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SOLITARY WAVE SOLUTIONS FOR 

THE ( )12 +  CBS EQUATION 

 

Abstract 

The aim of this paper is to investigate the traveling wave solution of 

the Calogero-Bogoyavlenskii-Schiff (CBS) equation using the Riccati-

Bernoulli (RB) sub-ODE method. The (RB) sub-ODE method is used 

to secure traveling wave solutions that are expressed explicitly and 

graphically in 3D. The RB sub-ODE technique is a powerful tool      

that is used to solve various nonlinear partial differential equations 

(NPDEs). The obtained soliton solutions have been demonstrated by 

relevant figures. 

1. Introduction 

The NPDEs have become the leading and the most important topics in 

mathematical physics that describes the nonlinear wave structure and 
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behaviour which has lead to a great contribution in science and technology 

[1-4]. Because of the difficulty to find exact solution to NPDEs problems, 

many computational techniques and theoretical methods have been tackled 

by many researchers to come up with a great contribution, models, finding, 

theories, techniques, and methods to find solutions to NPDEs problems               

[5-7]. The significant and useful aspect of the solutions of NPDEs has 

unlimited contribution in various fields of study such as nonlinear optics, 

fluid mechanics, solid state physics, neural physics, mathematical biology, 

quantum mechanics, chaos, hydrodynamics, optical fibers and other 

numerous areas [8-10]. Moreover, the concept of NPDEs can be extended to 

the study of commutativity of NPDEs [11-15]. 

The aim of this paper is to investigate the exact traveling wave solution 

of the ( )12 + -dimensional (CBS) equation using (RB) sub-ODE method. 

Consider the ( )12 + -dimensional (CBS) equation as 

 .024 =ϑ+ϑϑ+ϑϑ+ϑ xxxyyxxxyxxt  (1) 

The RB-sub ODE method has been used to solve different NPDEs         

[16-18]. Exact solution and the applications of CBS equation are presented 

in [19]. 

In the present article, we consider the RB-sub ODE method to find the 

traveling wave solution of the ( )12 + -dimensional (CBS) equation. The 

exact solution of this novel ( )12 + -dimensional (CBS) equation using the 

RB-sub ODE method has not yet appeared in the literature. The paper is 

scheduled as: Section 2 introduces the method. The application and figures 

are given in Section 3. Lastly, Section 4 presents the conclusion. 

2. Description of RB Sub-ODE Method 

In this section, we propose the RB sub-equation method. Suppose we 

have NPDEs as 

( ) ,0...,,,,,,,,,, =ϑϑϑϑϑϑϑϑϑϑ yyxytyxxxtttyxtP  (2) 



Solitary Wave Solutions for the ( )12 +  CBS Equation 119 

where P is a polynomial. The RB sub-equation method is described into 

three steps: 

Step 1. We consider the following traveling wave transformation: 

 ( ) ( ) ( ),,,, vtyxtyx ±+=ξϑ=ξϑ  (3) 

that leads to the following ODE 

 ( ) ,0...,,, =ϑ′′ϑ′ϑP  (4) 

where ( ) .ξ
ϑ=ξϑ′

d

d
 

Step 2. Let equation (4) be the solution of the RB equation 

 ,2 mm
cab ϑ+ϑ+ϑ=ϑ′ −  (5) 

where a, b, c and m are arbitrary constants. 

Differentiating equation (5) leads to 

( )mmm
bca

+−− ϑ+ϑ+ϑϑ=ϑ′′ 12221  

( ( ) ),2 122 mm
bcmUma

+ϑ+ϑ++−−×  (6) 

( )( ) ( ( ) ( ) 42212 232 ϑ+−+−ϑ+ϑ+ϑ=ϑ ′′′ −+−
mmacabu

mmm  

( ) ( ) ( ) mm
mmabmmc

+ϑ+−+−+ϑ+−+ 342 2321  

( ) ( ) ),12 31222 mm
mbcmacb

++ ϑ++ϑ++  (7) 

and so on. 

Observe that the solutions of equation (5) lead to 

Case 1. As ,1=m  the results of equation (5) become 

 ( ) ( ) .ξ++=ξϑ cab
Je  (8) 

Case 2. As 0,1 =≠ bm  and ,0=c  the results of equation (5) become 

 ( ) ( ) ( )( ) .1 1

1

−+ξ−=ξϑ mJma  (9) 
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Case 3. As 0,1 ≠≠ bm  and ,0=c  the results of equation (5) become 

 ( ) ( )( )
.

1

1

1 −ξ−






 −=ξϑ mmb

b

a
Je  (10) 

Case 4. As 0,1 ≠≠ am  and ,042 <− acb  the results of equation (5) 

become 

( ) ( ) ( )
m

J
bacm

a

bac

a

b
−














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
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



+ξ−−−+−=ξϑ

1

1

22

2

41
tan

2

4

2
 (11) 

and 

( ) ( ) ( ) .
2

41
cot

2

4

2

1

1

22 m

J
bacm

a

bac

a

b
−







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




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
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
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
+ξ−−−−−=ξϑ  (12) 

Case 5. As 0,1 ≠≠ am  and ,042 >− acb  the results of equation (5) 

become 

( ) ( ) ( )
m

J
acbm

a

acb

a

b
−


























+ξ−−−−−=ξϑ

1

1
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2
 (13) 

and 

( ) ( ) ( ) .
2

41
coth

2

4

2

1

1

22 m

J
acbm
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acb
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b
−


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
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Case 6. As 0,1 ≠≠ am  and ,042 =− acb  the results of equation (5) 

become 

 ( ) ( ) ( ) ,
21

1 1

1

m

a

b

Jma

−






 −+ξ−=ξϑ  (15) 

where J is a constant. 
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Step 3. Plugging the derivatives of ϑ  into equation (4) gives the 

equation in terms of .ϑ  Collecting terms that belong together and solving for 

the unknowns constants leads to the solution of equation (2). 

2.1. Bäcklund transformation 

Suppose that ( )ξϑn  and ( )ξϑ −1n  are the solutions of equation (2). Then 

 
( ) ( )

( )
( ) ( ) ( ),11

2
1

1

1

1

m
nn

m
n

n

nn

n

nn cba
d

d

d

d

d

d

d

d
−−

−
−

−
−

−
ϑ+ϑ+ϑξϑ

ξϑ=ξ
ξϑ

ξξϑ
ξϑ=ξ

ξϑ
 (16) 

namely, 

 
( ) ( )

.

11
2

1

1
2 m

nn
m

n

n
m
nn

m
n

n

cba

d

cba

d

−−
−
−

−
− ϑ+ϑ+ϑ

ξϑ=
ϑ+ϑ+ϑ

ξϑ
 (17) 

Integrating equation (17) with respect to ξ  leads to 

 ( ) ( )( )
( )( )

,
1

1

1
1121

1
121

m

m
n

m
n

n
aAaAbA

aAcA −

−
−

−
−















ξϑ++
ξϑ+−=ξϑ  (18) 

where 1A  and 2A  are arbitrary constants. With equation (18), we can         

obtain the solution of equation (2) and the process is called a Bäcklund 

transformation. 

3. Applications 

The solution of ( )12 + -dimensional (CBS) equation of equation (1) is 

obtained by considering the traveling wave transformation 

 ( ) ( ) ( )vtyxtyx −+=ξξϑ=ϑ ,,,  (19) 

and plugging it into equation (1), we obtain the following equation: 

 ( ) .06 4 =ϑ+ϑ′′ϑ′+ϑ′′−v  (20) 

Plugging equations (5)-(7) and their derivatives into (20), setting 0=m  

and collecting all the coefficients of ( )ξϑi
 ( ),6,5,4,3,2,1for =i  and 
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then equating each collection to zero, we have the following: 

( ) ,086: 2231 =−++ξϑ bcvabcbccb  

( ) ,0216122212: 22222242 =−−++++ξϑ acvvbcaaccabcbb  

( ) ,036036156: 2333 =−+++ξϑ abvbcaabcabb  

( ) ,0240245024: 2322224 =−+++ξϑ vacacabaab  

( ) ,060330: 325 =+ξϑ baba  

( ) .02412:
436 =+ξϑ aa  (21) 

Solving the system of algebraic equations of equation (21) leads to 

,
2

1−=a  

,0=b  

.6cv =  (22) 

With the solutions from equation (22) with equations (8)-(15) and (19), 

we obtain the solutions of equation (1) as: 

The periodic solutions can be obtained as 

( ) ( )
,

2

6
tan2,,1 







 ++−−−−=ϑ± yxctJc
ctyx  (23) 

( ) ( )
.

2

6
cot2,,2 







 ++−−−=ϑ± yxctJc
ctyx  (24) 

The singular and dark optical soliton solutions: 

( ) ( )
,

2

6
coth2,,3 







 ++−=ϑ± yxctJc
ctyx  (25) 

( ) ( )
,

2

6
tanh2,,4 







 ++−=ϑ± yxctJc
ctyx  (26) 
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and the singular solution: 

 ( ) .
6

2
,,5 yxctJ

tyx ++−=ϑ±  (27) 

Figure 1 presents the periodic singular wave solution, that is ( )tyx ,,1ϑ  

of equation (23). We consider the following parameters: ;10−=c  ;4.0−=J  

.7=y  

 

Figure 1. Plot of 3D, density and contour of (23). 

Figure 2 presents the periodic singular wave solution, that is ( )tyx ,,2ϑ  

of equation (24). We consider the following parameters: ;1=c  ;4=J  

.2=y  

 

Figure 2. Plot of 3D, density and contour of (24). 

Figure 3 presents the dark soliton solution, that is ( )tyx ,,3ϑ  of 

equation (25). We consider the following parameters: ;9.2−=c  ;1=J  

.2=y  
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Figure 3. Plot of 3D, density and contour of (25). 

Figure 4 presents the singular soliton solution, that is ( )tyx ,,4ϑ  of 

equation (26). We consider the following parameters: ;1=c  ;6=J  .7=y  

 

Figure 4. Plot of 3D, density and contour of (26). 

Figure 5 presents the singular solution, that is ( )tyx ,,5ϑ  of equation 

(27). We consider the following parameters: ;2−=c  ;4=J  .5.0=y  

 

Figure 5. Plot of 3D, density and contour of (27). 
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4. Concluding Remarks 

The RB sub-ODE method was introduced to solve the ( )12 +  

dimensional CBS equation. We retrieved solitary wave solution in the        

form of kink shape soliton, bright soliton, periodic wave solutions, singular 

solitons and dark solitons to the ( )12 +  dimensional CBS equation. The RB 

sub- ODE method is a powerful and simple mathematical tool that is used for 

solving complex NLPDEs. The solitary wave results obtained play a vital 

role in mathematical physics and have unlimited applications in science and 

technology. The solitary wave results are illustrated by figures. 
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