic acid residue 232 exhibited a 200% ionic contact,
while other residues exhibited ionic contacts above 100%. Which
suggests that ionic connections were maintained during the 500 ns
simulation time (see Figure 13B). In the docking study, salt bridge
formation for the ligand ZINC000252286875 was observed, thereby
complementing the docking analysis. The ligand
ZINC000252286875 made six ionic contacts with the Lys68,
Asp117, His126, Ala171, Lys224, and Asp232 residues in a non-
protonated state; Asp117, His126, and Lys224 made more than
200% ionic contacts, while the remaining residues made more than
100% ionic contacts (See Figure 14B). The ligand
ZINC000252286875 formed ionic interactions with distinct
residues in both protonated and non-protonated states, with the
exception of Asp232 and Ala171, which formed ionic contacts in
both protonated and non-protonated states. In the protonated state,
the ligand ZINC000252286875 formed strong ionic connections
with Asp232, but in the unprotonated state, it formed strong ionic
interactions with Asp117, His126, and Lys224. The current
observation demonstrated that the ligand

ZINC000252286875 exhibited more stable interactions in its non-
protonated state than in its protonated state. The ligand
ZINC000252286875 subsequently exhibited significant hydrogen
bonding interactions in both the protonated and unprotonated
states. When the ligand was protonated, it made a strong
hydrogen bonding contact of 200% with Thr127. Other residues,
such as Prp20, His126, Thr135, Asn139, Gly132, Lys150, Leu152,
Gly154, Thr192, Tyr218 and Gly245, also made strong hydrogen
bonds during a 500 ns simulation. In contrast, the non-protonated
form of ligand ZINC000252286875 had only one significant
hydrogen bonding interaction with the Leu220 residue (11%), but
it had many hydrogen bonding contacts with the Pro20, Pro116,
His126, Asp128, Gly138, Asn139, Gln143, Lys150, Cys168, Ala171,
Thr 192, Leu192, Lys196, Arg222, etc. Although the ligand
demonstrated hydrogen bonding interactions in both forms, it
displayed more stable hydrogen bonding connections in its
protonated form Figure 14C. Throughout the simulation, the
existence of protein secondary structural elements (SSE) such as
alpha heices and beta strands is examined to ensure that they are not
present. The plot in Figure 14C depicts the distribution of SSE by
residue index over the complete protein structure, and it
encompasses the full protein structure. In contrast to the charts,

FIGURE 14
(A) Protein-ligand contact histogram (H-bonds, Hydrophobic, Ionic, Water bridges) of the non-protonated state of the ligand,
ZINC000252286875 boundwith 3KV2 recorded in a 500 ns simulation interval; (B) Ligand atom interactionswith the protein residues of 3KV2 boundwith
ZINC000252286875; (C) Secondary Structure element distribution by residue index throughout the protein structure. Red indicates alpha helices, and
blue indicate beta-strands of 3KV2 bound with non-protonated ZINC000252286875.
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which show the summary of the SSE composition for each trajectory
frame during the course of the simulation, the graphs at the bottom
show the evolution of each residue and its SSE assignment
throughout the experiment. Throughout the simulation, alpha-
helices and beta-strands are monitored as secondary structure
elements (SSE). The left graph shows the distribution of SSE
across the protein structure by residue index. The top image
highlights the SSE composition for each trajectory frame
throughout the simulation, while the bottom plot tracks each
residue’s SSE assignment through time.

Figure 7(iv) is a ligand torsion map showing the conformational
changes that occur to each rotatable bond (RB) in the ligand as the
simulation progresses (from 0.00 to 500 ns). An abstract, two-
dimensional representation of a ligand with rotatable bonds
indicated by color is displayed in the upper panel. For each bond
torsion that can be rotated, both a dial plot and a bar plot of the same
color are provided.

Dial (or radial) graphs show how the torsion’s conformation
changed over the course of the simulation. From the origin of the
simulation at the centre of the radial plot, the time progression of the
simulation is shown radiating outward. The bar plots are a summary
of the data from the dial plots. They show the probability density of
torsion in the data. If torsional potential data is also available, the
graph will also show the potential of a rotatable bond (by summing
the potential of the related torsions) in kcal/mol. On the left side of
the graph, the Y-axis is marked with the potential values in kcal/mol.
The correlations between the histogram and the torsion potential
can show the conformational strain that the ligand is under to stay in
a state where it is bound to a protein (See Supplementary
Figure S5A).

A stepwise trajectory analysis revealed the positional change
relative to the initial 0 ns structure after 500 ns of simulation time
with arginase-1 in ZINC000252286875 protonated and non-
protonated states (See Supplementary Figure S5B).
ZINC000252286875 has been shown to possess structural angular
movement at the end frame to achieve its conformational stability
and convergence.

Molecular mechanics generalized born and
surface area (MMGBSA) calculations

The MMGBSA method is useful for comparing the binding
energies of ligands to protein molecules in their protonated and non-
protonated states. Non-bonded interaction energies were also taken
into account when estimating the binding free energy of the various
arginase-1-ZINC000252286875 complexes. The binding energy of
ZINC000252286875 with arginase-1 was measured to
be −43.789 kcal/mol when the ligand was not protonated,
and −19.058 kcal/mol when it was. Total binding energy is
different for a ligand in its protonated versus non-protonated
state in a drug receptor complex. When a molecule is
deprotonated, Gbind is ruled by interactions that are not bonds,
such as GbindCoulomb, GbindCovalent, GbindHbond, GbindLipo,
GbindSolvGB, and GbindvdW. For the both protonated and
deprotonated states, the GbindvdW, GbindLipo, and GbindCoulomb
energies were the most important contributors to the overall binding
energy. However, in both the protonated and deprotonated states,

the GbindSolvGB and GbindCovalent energies contributed the least to
the overall average binding energies.

Furthermore, arginase-1ZINC000252286875 complexes formed
stable hydrogen bonds with amino acid residues, as indicated by
high GbindHbond interaction values. GbindSolvGB and
GbindCovalent both made unfavourable energy contributions and
were therefore opposed to binding in both protonated and non-
protonated states. See Supplementary Figure S5C shows that
ZINC000252286875, a ligand for arginase-1, displayed angular
momentum in its non-protonated state before and after the
simulation (0 ns and 500 ns), whereas its protonated state
exhibited a slight angular change in the pose (from curved to
straight) between before and after the simulation (See
Supplementary Figure S5D). Because of the enhanced binding
pocket acquisition and contact with residues, these
conformational alterations increase stability and binding energy
(see Table 4).

Thus, MM-GBSA calculations resulted from MD simulation
trajectories and were well justified by the binding energy obtained
from docking results (See Figure 15 for the graphical depiction of
binding energies of protonated and non-protonated complexes).
Moreover, the last frame (500 ns) of MMGBSA displayed the
positional change of the ZINC000252286875 as compared to the
0 ns trajectory, signifying the better binding pose for best fitting in
the binding cavity of the arginase-1 protein (See Supplementary
Figure S5). Therefore, it can be suggested that the
ZINC000252286875 molecule has good affinity for the major
target arginase-1.

In the MMGBSA analysis, we looked at the binding energy
contribution of the protonated and unprotonated
ZINC000252286875 ligand on a residue-by-residue basis. By
calculating the G value of each residue in the 3KV2 complex
protonated state, we found that the residue GLN79 contributed
the most to the binding free energy in the protonated complex
(−65.18 kJ/mol), followed by ASP743, ASN805, and ASN130
(−64.18 kJ/mol, −62.81 kJ/mol, and −59.96 kJ/mol, respectively).
In addition, MN832 had the largest contribution to the binding
energy among the metals, with a G of −37.02 kJ/mol; MN831,
MN514, and MN515 each had lesser contributions, at −34.02 kJ/
mol, −17.26 kJ/mol, and −23.5 kJ/mol, respectively. In addition, for
the non-protonated ZINC000252286875, the per-residue

TABLE 4 Binding energy calculation of ZINC000252286875 with 3KV2-
Protonated and the 3KV2-non-Protonated interaction energies from MMGBSA
trajectories.

Energies (kcal/mol) 3KV2-
protonated

3KV2-non-
protonated

ΔGbind −19.058 ± 8.49 −43.789 ± 23.079

ΔGbindLipo −14.641 ± 2.308 −12.141 ± 2.480

ΔGbindvdW −63.722 ± 6.597 −64.1591 ± 7.2456

ΔGbindCoulomb −10.233 ± 9.197 −8.0198 ± 17.84

ΔGbindHbond −4.829 ± 1.051 −5.8410 ± 1.4607

ΔGbindSolvGB 68.272 ± 8.097 41.551 ± 17.909

ΔGbindCovalent 6.095 ± 3.794 4.8208 ± 3.829
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contribution to the binding energy was also examined. Interestingly,
MN 832, with a G of −136.95 kJ/mol, contributed the most to the
total binding energy, followed by MN514, −129.78 kJ/mol, MN831,
and MN515, each with a G of 126.45 kJ/mol. This finding indicates
that the protonated state of the metal-coordinated complex is less
stable than the non-protonated form. Moreover, the residue
ASN294 with the G of −66.61 kJ/mol contributed the most to the
total binding energy, followed by the residues ASN641 (−66.44 kJ/
mol), GLN590 (−62.31 kJ/mol), ASN805 (−60.82 kJ/mol), and
ASN130 (−60.82 kJ/mol), respectively. We observed that the
residue ASN130 is the common contributor in the protonated
and non-protonated complexes of the ligand ZINC000252286875.
The non-protonated form of the ligand exhibited a more stable
binding pattern with the arginase-1 receptor.

ADMET analysis of the ligand
ZINC000252286875

Because of the negative ADMET characteristics, many promising
therapeutic medicines fail to enter clinical trials (absorption,
distribution, metabolism, elimination and toxicity) (Netzeva et al.,
2019; Hassan et al., 2022; Ghufran et al., 2023). The reported
chemical ZINC000252286875 (nystatin) is utilised for treatment and
prevention in people who are highly immunoexpressed, according to a
small number of studies (Gøtzsche and Johansen, 2014). Based on the
data shown in Table 5, the following may be concluded: In terms of the
percentage of absorption by the human intestines, a number less than
30% indicates a poor absorption rate (Kalantzi et al., 2006). The
absorption value of ZINC000252286875 (nystatin) was zero, which
assures no absorption by the human gut. In terms of distribution
indicators, the size of the distribution (VDss) is said to be large if its
value exceeds 0.45 (Pires et al., 2015). The nystatin had a score
of −0.215, showing a profile of modest distribution.

Blood-brain barrier (BBB) permeability is considered acceptable
if the standard value is more than 0.3 and bad if LogBB < −1
(Speciale et al., 2021). In the case of nystatin, BBB penetration is low.
For the CNS index, substances with LogPS > −2 are deemed capable
of accessing the CNS, while those with LogPS −3 are deemed unable
(Han et al., 2019). Nystatin’s distribution indices suggested a greater

potential for distribution. In terms of metabolism, cytochrome P450
(CYP) is a crucial detoxifying enzyme. CYP enzymes are found in all
bodily tissues (Ouassaf et al., 2021). This enzyme facilitates the
excretion of invading germs by oxidising them. Some medications
are hindered by cytochrome CYP, while others might be stimulated
by it. Inhibitors of this enzyme may alter the medication’s
metabolism, and the drug may have the opposite effect
(Domínguez-Villa et al., 2021). Hence, it is essential to assess the
potential of compounds to inhibit cytochromes (CYP). Up to now,
17 classes of CYPs have been discovered in humans to far. Despite
the fact that only CYP1, CYP2, CYP3, and CYP4 are involved in the
metabolism of medications, only the kinds (1A2, 2C9, 2C19, 2D6,
and 3A4) are responsible for biotransformation for more than 90%
of pharmaceutical drugs passing the first phase of metabolism
(Zanger and Schwab, 2013). The enzymes 2D6 and 3A4 are the
primary drug-metabolizing enzymes (Rodrigues-Junior et al., 2020).
Research indicates that nystatin does not inhibit the activity of the
aforementioned enzymes. To estimate the metabolic effect of
CYP3A4 on the activity of the nystatin that is suggested to use as
a medicine, we are dependent on the findings of a research
examining the activity of nystatin on the CYP3A4 enzyme
(inhibitor or substrate). The data on nystatin’s metabolic
properties show that it does not function as a substrate for
CYP3A4 and does not block its activity, either.

This shows that nystatin is well tolerated in terms of its
metabolism as a medication, and that it reaches its therapeutic
target before being oxidised and eliminated. In order to maintain
steady medication concentrations, appropriate dose must be based
on the drug’s clearance index and excretion characteristics in which
the kidneys excrete and the liver clears (Pires et al., 2015). Hence, a
higher clearance index value implies that nystatin is eliminated more
slowly from the body. In this work, we assess the excretion property
of nystatin to estimate the drug’s stability in the body prior to
excretion. Based on the index’s predictive values, we know that
molecule 16 has a total clearance index of −1.355, suggesting that
nystatinmay remain in the body for an extended period of time. This
increased stability of nystatin in the body over time likely explains
why a lower dose of the drug was able to inhibit the enzyme
arginase-1 with the same degree of effectiveness. Toxicities of the
anticipated substances need to be checked as part of the toxicity

FIGURE 15
Graphical depiction of Binding energies of ZINC000252286875 for (A) 3KV2-Protonated and the (B) 3KV2-non-Protonated interaction energies
from MMGBSA trajectories.
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indicator. While choosing medications, the letter indication is
crucial. The AMES test is often used to determine whether or
not a substance is hazardous (Ferraz et al., 2011). Consequently,
in this study, we use the AMES test to make inferences about the
toxicity of the compounds (nystatin). The investigation
demonstrated that nystatin has no toxicity (Pires et al., 2015).
We conclude that nystatin satisfies all of the studied
pharmacokinetic requirements based on the findings of our in
silico ADMET characteristics investigation. Thus, nystatin has
potential as a drug for inhibiting arginase-1’s enzymatic activity
in immunotherapy.

Conclusion

There is increasing interest in finding novel arginase-I
inhibitors due to its crucial involvement in the depletion of
arginine, which in turn reduced the proliferation of T and NK
cells and eventually resulted in the escape of the immune
response to the tumor. However, only a small number of them
are now being further investigated, likely as a result of the
difficulty in achieving an acceptable pharmacokinetic profile
and probable target-related toxicity. Despite these challenges,
two arginase inhibitors are being tested in clinical trials: CB-280

TABLE 5 Depiction of ADMET results for ZINC000252286875.

Property Model name Predicted value Unit

Absorption Water solubility −2.83 Numeric (log mol/L)

Absorption Caco2 permeability −1.016 Numeric (log Papp in 10−6 cm/s)

Absorption Intestinal absorption (human) 0 Numeric (% Absorbed)

Absorption Skin Permeability −2.735 Numeric (log Kp)

Absorption P-glycoprotein substrate Yes Categorical (Yes/No)

Absorption P-glycoprotein I inhibitor No Categorical (Yes/No)

Absorption P-glycoprotein II inhibitor No Categorical (Yes/No)

Absorption VDss (human) −0.215 Numeric (log L/kg)

Distribution Fraction unbound (human) 0.62 Numeric (Fu)

Distribution BBB permeability −2.422 Numeric (log BB)

Distribution CNS permeability −6.068 Numeric (log PS)

Metabolism CYP2D6 substrate No Categorical (Yes/No)

Metabolism CYP3A4 substrate No Categorical (Yes/No)

Metabolism CYP1A2 inhibitior No Categorical (Yes/No)

Metabolism CYP2C19 inhibitior No Categorical (Yes/No)

Metabolism CYP2C9 inhibitior No Categorical (Yes/No)

Metabolism CYP2D6 inhibitior No Categorical (Yes/No)

Metabolism CYP3A4 inhibitior No Categorical (Yes/No)

Excretion Total Clearance −1.355 Numeric (log mL/min/kg)

Excretion Renal OCT2 substrate No Categorical (Yes/No)

Toxicity AMES toxicity No Categorical (Yes/No)

Toxicity Max. tolerated dose (human) −0.028 Numeric (log mg/kg/day)

Toxicity hERG I inhibitor No Categorical (Yes/No)

Toxicity hERG II inhibitor No Categorical (Yes/No)

Toxicity Oral Rat Acute Toxicity (LD50) 2.421 Numeric (mol/kg)

Toxicity Oral Rat Chronic Toxicity (LOAEL) 3.195 Numeric (log mg/kg_bw/day)

Toxicity Hepatotoxicity No Categorical (Yes/No)

Toxicity Skin Sensitisation No Categorical (Yes/No)

Toxicity T.Pyriformistoxicity 0.285 Numeric (log ug/L)

Toxicity Minnow toxicity 9.358 Numeric (log mM)
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for the treatment of cystic fibrosis and numidargistat for the
treatment of cancer (phases 1/2 and 1). AstraZeneca’s compound
and OATD-02 are two other compounds that are either in
preclinical or development stages. Therefore, to achieve this, a
QSAR model was used to assess 149 arginase-I inhibitors that
have previously been described in the experimental literature. In
relation to the various factors that influence the inhibitory
activity of arginase-I, the current QSAR analysis has
successfully highlighted the significance of various atom kinds,
groups, and patterns. Specifically, the rsa descriptor highlighted
the relevance of the single carbon atom, which demonstrated a
significant alteration in the bioactivity profile of the molecule.
More lipophilic (non-polar hydrogen) atoms were shown to
increase arginase-I inhibitory activity, as determined by the
descriptor com_lipohyd_3A, which strongly suggests including
lipophilic (non-polar hydrogen) atoms in future drug design. The
importance of precise patterns of atoms with varied levels of
hybridization and their interactions in defining the ultimate
activity was also highlighted. Moreover, QSAR was also
successful in detecting the conditional presence of a sp2-
hybridized oxygen atom, precisely nine bonds from the second
and sixth carbon atoms of the phenyl ring system, which was also
extensively documented in literature. The developed QSAR
model possesses high external predictive ability and robustness
for fitting and internal validation. The current study used QSAR-
based virtual screening to find a unique hit, ZINC000252286875
(Nystatin, PIC50: 10.023 M, IC50: 0.095 nM), as a repurposed
molecule for targeting the arginase-I receptor at nanomolar
concentrations. In addition, virtual screening successfully
offered a potent hit molecule, nystatin, from the ZINC FDA
database with improved IC50 values in the range of 0.8 to
0.095 nM. The protonated state of the ligand
ZINC000252286875 was discovered in the binding pocket of
arginase-I by molecular docking investigations. Molecular
docking and MD studies revealed polar and non-polar
interactions with key arginase-I active site residues.
Furthermore, the much greater binding energy of
ZINC000252286875 with arginase-I validates the increased
affinity and opens up a new avenue for potential arginase-I
inhibitor drugs. The non-protonated
ZINC000252286875 revealed that the MN 832 contributed the
most to total binding energy, with a G of −136.95 kJ/mol,
followed by MN514, -129.78 kJ/mol, MN831, and MN515,
each with a G of 126.45 kJ/mol. The ligand’s non-protonated
form had a more stable binding pattern with the arginase-1
receptor. On the basis of the results of the in silico ADMET
characteristics analysis, nystatin likewise meets all of the
investigated pharmacokinetic criteria. Therefore, the current
findings could help in the development of a novel drug for
arginase-I inhibition as an onco-immunomodulator.
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