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OPTICAL SOLITON SOLUTIONS FOR THE 

NONLINEAR THIRD-ORDER PARTIAL 

DIFFERENTIAL EQUATION 

 

Abstract 

In this paper, the Riccati-Bernoulli (RB) sub-ODE method is used          

to find the solitary wave solutions for a third-order nonlinear partial 

differential equation (NLPDE). The traveling wave transformation 

along with RB sub-ODE equation is used to convert the third-order 

NLPDE to the set of algebraic equations. Solving the set of algebraic 

equations generates the analytical solution of the third-order NLPDE. 

The RB sub-ODE method is a powerful and simple mathematical tool 

for solving complex NLPDE. The solitary wave solutions obtained 

play a vital role in mathematical physics. 
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1. Introduction 

The process of finding the analytical solution to NLPDEs by using 

different computational techniques, theoretical methods, and numerical 

methods has been the major challenge of mathematicians and physicist [1-3]. 

This is because of the continuous application of NLPDEs in different areas  

of study such as applied astronomy, engineering, science, physics, chemistry, 

and biological [4-6]. Certain techniques, theories, models, and methods          

to find exact solutions of different NLPDEs are available in [7-9, 12]. The 

NLPDEs describe real life phenomena that deal with physical systems         

and their solutions [10-13]. These are constantly used in chaos theory for 

dynamical systems, quantum theory, fluid dynamics, continuum mechanics, 

nonlinear optics, and other related areas [14, 15]. Commutativity of NLPDEs 

is an open problem [16-20]. 

The goal of this paper is to investigate the exact solution of traveling 

wave solution of the third-order NLPDEs using RB-sub ODE method. 

Consider the third-order ( )11 + -dimensional equations as 

 ( ) ,xxxxxxxxxxt d ϑϑ−ϑϑγ−βϑ−αϑϑ−=ϑ  (1) 

where α, β, γ and d are nonzero real parameters. The RB-sub ODE method 

was introduced to deal with the problems of exact solution of complex 

NLPDEs, because of its simplicity and ease for computation. Many authors 

make use of this technique on different NLPDEs [21-23]. 

Regarding this work, we analogously use the RB-sub ODE method to 

investigate the traveling wave solution of the third-order NLPDEs. We study 

the analytical solution of this novel third-order NLPDEs using this method. 

The paper is scheduled as: Section 2 introduces the method. The 

application and figures are given in Section 3. Lastly, Section 4 presents the 

conclusion. 
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2. Description of RB Sub-ODE Method 

In this section, we offer the RB sub-equation method. Suppose we have a 

NLPDE as 

 ( ) ,0...,,,,,, =ϑϑϑϑϑϑ txxxttxtP  (2) 

where P is a polynomial. The RB sub-equation method is categorized into 

three steps. 

Step 1. We consider the following traveling wave transformation: 

 ( ) ( ) ( )vtxKtx ±=ξϑ=ξϑ ,,  (3) 

that leads to the following ODE: 

 ( ) ,0...,,, =ϑ′′ϑ′ϑP  (4) 

where ( ) .ξ
ϑ=ξϑ′

d

d
 

Step 2. Let equation (4) be the solution of the RB equation 

 ,2 mm
cab ϑ+ϑ+ϑ=ϑ′ −  (5) 

where a, b, c and m are arbitrary constants. 

Differentiating equation (5) leads to 

( )mmm
bca

+−− ϑ+ϑ+ϑϑ=ϑ′′ 12221  

( ( ) ),2 122 mm
bcmUma

+ϑ+ϑ++−−×  (6) 

( )( ) ( ( ) ( ) 42212 232 ϑ+−+−ϑ+ϑ+ϑ=ϑ ′′′ −+−
mmacabu

mmm  

( ) ( ) ( ) mm
mmabmmc

+ϑ+−+−+ϑ+−+ 342 2321  

( ) ( ) ),12 31222 mm
mbcmacb

++ ϑ++ϑ++  (7) 

and so on. 
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Observe that the solutions of equation (5) lead to 

Case 1. As ,1=m  the results of equation (5) become 

 ( ) ( ) .ξ++=ξϑ cab
Je  (8) 

Case 2. As 0,1 =≠ bm  and ,0=c  the results of equation (5) become 

 ( ) ( ) ( )( ) .1 1

1

−+ξ−=ξϑ mJma  (9) 

Case 3. As 0,1 ≠≠ bm  and ,0=c  the results of equation (5) become 

 ( ) ( )( )
.

1

1

1 −ξ−






 −=ξϑ mmb

b

a
Je  (10) 

Case 4. As 0,1 ≠≠ am  and ,042 <− acb  the results of equation (5) 

become 

 ( ) ( ) ( )
m

J
bacm

a

bac

a

b
−


























+ξ−−−+−=ξϑ

1

1

22

2

41
tan

2

4

2
 (11) 

and 

( ) ( ) ( ) .
2

41
cot

2

4

2

1

1

22 m

J
bacm

a

bac

a

b
−


























+ξ−−−−−=ξϑ  (12) 

Case 5. As 0,1 ≠≠ am  and ,042 >− acb  the results of equation (5) 

become 

( ) ( ) ( )
m

J
acbm

a

acb

a

b
−


























+ξ−−−−−=ξϑ

1

1

22

2

41
tanh

2

4

2
 (13) 



Optical Soliton Solutions for the Nonlinear … 131 

and 

( ) ( ) ( ) .
2

41
coth

2

4

2

1

1

22 m

J
acbm

a

acb

a

b
−


























+ξ−−−−−=ξϑ  (14) 

Case 6. As 0,1 ≠≠ am  and ,042 =− acb  the results of equation (5) 

become 

 ( ) ( ) ( ) ,
21

1 1

1

m

a

b

Jma

−






 −+ξ−=ξϑ  (15) 

where J is a constant. 

Step 3. Plugging the derivatives of ϑ  into equation (4) gives the 

equation in terms of .ϑ  Collecting terms that belong together and solving for 

the unknown constants provides the solution of equation (2), see [22]. 

2.1. Bäcklund transformation 

Suppose that ( )ξϑn  and ( )ξϑ −1n  are the solutions of equation (2). Then 

( ) ( )
( )

( ) ( ) ( ),11
2

1
1

1

1

m
nn

m
n

n

nn

n

nn cba
d

d

d

d

d

d

d

d
−−

−
−

−
−

−
ϑ+ϑ+ϑξϑ

ξϑ=ξ
ξϑ

ξξϑ
ξϑ=ξ

ξϑ
 (16) 

namely, 

 
( ) ( )

.

11
2

1

1
2 m

nn
m

n

n
m
nn

m
n

n

cba

d

cba

d

−−
−
−

−
− ϑ+ϑ+ϑ

ξϑ=
ϑ+ϑ+ϑ

ξϑ
 (17) 

Integrating equation (17) with respect to ξ leads to 

 ( ) ( )( )
( )( )

,
1

1

1
1121

1
121

m

m
n

m
n

n
aAaAbA

aAcA −

−
−

−
−












ξϑ++
ξϑ+−=ξϑ  (18) 

where 1A  and 2A  are arbitrary constants. With equation (18), we can   

obtain the solution of equation (2), and the process is called a Bäcklund 

transformation. 
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3. Applications 

To get the solution of third-order NLPDE given in equation (1), we 

consider the traveling wave transformation 

 ( ) ( ) ( ),,, vtxKtx +=ξξϑ=ϑ  (19) 

and use it into equation (1). We get the following equation: 

 ( ) ( ( )).333333 ϑϑ+ϑ′′ϑ′γ−βϑ−ϑ′′ϑ′−ϑ′αϑ−=ϑ′ KKKdKKKv  (20) 

Plugging equations (5)-(7) and its derivative into (20), setting 0=m  

and collecting all the coefficients of ( )ξi
U  ( ),5,4,3,2,1,0for =i  and 

also equating each collection to zero, we have the following: 

( ) ( ( )) ,02: 22220 =γ++β+β+ξϑ dbckackkbvck  

( ) ( ( ) ( )γ++β++βξϑ 328: 222231
dckbackvbkbk  

( ( ))) ,022 2 =γ++α+ dackc  

( ) ( ( ) ( )γ++β++βξϑ 287: 232222
dkbackvakabk  

( ( ))) ,0732 2 =γ++α+ dackb  

( ) ( ( ) ( )) ,01143412: 22223 =γ++γ++β+αξϑ dkbdackabkak  

( ) ( ) ,01765: 324 =γ+αβ+ξϑ bbdka  

( ) ( ) .042: 335 =γ+ξϑ dka  (21) 

Solving the system of algebraic equations of equation (21) leads to 

,
2 22

4422222

β
γ+γαβ−+γ=

k

kckck
a  

,
2

γ
β= a

b  
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( ) ,4 22 β−−= kacbv  

( ) ,223
144

1 2γ+β+α=K  

.4γ−=d  (22) 

Considering the solutions of equation (22) with equations (8)-(15) and 

(19), we obtain the solutions of equation (1). 

The periodic solution can be given by 

( ) ,
2

1
tanh,

21 























γ
βα++γ

α−
γ
β−γ

β−=ϑ± t
xkJ

k
tx  (23) 

( ) .
2

1
cot

,
22

2 γα










γ
α

















γ
αβ++

γ
αβ

+γ
β−=ϑ± k

t
xkJ

k
ik

tx  (24) 

The dark optical soliton: 

( ) ,
2

1
coth

,
22

3 γα










γ
α−
















γ
αβ++

γ
α−β

+γ
β−=ϑ± k

t
xkJ

k
ik

tx  (25) 

and the singular soliton: 

( ) ,
2

1
tanh

,
22

4 γα










γ
α−
















γ
αβ++

γ
α−β

+γ
β−=ϑ± k

t
xkJ

k
ik

tx  (26) 

( ) ,

2

1
,5

β
γ−

=ϑ

γ









γ
αβ+α

−

±

Je

tx
t

xi

 (27) 
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( ) .,

22

22

2

2

2

6 J

e
tx

kdk

kdk

tk
xk

γ−−















γ−−
αβ−α

± =ϑ  (28) 

Figure 1 presents the periodic singular wave solution, that is ( )tx,1ϑ  of 

equation (23). We analogously consider the following parameters: 

.4.0;7;5.0;10;8;6 −==µ−=β=γ=α= Jc  

 

Figure 1. Plot of 3D, density and contour of (23). 

Figure 2 presents the periodic singular wave solution, that is ( )tx,2ϑ  of 

equation (22). We analogously consider the following parameters: 

.5.1;25.0;5.0;10;5;6 ==µ=β−=γ−=α−= Jc  

 

Figure 2. Plot of 3D, density and contour of (24). 

Figure 3 presents the dark soliton solution, that is ( )tx,3ϑ  of equation 

(25). We analogously consider the following parameters: 

5.1;25.0;2;10;10;6 ==µ=β−=γ−=α−= Jc  
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Figure 3. Plot of 3D, density and contour of (25). 

Figure 4 presents the singular soliton solution, that is ( )tx,4ϑ  of 

equation (26). We analogously consider the following parameters: 

.5.1;25.0;2;10;10;6 ==µ=β−=γ−=α= Jc  

 

Figure 4. Plot of 3D, density and contour of (26). 

Figure 5 presents the periodic solution, that is ( )tx,5ϑ  of equation (27). 

We analogously consider the following parameters: 

.1;9.0;4;10;5;6 ==µ−=β−=γ−=α−= Jc  

 

Figure 5. Plot of 3D, density and contour of (27). 
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Figure 6 presents the periodic solution, that is ( )tx,6ϑ  of equation (28). 

We analogously consider the following parameters: 

.1;9.0;4;10;5;6 ==µ−=β−=γ−=α−= Jc  

 

Figure 6. Plot of 3D, density and contour of (28). 

4. Concluding Remarks 

In this paper, we investigate the exact solution of the third-order NLPDE 

using RB sub-ODE method. The obtained solitary wave solution secured 

some singular solitons, periodic wave solutions and dark solitons to the 

third-order NLPDE. Moreover, the RB sub-ODE method is a simple 

mathematical tool that is used in mathematics to solve many complex 

NLPDEs. The traveling wave solutions obtained by this method have 

applications in mathematical physics. The results obtained are depicted in 

figures and validated with Mathematica software. 
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