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A B S T R A C T

The problem of reducing processing time of large deep learning models is a fundamental challenge in many
real-world applications. Early exit methods strive towards this goal by attaching additional Internal Classifiers
(ICs) to intermediate layers of a neural network. ICs can quickly return predictions for easy examples and, as
a result, reduce the average inference time of the whole model. However, if a particular IC does not decide
to return an answer early, its predictions are discarded, with its computations effectively being wasted. To
solve this issue, we introduce Zero Time Waste (ZTW), a novel approach in which each IC reuses predictions
returned by its predecessors by (1) adding direct connections between ICs and (2) combining previous outputs
in an ensemble-like manner. We conduct extensive experiments across various multiple modes, datasets, and
architectures to demonstrate that ZTW achieves a significantly better accuracy vs. inference time trade-off than
other early exit methods. On the ImageNet dataset, it obtains superior results over the best baseline method
in 11 out of 16 cases, reaching up to 5 percentage points of improvement on low computational budgets.
1. Introduction

Deep learning models achieve tremendous successes across a multi-
tude of tasks, yet their training and inference often yield high com-
putational costs and long processing times (He, Zhang, Ren, & Sun,
2016; Krizhevsky, Sutskever, & Hinton, 2017). For some applications,
however, efficiency remains a critical challenge, e.g. to deploy a re-
inforcement learning (RL) system in production the policy inference
must be done in real-time (Dulac-Arnold, Mankowitz, & Hester, 2019),
while the robot performances suffer from the delay between measuring
a system state and acting upon it (Schuitema, Buşoniu, Babuška, &
Jonker, 2010). Similarly, long inference latency in autonomous cars
could impact their ability to control the speed (Hester & Stone, 2013)
and lead to accidents (Grigorescu, Trasnea, Cocias, & Macesanu, 2020;
Jung, Hwang, Shin, & Shim, 2018).

Typical approaches to reducing the processing complexity of neu-
ral networks in latency-critical applications include compressing the
model (Lee, Kim, Kim, Jo, & Yoo, 2021; Livne & Cohen, 2020; Zhang,
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He, & Li, 2019) or approximating its responses (Kouris, Venieris, Riza-
kis, & Bouganis, 2019). For instance, Livne and Cohen (2020) propose
to compress a RL model by policy pruning, while Kouris et al. (2019)
approximate the responses of LSTM-based modules in self-driving cars
to accelerate their inference time. While those methods improve pro-
cessing efficiency, they still require samples to pass through the entire
model. In contrast, biological neural networks leverage simple heuris-
tics to speed up decision making, e.g. by shortening the processing path
even in case of complex tasks (Ariely & Norton, 2011; Gigerenzer &
Gaissmaier, 2011; Kahneman, 2017).

This observation led a way to the inception of the so-called early
exit methods, such as Shallow-Deep Networks (SDN) (Kaya, Hong, &
Dumitras, 2019) and Patience-based Early Exit (PBEE) (Zhou et al.,
2020), that attach simple classification heads, called internal classi-
fiers (ICs), to selected hidden layers of neural models to shorten the
processing time. If the prediction confidence of a given IC is sufficiently
high, the response is returned, otherwise, the example is passed to the
subsequent classifier. Although these models achieve promising results,
vailable online 9 October 2023
893-6080/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.neunet.2023.10.003
Received 22 May 2023; Received in revised form 29 August 2023; Accepted 4 Octo
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ber 2023

https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:b.wojcik@doctoral.uj.edu.pl
https://doi.org/10.1016/j.neunet.2023.10.003
https://doi.org/10.1016/j.neunet.2023.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.10.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neural Networks 168 (2023) 580–601B. Wójcik et al.
Fig. 1. Comparison of the proposed ZTW (bottom) with a conventional early-exit
model, SDN (top). In both approaches, internal classifiers (ICs) attached to the
intermediate hidden layers of the base network allow us to return predictions quickly
for examples that are easy to process. While SDN discards predictions of uncertain ICs
(e.g. below a threshold of 75%), ZTW reuses computations from all previous ICs, which
prevents information loss and waste of computational resources.

they discard the response returned by early ICs in the evaluation of
the next IC, disregarding potentially valuable information, e.g. decision
confidence, and wasting computational effort already incurred.

Motivated by the above observation, we postulate to look at the
problem of neural model processing efficiency from the information
recycling perspective and introduce a new family of zero waste models.
More specifically, we investigate how information available at different
layers of neural models can contribute to the decision process of the en-
tire model. To that end, we propose Zero Time Waste (ZTW), a method
for an intelligent aggregation of the information from previous ICs.
A high-level view of our model is given in Fig. 1. Our approach
relies on combining ideas from networks with skip connections (Wang,
Yu, Dou, Darrell and Gonzalez, 2018), gradient boosting (Bentéjac,
Csörgő, & Martínez-Muñoz, 2020), and ensemble learning (Fort, Hu,
& Lakshminarayanan, 2019; Lakshminarayanan, Pritzel, & Blundell,
2017). Skip connections between subsequent ICs (which we call cas-
cade connections) allow us to explicitly pass the information contained
within low-level features to a deeper classifier, which forms a cascading
structure of ICs. In consequence, each IC improves on the prediction
of previous ICs, as in gradient boosting, instead of generating them
from scratch. To give the opportunity for every IC to explicitly reuse
predictions of all previous ICs, we additionally build an ensemble
of shallow ICs. With these improvements, we aim to decrease the
computational cost of pre-trained models while maintaining the desired
performance on a given task.

We evaluate our approach on standard classification benchmarks,
such as ImageNet, as well as on the more latency-critical applications,
such as reinforcement-learned models for interacting with sequential
environments. Results show that ZTW is able to save much more
computation while preserving accuracy than current state-of-the-art
early exit methods. In order to better understand where the improve-
ments come from, we introduce Hindsight Improvability, a metric for
measuring how efficiently the model reuses information from the past.

In this paper we extend our previous work (Wołczyk et al., 2021)
in the following regards:

• We extend the evaluation by adding two recent early-exit meth-
ods, updating the backbone models to modern and state-of-the-art
computer vision (CV) architectures, using larger datasets, and
including the Natural Language Processing (NLP) domain in our
evaluation.
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• We investigate the behavior early exit models in the transfer
learning setting, showing how 𝑍𝑇𝑊 is able to outperform other
methods by reusing features from shallower layers.

• We demonstrate how performance of 𝑍𝑇𝑊 can be improved with
knowledge distillation between ICs.

• We present an empirical analysis of optimal head architecture
and placement choice, and perform detailed ablation studies that
justify the design choices of 𝑍𝑇𝑊 .

• We identify the overconfidence of the early IC phenomenon as the
cause of the classification failures specific to early-exit models.

2. Related work

The drive towards reducing computational waste in deep learning
literature has mainly concentrated on reducing the inference time.
Numerous approaches for accelerating deep learning models focus on
building more efficient architectures (Howard et al., 2017; Liu et al.,
2021; Tan & Le, 2019, 2021), reducing the number of parameters (He,
Zhang, & Sun, 2017) or distilling knowledge to smaller networks (Hin-
ton, Vinyals, & Dean, 2015; Jiao et al., 2020; Sanh, Debut, Chaumond,
& Wolf, 2019). Thus, they decrease inference time by reducing the
overall complexity of the model instead of using the conditional com-
putation framework of adapting computational effort to each example.
As such we find them orthogonal to the main ideas of our work,
e.g. we show that applying our method to architectures designed for
efficiency, such as EfficientNet (Tan & Le, 2021), leads to even further
acceleration.

Early Exiting The work of Panda, Sengupta, and Roy (2016) was
one of the first that proposed to use linear classifiers as early exiting
heads. In BranchyNet (Teerapittayanon, McDanel, & Kung, 2016) a loss
function consisting of a weighted sum of individual head losses was
utilized in training, and entropy of the head prediction was used for
the early exit criterion. Berestizshevsky and Even (2019) proposed to
use confidence (maximum of the softmax output) instead. Recently,
Yu, Li, Hua, Huang, and Shi (2023) proposed to train each block of
the network, along with its corresponding head, in an additive manner
inspired by gradient boosting. A broader overview of early exit methods
is available in Scardapane, Scarpiniti, Baccarelli and Uncini (2020).

Several works proposed specialized architectures for conditional
computation which allow for multi-scale feature processing (Huang
et al., 2018; Wang et al., 2020; Yang et al., 2020), and developed tech-
niques to train them more efficiently by passing information through
the network (Li, Zhang, Qi, Ruigang, & Huang, 2019; Phuong & Lam-
pert, 2019). However, in this paper, we consider the case of increasing
inference speed of a pre-trained network based on an architecture
which was not built with conditional computation or even efficiency
in mind. We argue that this is a practical use case, as this approach
can be used to a wider array of models. As such, we do not compare
with these methods directly.

Shallow-Deep Networks (SDN) (Kaya et al., 2019) is a conceptually
simple yet effective method, where the comparison of confidence with
a fixed threshold is used as the exit criterion. The authors attach
internal classifiers to layers selected based on the number of compute
operations needed to reach them. The answer of each head is inde-
pendent of the answers of the previous heads, although in a separate
experiment the authors analyze the measure of disagreement between
the predictions of final and intermediate heads.

Zhou et al. (2020) propose Patience-based Early Exit (PBEE)
method, which terminates inference after 𝑡 consecutive unchanged
answers, and show that it outperforms SDN on a range of NLP tasks.
The idea of checking for agreement in preceding ICs is connected to our
approach of reusing information from the past. However, we find that
applying PBEE in our setting does not always work better than SDN.

Concurrently to our original work, Liao et al. (2021) proposed
to approximate states of deeper heads, aggregate them with previous
states, and use it for the final prediction of the head. In their method,
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the modules that approximate future states are trained by minimizing
he cosine similarity between approximations and actual states. The
elative contribution of past states and approximated future states
s weighted with a separate head. The approach is similar to ours
n reusing the information from previous heads, but it additionally
ttempts to approximate future states. Due to its similarity we consider
t as an appropriate baseline for the evaluation of our method.

Han et al. (2022) point out the discrepancy between training and
esting of early exiting networks, and propose a framework for weight-
ng losses of each sample between different exits. To achieve this,
hey employ meta-learning to train a weight prediction network, which
irectly outputs the weights for each head. This approach, in turn, is
ompletely different than ours, which is also the reason for including
t in our comparison.
Conditional Computation The broader field of conditional compu-

ation was first proposed for deep neural networks in Bengio, Léonard,
nd Courville (2013) and Davis and Arel (2013), and since then many
ophisticated methods have been developed in this field. A recent sur-
ey categorizes the various approaches into several groups (Han et al.,
021). While most works use conditional computation for reducing
omputational cost, there are other applications of this paradigm such
s federated learning (Sun & Ochiai, 2022; Zhang et al., 2021) or
ontinual learning (Lin, Fu, & Bengio, 2019).

Graves (2016) proposes to calculate a halting score in a RNN to
ynamically control the effective depth of the model. Banino, Balaguer,
nd Blundell (2021) improve upon this by introducing probabilistic
pproach that stabilizes the training. Each recurrent module returns an
dditional scalar, which is then used to randomly decide whether to
alt or to continue applying the same module. Wang, Yu et al. (2018)
nd Veit and Belongie (2018) also use a variant of skipping residual
locks, but by using a gating network that takes the current feature
epresentation as input.

Another line of works dynamically reduces the width of the model,
or example by selecting the filters to be executed in a convolutional
ayer (Herrmann, Bowen, & Zabih, 2020; Lin, Rao, Lu, & Zhou, 2017;
iu, Wang, Han, Xu, & Xu, 2019). Li et al. (2021) improve upon these
nd make it more hardware-efficient by selecting a consecutive slice of
he filters. For transformer-based architectures, the common Mixture
f Experts layers (Shazeer et al., 2017) can be adapted after training
o dynamically adjust the amount of computation depending on the
ifficulty of the input (Nie et al., 2021).

It is also possible to exploit the spatial redundancies and allocate dif-
erent amount of compute to different regions of the input, for example
y computing a halting score for each position of the input image (Fig-
rnov et al., 2017). Verelst and Tuytelaars (2020) introduce a residual
lock that applies the convolutional filters only to the selected positions
f the input. Alternatively, a similar effect can be achieved with an
dditional network, which is trained as a reinforcement learning agent,
hat repeatedly selects the small patches of the original image to use for
he refinement of the previous classification (Wang et al., 2020).

While being adaptive in compute, these approaches either modify
r propose a novel architecture that requires training the model from
cratch. On the other hand, the early exit methods are directly applica-
le to existing architectures and thus allow use of pre-trained weights
or models that would otherwise be prohibitively costly to train.
Ensembles Ensembling is typically used to improve the accuracy of

achine learning models (Dietterich, 2000). Lakshminarayanan et al.
2017) showed that it also greatly improves calibration of deep neural
etworks. There were several attempts to create an ensemble from
ifferent layers of a network. Scardapane, Comminiello, Scarpiniti,
accarelli and Uncini (2020) adaptively exploit outputs of all internal
lassifiers, albeit not in a conditional computation context. Phuong and
ampert (2019) used averaged answers of heads up to the current head
or anytime-prediction, where the computational budget is unknown.
esides the method being much more basic, their setup is notably
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ifferent from ours, as it assumes the same computational budget for all
amples no matter how difficult the example is. Finally, contemporary
ork of Sun et al. (2021) also propose to construct an ensemble out of

ndividual heads, but additionally enforce diversity among its members
nd use voting as the exit criterion.

. Zero Time Waste

Our goal is to reduce computational costs of neural networks by
inimizing redundant operations and information loss. To achieve it,
e use the conditional computation setting, in which we dynamically

elect the route of an input example in a neural network. By controlling
he computational path, we can decide how the information is stored
nd utilized within the model for each particular example. Intuitively,
ifficult examples require more resources to process, but using the same
mount of compute for easy examples is wasteful.

We assume a practical setting in which the dynamic model is
uilt using a pre-trained model. In addition to enabling the reuse of
ublished weights of almost any trained model, it allows us to easily
pply the same techniques to setting such as reinforcement learning
nvironments. In order to adapt already trained models to conditional
omputation setting, we attach and train early exit classifier heads on
op of several selected layers, without changing the parameters of the
ase network. During inference, the whole model exits through one of
hem when the response is likely enough, thus saving computational
esources.

Formally, we consider a multi-class classification problem, where
∈ R𝐷 denotes an input example and 𝑦 ∈ {1,… , 𝐾} is its target class.

Let 𝑓𝜃 ∶ R𝐷 → R𝐾 be a pre-trained neural network with logit output
designed for solving the above classification task. The weights 𝜃 will
not be modified.

3.1. Model overview

Following typical early exit frameworks, we add 𝑀 shallow Internal
Classifiers, IC1,… , IC𝑀 , on intermediate layers of 𝑓𝜃 . Namely, let 𝑔𝜙𝑚 ,
for 𝑚 ∈ {1,… ,𝑀}, be the 𝑚th IC network returning 𝐾 logits, which
is attached to hidden layer 𝑓𝜃𝑚 of the base network 𝑓𝜃 . The index 𝑚
is independent of 𝑓𝜃 layer numbering. In general, 𝑀 is lower than the
overall number of 𝑓𝜃 hidden layers since we do not add ICs after every
layer.

Although using ICs to return an answer early can reduce overall
computation time (Kaya et al., 2019), in a standard setting each IC
makes its decision independently, ignoring the responses returned by
previous ICs. As we show in Section 5.1, early layers often give correct
answers for examples that are misclassified by later classifiers, and
hence discarding their information leads to waste and performance
drops. To address this issue, we need mechanisms that collect the
information from the first (𝑚 − 1) ICs to inform the decision of IC𝑚.
For this purpose, we introduce two complementary techniques: cascade
connections and ensembling, and show how they help reduce information
waste and, in turn, accelerate the model.

Cascade connections directly transfer the already inferred informa-
tion between consecutive ICs to avoid the need to recompute it again.
In this way they improve the performance of initial ICs that lack enough
predictive power to classify correctly based on low-level features. En-
sembling of individual ICs improves performance as the number of
members increases, thus showing greatest improvements in the deeper
part of the network. The full model is visualized in Fig. 2 where
cascade connections are used first to pass already inferred information
to later ICs, while ensembling is utilized to conclude the IC prediction.
The details on these two techniques are presented in the following

paragraphs.
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Fig. 2. Detailed scheme of the proposed ZTW model architecture. Backbone network
𝑓𝜃 lends its hidden layer activations to ICs, which share inferred information using
cascade connections (red horizontal arrows in the middle row) and give predictions
𝑝𝑚. The inferred predictions are combined using ensembling (bottom row) giving 𝑞𝑚.

3.2. Cascade connections

Inspired by the gradient boosting algorithm and the literature on
cascading classifiers (Viola & Jones, 2004), we allow each IC to im-
prove on the predictions of previous ICs instead of inferring them from
scratch. The idea of cascade connections is implemented by adding skip
connections, resulting in IC𝑚 combining the feature representation from
layer 𝑓𝜃𝑚 of the base model with logits from IC𝑚−1:

𝑙𝑚(𝑥) =

{

𝑔𝜙𝑚 (𝑓𝜃𝑚 (𝑥), 𝑠𝑔(𝑙𝑚−1(𝑥))) if 𝑚 > 1
𝑔𝜙1 (𝑓𝜃1 (𝑥)) if 𝑚 = 1

(1)

where 𝑙𝑚(𝑥) are logits returned by the 𝑚th IC, and 𝑠𝑔 is the stop gradient
operation. The probability distribution produced by IC𝑚 is then:

𝑝𝑚(𝑥) = sof tmax(𝑙𝑚(𝑥)) (2)

IC1 uses only the information coming from the layer 𝑓𝜃1 , which does not
need to be the first hidden layer of 𝑓𝜃 . Fig. 2 shows the skip connections
as red horizontal arrows.

Each IC𝑚 is trained in parallel (with respect to 𝜙𝑚) to optimize the
prediction of all output classes using an appropriate loss function (𝑝𝑚),
e.g. cross-entropy for classification. However, during the backward step
it is crucial to stop the gradient of a loss function from passing to
the previous IC. Allowing the gradients of loss (𝑝𝑚) to affect 𝜙𝑗 for
𝑗 ∈ 1, .., 𝑚 − 1 leads to a significant performance degradation of earlier
layers due to increased focus on the features important for IC𝑚, as we
show in Section 5.4.3.

3.3. Ensembling

Ensembling in machine learning models reliably increases the per-
formance of a model while improving robustness and uncertainty es-
timation (Fort et al., 2019; Lakshminarayanan et al., 2017). The main
drawback of this approach is its wastefulness, as it requires to train
multiple models and use them to process the same examples. However,
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in our setup we can adopt this idea to combine predictions which
were already pre-computed in previous ICs, with near-zero additional
computational cost.

To obtain a reliable zero-waste system, we build ensembles that
combine outputs from groups of ICs to provide the final answer of the
𝑚th classifier. We consider two variants of ensemble models: additive
and multiplicative. While the additive ensemble uses the arithmetic
mean to obtain final prediction, the multiplicative one applies the
geometric average.

Standard additive ensemble relies on applying arithmetic mean to
the individual classifiers. Since in our case we aggregate information
from subsequent ICs, we introduce additional weights to modify their
importance in producing the response at 𝑚th head. Let 𝑝1, 𝑝2,… , 𝑝𝑚 be
the outputs of 𝑚 consecutive IC predictions (after cascade connections
stage) for a given 𝑥 (Fig. 1). The probability of the 𝑖th class in the 𝑚th
additive ensemble is defined by:

𝑟𝑖𝑚(𝑥) =
1
𝑍𝑚

(

𝑏𝑖𝑚 +
∑

𝑗≤𝑚
𝑤𝑗

𝑚𝑝
𝑖
𝑗 (𝑥)

)

, (3)

where 𝑏𝑖𝑚 > 0 and 𝑤𝑗
𝑚 > 0, for 𝑗 = 1,… , 𝑚, are trainable parameters,

and 𝑍𝑚 is a normalization factor, such that ∑𝑖 𝑟
𝑖
𝑚(𝑥) = 1. Observe that

𝑤𝑗
𝑚 can be interpreted as our prior belief in predictions of IC𝑗 , i.e. large

weight 𝑤𝑗
𝑚 indicates higher confidence in the predictions of IC𝑗 . On the

other hand, 𝑏𝑖𝑚 represents the prior of 𝑖th class for IC𝑚. The 𝑚 indices
in 𝑤𝑚 and 𝑏𝑚 are needed as the weights are trained independently for
each subset {IC𝑗 ∶ 𝑗 ≤ 𝑚}.

Since the classifiers defined by subsequent ICs vary significantly in
predictive strength (later ICs achieve better performance than early
ICs) and their predictions are correlated, additive ensemble may not
work well in our case. Thus, we introduce weighted geometric mean
with class balancing, which allows us to reliably find a combination
of pre-computed responses that maximizes the expected result. The
probability of the 𝑖th class in the 𝑚th multiplicative ensemble is defined
by:

𝑞𝑖𝑚(𝑥) =
1
𝑍𝑚

𝑏𝑖𝑚
∏

𝑗≤𝑚

(

𝑝𝑖𝑗 (𝑥)
)𝑤𝑗

𝑚 , (4)

where 𝑍𝑚 is again a normalization factor and 𝑤𝑗
𝑚 ∈ R, 𝑏𝑖𝑚 ∈ R are

trainable parameters. Direct calculation of the product in (4) might lead
to numerical instabilities whenever the probabilities are close to zero.
To avoid this problem we note that

𝑏𝑖𝑚
∏

𝑗≤𝑚

(

𝑝𝑖𝑗 (𝑥)
)𝑤𝑗

𝑚 = 𝑏𝑖𝑚 exp
(

∑

𝑗≤𝑚
𝑤𝑗

𝑚 ln 𝑝𝑖𝑗 (𝑥)
)

,

and that log-probabilities ln 𝑝𝑖𝑗 can be obtained by running the numer-
ically stable log softmax function on the logits 𝑔𝜙𝑚 of the classifier.

Straightforward comparison between two ensemble variants sug-
gests that a low class confidence of a single IC would reduce more
the probability of that class in the multiplicative ensemble than in the
additive one. In consequence, in order for the confidence of the given
class to be high, we require all ICs to be confident in that class. Thus, in
geometric ensembling, an incorrect although confident IC answer has
less chance of ending calculations prematurely. In the additive setting,
the negative impact of a single confident but incorrect IC is much
higher, as we show in Section 5.4.2.

Empirically, ensembling improves primarily the performance of
later ICs. This is not surprising, given that the power of the ensemble
increases with the number of members, provided they are at least weak
in the sense of boosting theory (Schapire, 1990). As such, the two
techniques introduced above are complementary, which we also show
empirically via ablation studies in Section 5.4. The training procedure
for the final model is presented in Algorithm 1.
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Algorithm 1 Zero Time Waste training
Input: pre-trained backbone model 𝑓𝜃 , cross-entropy loss function ,
training set  .
Initialize 𝑀 shallow models 𝑔𝜙𝑚 at selected layers 𝑓𝜃𝑚 .
For 𝑚 = 1,… ,𝑀 do in parallel ⊳ ICs with cascading

Set 𝑝𝑚 according to (2).
minimize E(𝑥,𝑦)∈

[

(𝑝𝑚(𝑥), 𝑦)
]

wrt. 𝜙𝑚 by gradient descent
For 𝑚 = 1,… ,𝑀 do ⊳ Ensembling

Initialize 𝑤𝑚, 𝑏𝑚 and define 𝑞𝑚(𝑥) according to (4).
minimize E(𝑥,𝑦)∈

[

(𝑞𝑚(𝑥), 𝑦)
]

wrt. 𝑤𝑚, 𝑏𝑚 by gradient descent

3.4. Conditional inference

Once a ZTW model is trained, the following question appears: how
to use the constructed system at test time? More precisely, we need
to dynamically find the shortest processing path with a correct answer
for a given input example. For this purpose, we use one of the standard
confidence scores given by the probability of the most confident class.
If the 𝑚th classifier is confident enough about its prediction, i.e. if

max
𝑖

𝑞𝑖𝑚 > 𝜏, for a fixed 𝜏 > 0, (5)

where 𝑖 is the class index, then we terminate the computation and
return the response given by this IC. If this condition is not satisfied,
we continue processing 𝑥 and go to the next IC.

Threshold 𝜏 in (5) is a manually selected value, which controls
he acceleration-performance trade-off of the model. A lower threshold
eads to a significant speed-up at the cost of a possible drop in accuracy.
bserve that for 𝜏 > 1, we recover the original model 𝑓𝜃 , since none of

the ICs can be confident enough to answer earlier. In practice, to select
its appropriate value, we advise using a held-out set to evaluate a range
of possible values of 𝜏.

4. Experiments

In this section we examine the performance of Zero Time Waste and
analyze its impact on waste reduction. We do this mainly by comparing
it to four well-established or recent early-exit methods: (1) Shallow-
Deep Networks (SDN) (Kaya et al., 2019), (2) Patience-Based Early Exit
(PBEE) (Zhou et al., 2020), (3) Global-Past-Future (GPF) (Liao et al.,
2021), and (4) Learning To Weigh (L2W) (Han et al., 2022).

In our experiments, we measure how much computation we can
save by re-using responses of ICs while keeping good performance,
hence obeying the zero waste paradigm. To evaluate the efficiency of
the model, we compute the average number of floating-point operations
(FLOPs) required to perform the forward pass for a single sample.2 We
use it as a hardware-agnostic measure of inference cost and refer to it
simply as the ‘‘inference time’’ in subsequent references. Behavior of
each method is evaluated at a particular fraction of the computational
cost of the base network. We select the highest threshold 𝜏 such that the
average inference time for entire test set is smaller than, for example,
25% of the original time, and then calculate accuracy for that threshold.
The overall performance of each method can be represented by the
inference time vs. accuracy trade-off that it provides.

We examine how ZTW performs at reducing waste in both Computer
Vision (CV) and Natural Language Processing (NLP) data. Moreover, to
the best of our knowledge, we are the first to apply early exit methods
to reinforcement learning. Finally, we explore how ZTW allows the
application of early exit methods in transfer learning settings. We
provide the source code for our experiments at: https://github.com/
gmum/Zero-Time-Waste.

2 Note that the cost of a head, if that head is executed for the current
xample, is always counted, even if the output of that head was not used for
he final prediction.
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4.1. Computer vision

As this paper focuses on pre-trained models, for evaluation on
computer vision data we pick the most common ILSVRC 2012 ImageNet
dataset (Deng et al., 2009), which contains 1,281,167 training and
50,000 validation images of high resolution. We test each method
on four recent and state-of-the-art architectures, two of which are
convolutional-based: EfficientNetV2-S (Tan & Le, 2021) and ConvNeXt-
T (Liu et al., 2022); and two of which are Transformer-based: ViT-
B (Dosovitskiy et al., 2020) and SwinV2-S (Liu et al., 2022).

The training of each model starts by loading the pre-trained back-
bone model, freezing its weights, and attaching early-exit heads to
predetermined locations along the depth of the network. The head ar-
chitecture and placement is the same for every method, but varies with
the backbone architecture. We use a relatively dense placement of small
heads and attach a linear head after every block in Transformer-based
architectures, and a Conv2D-Pooling-Linear head after every residual
block in convolutional-based architectures (we analyze different head
architecture and placement choices in Sections 5.2 and 5.3, respec-
tively). We adopt GPF for convolutional networks by manually picking
the head output dimensionality shared between all heads. The Adam
optimizer (Kingma & Ba, 2014) is used for every method except L2W,
for which we employ SGD with momentum similarly as the original
authors did.3 Each model is trained for 15 epochs. All other training
yperparameters and additional experiments for other architectures
nd datasets are available in the Appendix.

Table 1 contains the results of the experiment averaged over three
eeds. ZTW achieves superior results in 9 out of 16 cases, with the
dvantage over the next best method reaching as high as 5.03 per-
entage points, and the highest difference to the leading method being
nly 0.30 percentage points. While not originally designed for vision,
PF is the only other method showing consistent improvements over
DN, which can be seen as the simplest early-exit approach. Although
BEE reuses information from previous layers to decide whether to stop
omputation or not, this is not sufficient to reduce the waste in the
etwork. While PBEE performs well on higher inference time limits,
t often fails for smaller limits (25%, 50%). We hypothesize that this

is result of the fact that PBEE has smaller flexibility with respect to
𝜏. While for SDN and ZTW values of 𝜏 are continuous, for PBEE they
represent a discrete number of ICs that must sequentially agree before
returning an answer.

4.2. Natural language processing

In this section we evaluate the performance of ZTW architecture
in a natural language processing (NLP) scenario. Since models based
on the Transformer architecture (Vaswani et al., 2017) are an essential
foundation for current state-of-the-art solutions in NLP, we take the pre-
trained language model BERT-base (Devlin, Chang, Lee, & Toutanova,
2019) as our backbone network. We then fine-tune it on a given task,
freeze its weights and then add a single-layer IC after each Transformer
layer. Each internal classifier added to the network simply discards
every token except the CLS token, and then uses a fully-connected layer
to make a classification.

In Table 2, we compare the performance of different early exit
methods for various classification tasks available in the GLUE bench-
mark (Wang et al., 2018). In every case, we report validation set
accuracy averaged over three models trained with different seeds. For
each task, we train each method for 5 epochs. The data for the table
is generated in the same way as for CV experiments from Section 4.1.
All other training hyperparameters and additional plots are available
in the Appendix.

3 We implemented Adam for L2W, but due to the additional memory
equirements we were not able to run L2W with Adam on Nvidia A100 GPUs.

https://github.com/gmum/Zero-Time-Waste
https://github.com/gmum/Zero-Time-Waste
https://github.com/gmum/Zero-Time-Waste
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Table 1
Evaluation results on the ILSVRC 2012 ImageNet dataset. Test accuracy (in percentages) obtained using the time budget: 25%, 50%, 75%,
100% of the base network and without any limits (‘‘Max’’). The first column shows the test accuracy of the base network. We bold multiple
results when there is no meaningful statistical difference between them. ZTW either offers superior performance or remains competitive to other
methods in the majority of cases.
Architecture Method 25% 50% 75% 100% Max

EfficientNetV2-S
(84.23)

SDN 25.47 ± 0.11 45.94 ± 0.15 75.88 ± 0.04 84.12 ± 0.01 84.24 ± 0.00
PBEE 20.38 ± 0.09 34.99 ± 0.17 70.00 ± 0.19 84.14 ± 0.01 84.24 ± 0.00
GPF 28.26 ± 0.02 50.50 ± 0.31 𝟕𝟖.𝟎𝟒 ± 𝟎.𝟏𝟓 84.02 ± 0.03 84.24 ± 0.00
L2W 25.87 ± 0.19 45.78 ± 0.26 76.35 ± 0.11 𝟖𝟒.𝟏𝟕 ± 𝟎.𝟎𝟏 84.23 ± 0.00
ZTW 𝟐𝟖.𝟕𝟑 ± 𝟎.𝟎𝟖 𝟓𝟏.𝟓𝟗 ± 𝟎.𝟎𝟏 77.83 ± 0.05 84.09 ± 0.02 84.24 ± 0.00

ConvNeXt-T
(82.52)

SDN 39.15 ± 0.13 62.44 ± 0.08 78.42 ± 0.05 𝟖𝟐.𝟒𝟖 ± 𝟎.𝟎𝟏 82.52 ± 0.00
PBEE 34.37 ± 0.32 53.09 ± 0.23 72.32 ± 0.25 81.75 ± 0.03 82.52 ± 0.00
GPF 38.11 ± 0.18 60.50 ± 0.20 76.70 ± 0.25 82.37 ± 0.02 82.52 ± 0.00
L2W 32.46 ± 0.38 55.32 ± 0.02 74.61 ± 0.11 82.31 ± 0.01 82.52 ± 0.00
ZTW 𝟒𝟒.𝟏𝟗 ± 𝟎.𝟎𝟕 𝟔𝟓.𝟗𝟔 ± 𝟎.𝟏𝟔 𝟕𝟗.𝟒𝟎 ± 𝟎.𝟎𝟒 82.37 ± 0.00 82.52 ± 0.00

ViT-B (81.07)
SDN 18.85 ± 0.05 55.78 ± 0.08 78.42 ± 0.08 80.45 ± 0.03 81.07 ± 0.00
PBEE 11.65 ± 0.06 40.26 ± 0.08 65.60 ± 0.08 𝟖𝟏.𝟎𝟔 ± 𝟎.𝟎𝟎 81.07 ± 0.00
GPF 𝟐𝟎.𝟒𝟎 ± 𝟎.𝟎𝟓 55.70 ± 0.24 78.76 ± 0.13 80.90 ± 0.03 81.07 ± 0.00
L2W 16.46 ± 0.21 53.74 ± 0.29 78.74 ± 0.12 80.59 ± 0.07 81.07 ± 0.00
ZTW 20.27 ± 0.02 𝟓𝟔.𝟑𝟖 ± 𝟎.𝟎𝟖 𝟕𝟗.𝟐𝟎 ± 𝟎.𝟎𝟒 80.92 ± 0.01 81.07 ± 0.00

SwinV2-S
(83.71)

SDN 40.95 ± 0.07 70.64 ± 0.04 81.13 ± 0.04 81.13 ± 0.04 83.71 ± 0.00
PBEE 25.84 ± 0.04 59.29 ± 0.13 80.53 ± 0.00 𝟖𝟑.𝟕𝟏 ± 𝟎.𝟎𝟎 83.71 ± 0.00
GPF 𝟒𝟐.𝟎𝟓 ± 𝟎.𝟑𝟔 69.50 ± 0.22 82.55 ± 0.20 83.44 ± 0.08 83.71 ± 0.00
L2W 26.14 ± 0.30 63.51 ± 0.10 83.09 ± 0.03 83.70 ± 0.00 83.71 ± 0.00
ZTW 𝟒𝟐.𝟎𝟔 ± 𝟎.𝟎𝟓 𝟕𝟐.𝟒𝟐 ± 𝟎.𝟏𝟎 𝟖𝟑.𝟏𝟐 ± 𝟎.𝟎𝟏 83.41 ± 0.02 83.71 ± 0.00
Table 2
Training different early exit architectures with pre-trained BERT backbone on the common NLP datasets: MRPC, RTE, SST2, QNLI and QQP.
ZTW achieves competitive results for every considered NLP task.

Dataset Method 25% 50% 75% 100% Max

MRPC
(85.95 ± 1.74)

SDN 𝟕𝟕.𝟓𝟑 ± 𝟏.𝟓𝟖 𝟖𝟐.𝟔𝟎 ± 𝟎.𝟐𝟓 𝟖𝟓.𝟔𝟐 ± 𝟏.𝟑𝟓 𝟖𝟓.𝟖𝟕 ± 𝟏.𝟔𝟑 85.95 ± 1.74
PBEE 70.18 ± 0.28 77.61 ± 0.14 83.01 ± 0.99 𝟖𝟔.𝟐𝟕 ± 𝟏.𝟑𝟔 85.95 ± 1.74
GPF 𝟕𝟔.𝟒𝟕 ± 𝟏.𝟓𝟑 81.86 ± 0.88 𝟖𝟓.𝟔𝟐 ± 𝟏.𝟑𝟓 𝟖𝟓.𝟖𝟕 ± 𝟏.𝟑𝟗 85.95 ± 1.74
L2W 𝟕𝟔.𝟔𝟑 ± 𝟎.𝟔𝟐 81.62 ± 1.30 𝟖𝟓.𝟏𝟑 ± 𝟏.𝟒𝟒 𝟖𝟓.𝟏𝟑 ± 𝟏.𝟒𝟒 85.95 ± 1.74
ZTW 𝟕𝟔.𝟕𝟐 ± 𝟎.𝟖𝟓 𝟖𝟐.𝟕𝟔 ± 𝟎.𝟑𝟕 𝟖𝟓.𝟗𝟓 ± 𝟏.𝟐𝟑 𝟖𝟓.𝟗𝟓 ± 𝟏.𝟐𝟑 85.95 ± 1.74

RTE
(68.95 ± 1.88)

SDN 60.53 ± 0.21 𝟔𝟒.𝟖𝟔 ± 𝟐.𝟕𝟑 𝟔𝟕.𝟖𝟕 ± 𝟏.𝟑𝟎 𝟔𝟗.𝟔𝟖 ± 𝟏.𝟓𝟕 68.95 ± 1.88
PBEE 57.16 ± 1.27 𝟔𝟓.𝟒𝟔 ± 𝟏.𝟕𝟏 67.27 ± 2.54 𝟔𝟗.𝟑𝟏 ± 𝟏.𝟓𝟕 68.95 ± 1.88
GPF 58.48 ± 0.72 𝟔𝟒.𝟕𝟒 ± 𝟏.𝟐𝟕 𝟔𝟕.𝟖𝟕 ± 𝟎.𝟗𝟔 𝟔𝟗.𝟑𝟏 ± 𝟏.𝟑𝟎 68.95 ± 1.88
L2W 59.33 ± 0.91 𝟔𝟓.𝟐𝟐 ± 𝟏.𝟓𝟎 𝟔𝟕.𝟓𝟏 ± 𝟎.𝟗𝟔 𝟔𝟗.𝟔𝟖 ± 𝟏.𝟓𝟕 68.95 ± 1.88
ZTW 𝟔𝟏.𝟐𝟓 ± 𝟎.𝟓𝟓 63.30 ± 1.67 𝟔𝟖.𝟓𝟗 ± 𝟏.𝟐𝟓 𝟔𝟗.𝟎𝟕 ± 𝟏.𝟗𝟗 68.95 ± 1.88

SST2
(92.58 ± 0.18)

SDN 𝟖𝟑.𝟐𝟐 ± 𝟎.𝟑𝟕 𝟗𝟏.𝟎𝟔 ± 𝟎.𝟐𝟑 𝟗𝟐.𝟔𝟔 ± 𝟎.𝟑𝟎 𝟗𝟐.𝟔𝟔 ± 𝟎.𝟑𝟎 92.58 ± 0.18
PBEE 79.05 ± 0.40 83.22 ± 0.24 89.98 ± 0.37 𝟗𝟐.𝟔𝟐 ± 𝟎.𝟐𝟒 92.58 ± 0.18
GPF 𝟖𝟑.𝟏𝟒 ± 𝟎.𝟑𝟎 𝟗𝟏.𝟐𝟏 ± 𝟎.𝟑𝟓 𝟗𝟐.𝟓𝟖 ± 𝟎.𝟒𝟖 𝟗𝟐.𝟓𝟖 ± 𝟎.𝟒𝟖 92.58 ± 0.18
L2W 81.84 ± 0.46 90.63 ± 0.33 𝟗𝟐.𝟕𝟎 ± 𝟎.𝟐𝟔 𝟗𝟐.𝟕𝟎 ± 𝟎.𝟐𝟔 92.58 ± 0.18
ZTW 𝟖𝟑.𝟑𝟑 ± 𝟎.𝟒𝟖 𝟗𝟏.𝟐𝟏 ± 𝟎.𝟒𝟖 𝟗𝟐.𝟔𝟐 ± 𝟎.𝟑𝟑 𝟗𝟐.𝟔𝟐 ± 𝟎.𝟑𝟑 92.58 ± 0.18

QNLI
(91.43 ± 0.27)

SDN 𝟕𝟔.𝟑𝟔 ± 𝟎.𝟑𝟑 87.63 ± 0.17 𝟗𝟎.𝟗𝟖 ± 𝟎.𝟎𝟐 𝟗𝟏.𝟒𝟑 ± 𝟎.𝟐𝟒 91.43 ± 0.27
PBEE 65.21 ± 0.37 83.91 ± 0.41 88.81 ± 0.42 91.17 ± 0.22 91.43 ± 0.27
GPF 𝟕𝟔.𝟗𝟒 ± 𝟎.𝟔𝟑 𝟖𝟖.𝟑𝟐 ± 𝟎.𝟏𝟐 90.95 ± 0.17 𝟗𝟏.𝟒𝟏 ± 𝟎.𝟐𝟗 91.43 ± 0.27
L2W 76.22 ± 0.15 87.39 ± 0.36 90.87 ± 0.05 𝟗𝟏.𝟒𝟐 ± 𝟎.𝟑𝟐 91.43 ± 0.27
ZTW 𝟕𝟔.𝟔𝟐 ± 𝟎.𝟐𝟑 87.94 ± 0.07 90.90 ± 0.14 𝟗𝟏.𝟒𝟒 ± 𝟎.𝟐𝟓 91.43 ± 0.27

QQP
(91.13 ± 0.08)

SDN 83.75 ± 0.05 90.06 ± 0.14 90.94 ± 0.08 90.94 ± 0.08 91.13 ± 0.08
PBEE 76.15 ± 0.10 86.34 ± 0.26 90.57 ± 0.19 𝟗𝟏.𝟏𝟒 ± 𝟎.𝟎𝟕 91.13 ± 0.08
GPF 𝟖𝟔.𝟐𝟕 ± 𝟎.𝟏𝟎 𝟗𝟎.𝟕𝟑 ± 𝟎.𝟏𝟏 𝟗𝟏.𝟎𝟑 ± 𝟎.𝟎𝟕 91.03 ± 0.07 91.13 ± 0.08
L2W 82.05 ± 0.19 90.11 ± 0.11 𝟗𝟏.𝟎𝟖 ± 𝟎.𝟎𝟕 𝟗𝟏.𝟎𝟖 ± 𝟎.𝟎𝟕 91.13 ± 0.08
ZTW 83.56 ± 0.06 89.93 ± 0.05 𝟗𝟏.𝟎𝟒 ± 𝟎.𝟎𝟓 91.04 ± 0.05 91.13 ± 0.08
On this popular benchmark the SDN, GPF, L2W and ZTW perform
imilarly, while PBEE consistently displays poor performance on low
omputational budgets. We hypothesize that the lack of advantage of
TW over SDN is due to the low number of classes in GLUE, and a
elatively small number of heads attached to the BERT-Base backbone.
he number of parameters added by cascading and ensembling, the
omponents of ZTW, depends only on these two factors. To verify this
ypothesis we repeat our training procedure on the 20 Newsgroups
ataset (Lang, 1995), which is a classification dataset with 20 classes.
urthermore, instead of placing an IC after every block, we place it
lso after the multi-head attention subblock, resulting in twice as many
eads as before. The results, presented in Fig. 3, show a significant
mprovement of ZTW over SDN on this setup. We provide more evi-
ence for the effect of number of classes on performance of ZTW in the
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ppendix.
4.3. Reinforcement learning

Although supervised learning is an important testbed for deep learn-
ing, it does not properly mirror the challenges encountered in the real
world. In order to examine the impact of waste-minimization methods
in a setting that reflects the sequential nature of interacting with
the world, we evaluate it in a Reinforcement Learning (RL) setting.
In particular, we use the environments from the suite of Atari 2600
games (Mnih et al., 2015).

Similarly as in the supervised setting, we start with a pre-trained
network, which in this case represents a policy trained with the Proxi-
mal Policy Optimization (PPO) algorithm (Schulman, Wolski, Dhariwal,
Radford, & Klimov, 2017). We attach the ICs to the network and train

it by distilling the knowledge from the core network to the ICs. We
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Fig. 3. Accuracy vs. computational cost trade-off obtained by five early-exit methods
on the 20 Newsgroups dataset, with BERT-Base as backbone model. Each IC is marked
with a point, and the score of threshold-based early-exiting is plotted for a range of
𝜏 as a line. Observe that a clear advantage of ZTW over SDN appears after passing a
certain number of ICs.

use a behavioral cloning approach, where the states are sampled from
the policy defined by the ICs and the labels are provided by the expert
model. Since actions in Atari 2600 are discrete, we can then use the
same confidence threshold-based approach to early exit inference as in
the case of classification.

In order to investigate the relationship between computation waste
reduction and performance, we evaluate Zero Time Waste for different
values of confidence threshold 𝜏. By setting a very high 𝜏 value, we re-
trieve the performance of the original model (none of the ICs respond)
and by slowly decreasing its value we can reduce the computational
cost (ICs begin to return answers earlier). In Fig. 4 we check values
of 𝜏 in the interval [0.1, 1.0] to show how ZTW is able to control the
acceleration-performance balance for Q*Bert and Pong, two popular
Atari 2600 environments. By setting lower 𝜏 thresholds for Q*Bert
we can save around 45% of computations without score degradation.
Similarly, for Pong we can get 60% reduction with minor impact on
performance (note that average human score is 9.3 points). This shows
that even the small four-layered convolutional architecture commonly
used for Atari (Mnih et al., 2015) introduces a noticeable waste of
computation which can be mitigated within a zero-waste paradigm.
We highlight this fact as the field of reinforcement learning has largely
focused on efficiency in terms of number of samples and training time,
while paying less attention to the issue of efficient inference.

4.4. Transfer learning

Finally, we investigate the problem of training the Internal Classi-
fiers in a transfer learning fashion. We consider a source dataset 𝐴, on
which the base model is pre-trained, and target dataset 𝐵, on which we
train the ICs. Our aim is to verify whether the features learnt on dataset
𝐴 by the given stage of the base model will be useful for the IC trained
on dataset 𝐵, and how ZTW impacts that feature transfer.

Two mutually opposing factors might influence the performance of
a transfer-learned IC:

1. Descriptiveness of the learned features: Previous experiments
indicate that the ICs attached to early layers of the network
achieve worse accuracy than the deeper-placed ICs. We hypothe-
size this will hold in the transfer learning setting, as the features
learned by shallow-placed ICs are not descriptive enough.

2. Overfitting to the original dataset: Prior work on transfer
learning indicates that deeper network layers learn less universal
features than the shallow ones, and thus recommends against
freezing their parameters during fine-tuning to new tasks (Yosin-
ski, Clune, Bengio, & Lipson, 2014). When training on dataset
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𝐵 the deeper-placed ICs may fail to achieve good performance,
since the deeper base network layers will be overfitted to extract
features specific to 𝐴 and less relevant for 𝐵. Thus, the assump-
tion than the quality of early-exit predictions will increase with
larger computational budget may no longer hold.

To verify the suitability of early-exit methods for transfer learning,
we pre-train ResNet-56 backbones (He et al., 2016) on CIFAR-10 and
CIFAR-100 datasets. We use them as bases for training of ICs of SDN,
PBEE and ZTW models on different datasets. We report the accuracy
vs. inference time plots for four transfer combinations in Fig. 5.

The accuracy of standard ICs increases along with placement depth
until a certain point and then decreases after that. This leads to ac-
curacy decrease of the SDN and PBEE models when increasing the
time budget. Thus, when transfer learning an SDN early exit model,
one would need to devise a non-trivial early-exit heuristic that takes
the decreasing accuracy into account. On the other hand, the ZTW
early-exit model suffers from no such drawbacks, and due to cascading
connections and ensembling of ICs its accuracy consistently increases
with the growing time budget in all four cases.

5. Analysis

In this section we analyze how Zero Time Waste prevents infor-
mation loss that occurs in previous models. We also present results
that explain our design decisions and demonstrate the limitations of
early-exiting methods by presenting its failure cases.

5.1. Information loss in early exit models

Since ICs in a given model are heavily correlated, it is not im-
mediately obvious why reusing past predictions should improve per-
formance. Later ICs operate on high-level features for which class
separation is much easier than for early ICs, and hence get better
accuracy. Thus, we ask a question — is there something that early ICs
know that the later ICs do not?

For that purpose, we introduce a metric to evaluate how much
a given IC could improve performance by reusing information from
all previous ICs. We measure it by checking how many examples
incorrectly classified by IC𝑚 were classified correctly by any of the
previous ICs. An IC which reuses predictions from the past perfectly
would achieve a low score on this metric since it would remember all
the correct answers of the previous ICs. On the other hand, an IC in
a model which trains each classifier independently would have a higher
score on this metric, since it does not use past information at all. We call
this metric Hindsight Improvability (HI) since it measures how many
mistakes we would be able to avoid if we used information from the
past efficiently.

Let 𝑚 denote the set of examples correctly classified by IC𝑚, with
its complement 𝑚 being the set of examples classified incorrectly. To
measure the Hindsight Improvability of IC𝑚 we calculate:

HI𝑚 =
|

|

|

𝑚 ∩ (
⋃

𝑛<𝑚 𝑛)
|

|

|

|

|
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Fig. 6 compares the values of HI for SDN – a method with indepen-
dent ICs – and ZTW which explicitly recycles computations. In the case
of VGG16 trained with independent ICs, over 60% of the mistakes could
be avoided if we properly used information from the past, which would
translate to improvement from 71.5% to 82.9% accuracy. Similarly, for
ResNet-56 trained on TinyImageNet, the number of errors could be cut
by around 57%.

ZTW consistently outperforms the baseline, with the largest differ-
ences visible at the later ICs, which can in principle gain the most
from reusing previous predictions. Thus, Zero Time Waste is able to
efficiently recycle information from the past. At the same time, there is
still a room for significant improvements, which shows that future zero
waste approaches could offer additional enhancements.
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Fig. 4. Inference time vs. average return of the ZTW policy in an RL setting on Q*bert and Pong Atari 2600 environments. The plot was generated by using different values of
the confidence threshold 𝜏 hyperparameter. Since the RL environments are stochastic, we plot the return with a standard deviation calculated on 10 runs. ZTW saves a significant
amount of computation while preserving the original performance, showcasing that waste can be minimized also in the reinforcement learning domain.
Fig. 5. Inference time vs accuracy for different transfer learning settings. In each case, the base network architecture is ResNet-56 (He et al., 2016). The dots in the plots indicate
the accuracy of each consecutive IC attached to increasingly deeper parts of the base network, whereas the lines indicate the mean accuracy achieved by the set of ICs, given the
inference time budget. For reference, in each plot we also mark the performance of the classifier transfer-learned by freezing the entire pre-trained network and training only the
final classification layer.
5.2. Choice of head architecture

A single head 𝑙𝑚 can be any network with the given output dimen-
sionality and input dimensionality dictated by the dimensionality of
𝑓𝜃𝑚 . A natural question arises about how to pick the architecture of
the heads. We assume the architecture of each head in a single model
stays the same with the exception of input dimensionality, which can
differ in some networks, for example in convolutional neural networks.
To explore how the size of head architecture affects performance,
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we train multiple models on the EfficientNetV2-S backbone differing
only in the size of the heads. Due to the increased size the heads
are trained for thrice as long and without weight decay. We tune the
hyperparameters of the convolutional layers in the heads so that the
total computational cost of the ICs approaches 25% of the cost of the
original model. The last layer of the head is always a fully-connected
layer, and always follows a pooling layer. The IC with depth 2 is the
same head architecture as was used in Section 4.1.
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Fig. 6. Hindsight Improvability. For each IC (horizontal axis) we look at examples it misclassified and we check how many of them were classified correctly by any of the previous
ICs. The lower the number, the better the IC is at reusing previous information.
Table 3
We examine different architectures of the head as the only hyperparameter that changes
between runs. The head architecture depth and the total computational cost of heads,
reported as a percentage of the cost of the original backbone model, are listed for
each variant. Both very simple or excessively large head architectures yield suboptimal
outcomes. ZTW displays consistent improvements on every variant considered in the
experiment.

Method IC depth ICs cost
ratio (%)

25% 50% 75% 100% Max

SDN 1 0.7% 25.52 42.44 62.06 63.62 84.24
SDN 2 3.1% 26.54 44.90 70.31 79.04 84.24
SDN 3 7.8% 28.50 42.43 67.12 83.86 84.24
SDN 4 11.0% 31.78 45.58 68.27 83.72 84.24
SDN 5 17.2% 23.26 33.74 54.19 80.02 84.24
SDN 6 25.7% 28.78 38.51 55.74 76.03 84.24
ZTW 1 0.9% 28.36 47.72 74.00 81.23 84.24
ZTW 2 3.3% 29.33 50.00 𝟕𝟓.𝟎𝟓 83.48 84.24
ZTW 3 8.0% 30.47 47.74 71.77 𝟖𝟒.𝟎𝟓 84.24
ZTW 4 11.2% 𝟑𝟒.𝟑𝟑 𝟓𝟐.𝟎𝟑 73.79 𝟖𝟒.𝟎𝟓 84.24
ZTW 5 17.4% 27.06 41.69 63.62 82.13 84.24
ZTW 6 25.9% 31.51 44.73 62.70 79.14 84.24

Table 3 presents the results of this experiment along with the cost of
each head variant being considered. Increasing the size of the head up
to a certain point improves its final performance on low computational
budgets. This effect diminishes lightly on higher computational budgets
due to the accumulated cost of enlarged heads. Note that ZTW consis-
tently demonstrates improvements over SDN across all examined head
sizes, thus reinforcing the validity of the reasoning behind cascading
and ensembling.

5.3. Choice of head placement density

Similarly to the choice of architecture for the heads, it is not obvious
how densely to attach heads to the backbone model. Additional heads
add a computational overhead that may outweigh any performance
benefit that they provide. To discover the optimal approach, we train
models with different head densities on the EfficientNetV2-S backbone.
With 41 blocks after which a head can be placed, we consider variants
that place heads after every-𝑛 blocks, and the head architecture used for
this experiment is the same as for the experiments from Section 4.1.

The results are shown in Table 4. Not surprisingly, an exceedingly
sparse placement is detrimental for the overall accuracy-cost trade-off.
While denser placement gives slightly better results for SDN on lower
and middle budgets, ZTW is able to significantly improve on this by
utilizing the additional heads and reducing the waste that happens in
SDN due to discardment of intermediate outputs.
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Table 4
The effect of varying head placement density for early-exit model built on ImageNet
pretrained EfficientNetV2-S backbone. ICs are placed after every 𝑛every blocks for 𝑛every ∈
{1, 2, 3, 4, 5, 10}. ZTW especially benefits from denser placement of heads when low
computational budgets are considered, but an excessive number of ICs is detrimental
for performance on higher budgets.

Method 𝑛every 25% 50% 75% 100% Max

SDN 1 23.85 42.10 69.02 79.51 84.24
SDN 2 22.61 41.52 69.97 80.73 84.24
SDN 3 21.83 40.84 71.23 81.68 84.24
SDN 4 19.59 37.61 69.93 82.15 84.24
SDN 5 21.44 40.29 71.58 82.28 84.24
SDN 10 21.61 38.65 69.20 83.92 84.24
ZTW 1 𝟑𝟎.𝟎𝟔 𝟒𝟗.𝟗𝟐 74.50 83.70 84.24
ZTW 2 25.48 46.02 𝟕𝟒.𝟖𝟔 83.77 84.24
ZTW 3 22.68 45.01 74.77 83.85 84.24
ZTW 4 20.29 40.97 73.42 83.91 84.24
ZTW 5 22.03 42.58 74.35 83.93 84.24
ZTW 10 21.67 40.37 70.71 𝟖𝟒.𝟎𝟒 84.24

5.4. Ablation studies

In this section we explore the following issues: (1) what is the
individual impact of cascade connections and geometric ensembling,
(2) how performance of additive and geometric ensembles compares in
our setting, and (3) how stopping the gradient in cascade connections
impacts learning dynamics.

5.4.1. Impact of cascading and ensembling
An important question is whether we need both cascade connections

and ensembling in the proposed model, and what role do they play
in the final performance of our model. Fig. 7 shows the results of
independently applied cascade connections and geometric ensembling
on a ResNet-56 and VGG-16 trained on CIFAR-100. We observe that
depending on the threshold 𝜏 and the architecture, one of these tech-
niques may be more important than the other. However, combining
these methods consistently improves the performance that each of
them achieves independently. Thus we argue that both components are
required in Zero Time Waste and using only one of them will lead to
significant performance deterioration.

5.4.2. Geometric vs. additive ensembles
We analyze how geometric ensembles perform in comparison to

additive ensembles. The comparison between the two is presented
in Fig. 8. The results show that the geometric ensemble consistently
outperforms the additive ensemble, although we found out that mag-
nitude of improvement varies across datasets and architectures. While
the difference on CIFAR-10 is negligible, it becomes evident on Tiny
ImageNet, especially with the later layers. The results suggest that
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Fig. 7. Ablation studies exhibiting the importance of both techniques proposed in the paper. Although both cascade connections and geometric ensembling seem to help, the exact
effect depends on the architecture and chosen threshold 𝜏. For ResNet56 cascade connections seem to be much more helpful than ensembling, while for VGG16 the opposite is true.
As such, both are required to consistently improve results.
Fig. 8. Comparison of geometric and additive ensembling on ResNet-56 (ICs with
cascade connections), conducted on TinyImageNet. Geometric ensembling is better in
reusing predictions from previous ICs and thus helps in achieving better results.

geometric ensembling is more helpful on more complex datasets with
a larger number of classes.

5.4.3. Stop gradients in cascade connections
As mentioned in Section 3 of the main paper, we decide to stop

gradient from flowing through the cascade connections. We motivate this
decision by noticing that the gradients of later layers might destroy the
predictive power of the earlier layers. In order to test this hypothesis
empirically, we run our experiments on ResNet-56 with and without
gradient stopping. As shown in Fig. B.3, the accuracy of the early ICs
is lower when not using gradient stopping. Performance of later ICs
may vary, as not using stopping gradient allows greater expressivity
for later ICs. Since the second component of our method, ensembling,
is able to reuse information from the early ICs we find it beneficial to
use gradient stopping in the final model.

We provide a more in-depth observation of the reason why the
gradient of later ICs might have a detrimental effect on the perfor-
mance of early ICs. Observe that in the setting without the detach
the parameters of the first IC will be updated using ∑

𝑘 𝑔𝑘, where 𝑔𝑘
is the gradient of the loss of the 𝑘th IC wrt. parameters of the first
IC. Experimental investigation showed that the cosine similarity of
∑

𝑘 𝑔𝑘 and 𝑔1 is approximately 0.5 at the beginning of the training,
which means that these gradients point in different directions. Since the
gradient 𝑔1 represents the best direction for improving the first IC, using
∑

𝑘 𝑔𝑘 will lead to a non-optimal update of its weights, thus reducing its
predictive performance. With detach, 𝑔2 = 𝑔3 = ⋯ = 0 and as such the
cosine similarity is always 1. This reasoning can be extended to other
ICs.
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Fig. 9. Effects of stopping gradient in ResNet-56 trained on CIFAR-100.

5.5. Internal classifier knowledge distillation

The efficiency of the whole model depends on the performance of in-
dividual ICs. Knowledge distillation applied to ICs is known to improve
performance when the whole network is trained along with the ICs (Li
et al., 2019; Phuong & Lampert, 2019; Wang & Li, 2021). However, it
is not clear if ICs, which are relatively small modules compared to the
whole backbone network, would benefit from knowledge distillation in
the frozen-backbone setting. In this subsection we explore how SDN and
ZTW combine with knowledge distillation of various forms. Assuming
that we choose a set 𝐸 containing indices that determine the ICs to
distill from, the optimization objective for the 𝑚th IC can be now
redefined as:

𝐻(𝑝𝑚, 𝑦) + 𝛼 1
|𝐸|

∑

𝑖∈𝐸
(𝐻(𝑝𝑚, 𝑠𝑔(𝑝𝑖))),

where H is the cross entropy and 𝑠𝑔 is the stop gradient operation.
We consider three variants of the distillation training procedure: next
— distill knowledge from the directly succeeding IC (𝑛 + 1 ∈ 𝐸),
last — distill from the last head (𝑁 ∈ 𝐸), later — distill from every
succeeding IC (∀𝑛<𝑖≤𝑁 𝑖 ∈ 𝐸). Since we use cross entropy instead of
Kullback–Leibler divergence for distillation, values of terms are of the
same magnitude, and thus the hyperparameter 𝛼 is set to 1 in all of our
experiments.

Table 5 presents the results for the described variants. Distilling
knowledge from the next IC brought no improvement over baseline.
Using the last head for distillation resulted in a minor improvement,
especially for lower and middle computational budgets. The variant
with all deeper heads being used as target was beneficial for early ICs.
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Fig. 10. Examples of bird images which were incorrectly classified as airplanes by ZTW. The early ICs are misled by the low-level features (blue sky, sharp edges, grayscale
silhouette) and return a prediction before the later ICs can detect more subtle high-level features.
Table 5
Impact of the addition of distillation to the ICs training phase on the final performance
of ZTW. Standard SDN and ZTW models are trained on the Tiny ImageNet dataset using
the ResNet-50 base model. The same procedure is repeated for the distillation variants,
but with an additional distillation loss term added in the ICs training phase. We can see
that distillation improves performance on low computational budgets for both models
by a similar amount, hinting that ZTW and distillation are complementary.

Method 25% 50% 75% 100% Max

SDN 41.9 49.8 57.5 65.3 71.0
SDN - next 42.5 50.0 58.7 66.1 71.1
SDN - last 42.9 51.0 59.0 65.9 70.9
SDN - later 43.6 51.2 59.3 65.6 71.0
ZTW 42.3 50.9 59.2 66.9 71.1
ZTW - next 42.5 50.8 59.2 66.7 71.1
ZTW - last 42.9 52.0 𝟔𝟎.𝟓 67.1 71.1
ZTW - later 𝟒𝟒.𝟎 𝟓𝟐.𝟐 60.3 𝟔𝟕.𝟒 71.1

We hypothesize that its superior performance is due to the significant
difference in representational power between early and deep ICs.

Despite the knowledge distillation training making the answers of
ICs more similar to each other, the ZTW model consistently outperforms
SDN. Moreover, the gains from distillation are similar for both ZTW and
SDN. These results indicate that the overthinking phenomenon (Kaya
et al., 2019) in early exit models is independent from and cannot be
straightforwardly fixed with knowledge distillation.

5.6. Limitations

Zero Time Waste significantly improves performance while adding
only a negligible computational overhead. It may slightly complicate
the implementation due to two separate phases of training. Despite
the need for a separate set of hyperparameters, in our experience the
optimal learning rate for the ensembling phase always remains the
same and thus does not require tuning.

ZTW also inherits the limitations of other early exiting methods. We
show this in Fig. 10, which contains examples of images for which low-
level features in a given image consistently point at a wrong class, while
high-level features would allow us to deduce the correct class. Images
of birds which contain sharp lines and grayscale silhouettes are inter-
preted as airplanes by early ICs which operate on low-level features. If
the confidence of these classifiers gets high enough, the answer might
be returned before later classifiers can correct this decision.

To qualitatively confirm our findings, we measure the Kolmogorov–
Smirnov (KS) calibration error (Gupta et al., 2020) of early exit models
and present it in Fig. 11.

To lend qualitative validation to our observations, we assess the
Kolmogorov–Smirnov (KS) calibration error of early exit models, as
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Fig. 11. KS calibration error plotted as a function of computational cost of the models
trained on the ImageNet pre-trained EfficientNetV2-S backbone. Similarly as before, the
heads are plotted as points, and inference by using the confidence threshold strategy
is plotted for multiple thresholds as a line. We can see that early heads exhibit a
considerably large calibration error as compared to the original backbone model.

illustrated in Fig. 9. Evidently, In light of these insights, we empha-
size the pertinence of addressing head calibration issues as a crucial
avenue for future advancements in conditional computation methods.
A promising direction for further exploration involves the integration
of calibration techniques to meticulously calibrate the behaviors of
individual heads

The calibration error is notably greater in the shallower heads com-
pared to the deeper ones. This discrepancy diminishes progressively
with increasing depth, eventually aligning with the calibration error
exhibited by the original backbone model. In light of these insights,
we emphasize the importance of addressing head calibration issues
as a crucial avenue for future advancements in early exit methods.
A promising direction for further research involves the integration of
calibration techniques in order to calibrate the individual heads.

6. Conclusion

In this work, we show that discarding predictions of the previous
ICs in early exit models leads to waste of computation resources and
a significant loss of information, which we show by introducing the
Hindsight Improvability metric. The proposed Zero Time Waste method
attempts to solve these issues by incorporating outputs from the past
heads by using cascade connections and ensembling of ICs. We show
that ZTW outperforms other approaches on common computer vision,
natural language processing, and reinforcement learning setups. ZTW is
also ideally suited for transfer learning scenarios and can be combined
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Table A.1
Hyperparameters used for training the early-exit models on the ImageNet dataset.
Architecture Method Batch size 𝛾 𝜆 Head placement Head architecture

EfficientNetV2-S

SDN 64 0.0005 0.1 After blocks:
3, 4, 5, 7, 9, 11,
13, 15, 17, 19, 21,
23, 25, 27, 29, 31,
33, 35, 37, 39

∙ 3 × 3 Conv (stride
= 2, out_channels =
half)
∙ SDNPool (Kaya
et al., 2019)
∙ Linear

PBEE 64 0.0005 0.1
GPF 64 0.0001 0.1
L2W 32 0.01 0.0001
ZTW (casc.) 64 0.0005 0.1
ZTW (ens.) 64 0.001 0.0

ConvNeXt-T

SDN 64 0.0005 0.1 After blocks:
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17, 18,
19, 20, 21, 22, 23,
24, 25, 26

∙ 3 × 3 Conv (stride
= 2, out_channels =
half)
∙ SDNPool (Kaya
et al., 2019)
∙ Linear

PBEE 64 0.0005 0.1
GPF 64 0.0001 0.01
L2W 64 0.1 0.0001
ZTW (casc.) 64 0.0005 0.1
ZTW (ens.) 64 0.001 0.0

ViT-B

SDN 64 0.005 0.0001

After blocks:
2, 3, 4, 5, 6, 7, 8,
9, 10, 11

∙ CLSPool
∙ Linear

PBEE 64 0.005 0.0001
GPF 64 0.0005 0.01
L2W 64 10.0 0.0
ZTW (casc.) 64 0.005 0.0001
ZTW (ens.) 64 0.001 0.0

SwinV2-S

SDN 64 0.001 0.0 After blocks:
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17, 18,
19, 20, 21, 22, 23,
24, 25, 26

∙ SDNPool (Kaya
et al., 2019)
∙ Linear

PBEE 64 0.001 0.0
GPF 64 0.0005 0.0
L2W 64 0.1 0.0
ZTW (casc.) 64 0.005 0.0001
ZTW (ens.) 64 0.001 0.0
{
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with knowledge distillation. We postulate that focusing on reducing the
computational waste in a safe and stable way is an important direction
for future research in deep learning.
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Appendix A. Training details

All experiments were performed using the PyTorch framework and
NVIDIA RTX1080 Ti, RTX2080 Ti, RTX3080, V100 or A100 GPUs. We
provide the source code for our experiments at: https://github.com/
gmum/Zero-Time-Waste
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Table A.2
Hyperparameters used for finetuning BERT-base backbone networks for the GLUE
tasks.

Task Epochs Learning rate Batch size

MRPC 5 0.00002 16
RTE 5 0.00002 16
SST2 3 0.00001 16
QNLI 3 0.00001 16
QQP 3 0.00005 32

A.1. Computer vision

We use the pre-trained models from the torchvision library4

for the backbone networks. We consider only the ‘‘IC-only’’ setup with
frozen backbone weights and evaluate the networks as proposed in
Kaya et al. (2019). In Table A.1 we list the hyperparameters used for
training each of the early-exit models.

We use AdamW for all methods except L2W, and train the models
for 15 epochs with the cosine annealing scheduler. We first tune the
learning rate 𝛾 by picking the one with the best results from the
following search space: {0.0001, 0.0005, 0.001, 0.005, 0.01}. After this we
select the optimal weight decay 𝜆 in the same way with the search
space: {0.0, 0.0001, 0.001, 0.01, 0.1}. In cascading, we apply Layer Nor-
malization (Ba, Kiros, & Hinton, 2016) to the output of the preceding
IC 𝑙𝑚−1(𝑥) as part of the cascading head 𝑙𝑚(𝑥). We always use 𝛾 ∈
0.001, 0.01, 0.1} with AdamW without weight decay for ensembling in
TW, and we always train the ensembles for 2 epochs. For L2W (Han
t al., 2022), which we train with SGD with momentum, we use the fol-
owing search space for learning rate: {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}.
s for the other hyperparameters specific to L2W, we use the same
alues as the original authors did. As pooling layers we reuse the SDN
ooling proposed by Kaya et al. (2019), which is defined as:

dn_pool(𝑥) = 𝛾 ⋅ avg_pool(𝑥) + (1 − 𝛾) ⋅max_pool(𝑥),

here 𝛾 is a learnable scalar parameter. It reduces the size of con-
olutional maps to 4 × 4. Note that this pooling layer does not use
igmoid(𝛾) as proposed in Lee, Gallagher, and Tu (2016).

4 https://pytorch.org/vision/0.14/models.html#classification.

https://github.com/gmum/Zero-Time-Waste
https://github.com/gmum/Zero-Time-Waste
https://github.com/gmum/Zero-Time-Waste
https://pytorch.org/vision/0.14/models.html#classification
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Table A.3
Hyperparameters used for training BERT-base model on the NLP datasets.
Dataset Method Batch size 𝛾 𝜆 Head placement Head architecture

MRPC

SDN 32 0.005 0.0001

After blocks:
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11

∙ CLSPool
∙ Linear

PBEE 32 0.005 0.0001
GPF 32 0.0005 0.0001
L2W 32 0.5 0.0001
ZTW (casc) 32 0.01 0.0001
ZTW (ens) 32 0.1 0.0

QNLI

SDN 32 0.01 0.0001

After blocks:
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11

∙ CLSPool
∙ Linear

PBEE 32 0.01 0.0001
GPF 32 0.0001 0.0001
L2W 32 0.5 0.0001
ZTW (casc) 32 0.01 0.0001
ZTW (ens) 32 0.001 0.0

QQP

SDN 32 0.05 0.0001

After blocks:
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11

∙ CLSPool
∙ Linear

PBEE 32 0.05 0.0001
GPF 32 0.0005 0.0001
L2W 32 2.0 0.0001
ZTW (casc) 32 0.01 0.0001
ZTW (ens) 32 0.01 0.0

RTE

SDN 32 0.005 0.0001

After blocks:
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11

∙ CLSPool
∙ Linear

PBEE 32 0.005 0.0001
GPF 32 0.0005 0.0005
L2W 32 0.5 0.0001
ZTW (casc) 32 0.01 0.0001
ZTW (ens) 32 0.001 0.0

SST2

SDN 32 0.01 0.0001

After blocks:
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11

∙ CLSPool
∙ Linear

PBEE 32 0.01 0.0001
GPF 32 0.001 0.0001
L2W 32 0.5 0.0001
ZTW (casc) 32 0.01 0.0001
ZTW (ens) 32 0.1 0.0

20 Newsgroups

SDN 32 0.05 0.0001 After sub-blocks:
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18,
19, 20, 21, 22, 23

∙ CLSPool
∙ Linear

PBEE 32 0.05 0.0001
GPF 32 0.0005 0.0001
L2W 32 1.0 0.0001
ZTW (casc) 32 0.005 0.001
ZTW (ens) 32 0.01 0.0
A
a
a
w
a
f
i
b
2

t
n
2
s
e
0
A
2
i

w
a
s
p
s

m
t
b

Additionally, in Appendix B.1 we present the results for the net-
orks from Kaya et al. (2019) for CIFAR-10, CIFAR-100, and Tiny Im-
geNet, which appeared in our original work (Zhang et al., 2019). For
IFAR-10 and CIFAR-100 we train ICs for 50 epochs using the Adam
ptimizer with learning rate set to 0.001, but lowered by a factor of 10
fter 15 epochs. When training on Tiny ImageNet, the learning rate is
dditionally lowered again by the same factor after epoch 40. To train
he ensembling part of our method, we run SGD on the training dataset
or 500 epochs. Since both the dataset and the model are very small,
e use a high number of epochs to ensure convergence.

.2. Natural language processing

For the NLP experiments we use BERT-Base from the Hugging
ace Transformers library (Wolf et al., 2020). We fine-tune model on
ach downstream task to obtain the backbone networks. Fine-tuning
yperparameters for each task are shown in Table A.2.

The training follows the same procedure as described for computer
ision in Appendix A.1. The hyperparameters used on every dataset are
isted in Table A.3.

Transformer layers output hidden state for each token in the input
equence, so we use a pooling layer that simply discards all hidden
tates except the one corresponding to the CLS token, and then applies
simple fully-connected layer.

.3. Reinforcement learning

We set the Atari environments as follows. Every fourth frame (frame
kipping) and the one immediately before it are max-pooled. The result-
ng frame is then rescaled to size 84 × 84 and converted into grayscale.
592

p

t every step the agent has a 0.1 probability of taking the previous
ction irrespective of the policy probabilities (sticky actions). This is
dded to introduce stochasticity into the environment to avoid cases
hen the policy converges to a simple strategy that results in the same
ctions taken in every run. Furthermore, the environment termination
lag is set when a life is lost. Finally, the signum function of the reward
s taken (reward clipping). The above setup is fairly common and we
ase our code on the popular Stable Baselines repository (Raffin et al.,
019).

Using that environment setup we use the PPO algorithm to train
he policy, and then extract the base network by discarding the value
etwork. We use the following PPO hyperparameters: learning rate
.5 ⋅ 10−4, 128 steps to run for each environment per update, batch
ize 256, 4 epochs of surrogate loss optimization, clip range (𝜖) 0.1,
ntropy coefficient 0.01, value function coefficient 0.5, discount factor
.99, 0.95 as the trade-off of bias vs variance factor for Generalized
dvantage Estimator (Schulman, Moritz, Levine, Jordan, & Abbeel,
015), and the maximum value for the gradient clipping 0.5. The policy
s trained for 107 environment time steps in total.

We use the standard ‘NatureCNN’ (Mnih et al., 2015) architecture
ith three convolutional layers and a single fully connected layer. We
ttach two ICs after the first and the second layer. Similarly as in the
upervised setting, each IC has a single convolutional layer, an SDN
ooling layer and a fully connected layer. The convolutional layer has
tride set to 4 and preserves the number of channels.

To train the ICs, the early-exit policy interacts with the environ-
ent. In each step, an IC is chosen uniformly, and the action chosen by

hat IC is taken. However, the (𝑜, 𝑎𝑝) tuple is actually saved to the replay
uffer, with 𝑜 and 𝑎𝑝 being the observation and the action of the original

olicy, respectively. After 128 concurrent steps on 8 environments
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Table B.1
Results on three computer vision datasets: Cifar-10, Cifar-100 and Tiny ImageNet. Test accuracy (in percentages) obtained using the time budget:
25%, 50%, 75%, 100% of the base network and without any limits (‘‘Max’’). The first column shows the test accuracy of the base network.
We bold multiple results when there is no meaningful statistical difference between them.

Dataset Model 25% 50% 75% 100% Max

ResNet-56

CIFAR-10
(92.0 ± 0.2)

SDN 77.7 ± 1.0 87.3 ± 0.5 91.1 ± 0.2 𝟗𝟐.𝟎 ± 𝟎.𝟏 𝟗𝟐.𝟏 ± 𝟎.𝟐
PBEE 69.8 ± 1.3 81.8 ± 0.3 87.5 ± 0.1 91.0 ± 0.3 𝟗𝟐.𝟏 ± 𝟎.𝟑
ZTW 𝟖𝟎.𝟑 ± 𝟏.𝟎 𝟖𝟖.𝟕 ± 𝟎.𝟒 𝟗𝟏.𝟓 ± 𝟎.𝟐 𝟗𝟐.𝟏 ± 𝟎.𝟑 𝟗𝟐.𝟏 ± 𝟎.𝟑

CIFAR-100
(68.4 ± 0.2)

SDN 47.1 ± 0.2 57.2 ± 0.4 64.7 ± 0.6 69.0 ± 0.2 69.7 ± 0.2
PBEE 45.2 ± 0.5 53.5 ± 0.5 60.1 ± 0.5 67.0 ± 0.2 69.0 ± 0.2
ZTW 𝟓𝟏.𝟑 ± 𝟎.𝟒 𝟔𝟐.𝟏 ± 𝟎.𝟑 𝟔𝟖.𝟒 ± 𝟎.𝟒 𝟕𝟎.𝟕 ± 𝟎.𝟏 𝟕𝟎.𝟗 ± 𝟎.𝟏

Tiny ImageNet
(53.9 ± 0.3)

SDN 31.2 ± 0.2 41.2 ± 0.3 49.9 ± 0.4 54.5 ± 0.5 54.7 ± 0.4
PBEE 29.0 ± 0.6 37.6 ± 0.3 48.2 ± 0.4 53.4 ± 0.6 54.3 ± 0.4
ZTW 𝟑𝟓.𝟐 ± 𝟎.𝟕 𝟒𝟔.𝟐 ± 𝟎.𝟒 𝟓𝟑.𝟕 ± 𝟎.𝟑 𝟓𝟔.𝟑 ± 𝟎.𝟑 𝟓𝟔.𝟒 ± 𝟎.𝟑

MobileNet

CIFAR-10
(90.6 ± 0.2)

SDN 𝟖𝟔.𝟏 ± 𝟎.𝟓 𝟗𝟎.𝟓 ± 𝟎.𝟐 90.8 ± 0.1 90.7 ± 0.2 90.9 ± 0.1
PBEE 76.3 ± 0.9 85.9 ± 0.3 89.7 ± 0.3 90.9 ± 0.2 91.1 ± 0.1
ZTW 𝟖𝟔.𝟕 ± 𝟎.𝟕 𝟗𝟎.𝟗 ± 𝟎.𝟑 𝟗𝟏.𝟒 ± 𝟎.𝟐 𝟗𝟏.𝟒 ± 𝟎.𝟏 𝟗𝟏.𝟓 ± 𝟎.𝟏

CIFAR-100
(65.1 ± 0.3)

SDN 𝟓𝟒.𝟑 ± 1.4 63.5 ± 0.8 66.8 ± 0.4 67.8 ± 0.1 67.9 ± 0.1
PBEE 47.1 ± 2.7 61.6 ± 0.7 61.6 ± 0.7 67.0 ± 0.3 68.0 ± 0.3
ZTW 𝟓𝟒.𝟓 ± 𝟏.𝟏 𝟔𝟓.𝟐 ± 𝟎.𝟓 𝟔𝟖.𝟒 ± 𝟎.𝟑 𝟔𝟗.𝟎 ± 𝟎.𝟏 𝟔𝟗.𝟏 ± 𝟎.𝟏

Tiny ImageNet
(59.3 ± 0.1)

SDN 𝟑𝟓.𝟔 ± 𝟏.𝟑 𝟒𝟕.𝟏 ± 𝟎.𝟔 55.3 ± 0.3 58.9 ± 0.2 59.7 ± 0.1
PBEE 26.7 ± 1.5 38.4 ± 2.0 50.3 ± 0.8 55.6 ± 0.3 59.7 ± 0.0
ZTW 𝟑𝟕.𝟑 ± 𝟐.𝟖 𝟒𝟗.𝟓 ± 𝟏.𝟗 𝟓𝟔.𝟕 ± 𝟎.𝟔 𝟓𝟗.𝟕 ± 𝟎.𝟒 𝟔𝟎.𝟐 ± 𝟎.𝟏

WideResNet

CIFAR-10
(94.4 ± 0.1)

SDN 83.8 ± 1.3 91.7 ± 0.5 94.1 ± 0.2 94.4 ± 0.1 94.4 ± 0.2
PBEE 78.0 ± 1.9 84.0 ± 1.4 90.3 ± 0.5 93.8 ± 0.1 94.4 ± 0.1
ZTW 𝟖𝟔.𝟕 ± 𝟎.𝟕 𝟗𝟐.𝟗 ± 𝟎.𝟑 𝟗𝟒.𝟓 ± 𝟎.𝟏 𝟗𝟒.𝟕 ± 𝟎.𝟏 𝟗𝟒.𝟕 ± 𝟎.𝟏

CIFAR-100
(75.1 ± 0.1)

SDN 55.9 ± 1.5 65.1 ± 0.9 71.6 ± 0.4 75.0 ± 0.1 75.4 ± 0.1
PBEE 46.7 ± 2.0 57.2 ± 1.3 66.0 ± 0.6 73.2 ± 0.2 75.4 ± 0.2
ZTW 𝟓𝟗.𝟓 ± 𝟎.𝟔 𝟔𝟗.𝟏 ± 𝟎.𝟗 𝟕𝟒.𝟓 ± 𝟎.𝟔 𝟕𝟔.𝟐 ± 𝟎.𝟑 𝟕𝟔.𝟒 ± 𝟎.𝟐

Tiny ImageNet
(59.6 ± 0.6)

SDN 36.8 ± 0.1 46.0 ± 1.0 54.6 ± 0.7 59.4 ± 0.8 59.7 ± 0.7
PBEE 29.9 ± 0.9 37.8 ± 0.6 52.7 ± 0.6 58.5 ± 0.9 59.7 ± 0.7
ZTW 𝟒𝟎.𝟎 ± 𝟎.𝟑 𝟓𝟎.𝟏 ± 𝟎.𝟐 𝟓𝟕.𝟓 ± 𝟎.𝟒 𝟔𝟎.𝟐 ± 𝟎.𝟏 𝟔𝟎.𝟑 ± 𝟎.𝟐

VGG

CIFAR-10
(93.0 ± 0.0)

SDN 86.0 ± 0.3 92.1 ± 0.1 𝟗𝟑.𝟎 ± 𝟎.𝟎 𝟗𝟑.𝟎 ± 𝟎.𝟎 𝟗𝟑.𝟎 ± 𝟎.𝟎
PBEE 75.0 ± 0.2 86.0 ± 0.2 91.0 ± 0.3 92.9 ± 0.2 93.1 ± 0.1
ZTW 𝟖𝟕.𝟏 ± 𝟎.𝟏 𝟗𝟐.𝟓 ± 𝟎.𝟏 𝟗𝟑.𝟐 ± 𝟎.𝟐 𝟗𝟑.𝟐 ± 𝟎.𝟐 𝟗𝟑.𝟐 ± 𝟎.𝟐

CIFAR-100
(70.4 ± 0.3)

SDN 58.5 ± 0.4 67.2 ± 0.1 70.6 ± 0.3 71.4 ± 0.2 71.5 ± 0.4
PBEE 51.2 ± 0.2 65.3 ± 0.3 65.3 ± 0.3 70.9 ± 0.5 72.0 ± 0.4
ZTW 𝟔𝟎.𝟐 ± 𝟎.𝟐 𝟔𝟗.𝟑 ± 𝟎.𝟒 𝟕𝟐.𝟔 ± 𝟎.𝟏 𝟕𝟑.𝟓 ± 𝟎.𝟑 𝟕𝟑.𝟔 ± 𝟎.𝟒

Tiny ImageNet
(59.0 ± 0.2)

SDN 40.0 ± 1.0 50.5 ± 0.2 57.4 ± 0.5 𝟓𝟗.𝟔 ± 𝟎.𝟑 59.7 ± 0.3
PBEE 31.0 ± 1.6 45.2 ± 0.6 55.2 ± 0.3 𝟔𝟎.𝟏 ± 𝟎.𝟓 𝟔𝟎.𝟐 ± 𝟎.𝟓
ZTW 𝟒𝟏.𝟒 ± 𝟎.𝟓 𝟓𝟐.𝟑 ± 𝟎.𝟒 𝟓𝟗.𝟑 ± 𝟎.𝟒 𝟔𝟎.𝟏 ± 𝟎.𝟓 𝟔𝟎.𝟓 ± 𝟎.𝟒
that buffer is used to train the ICs with behavioral cloning. That is,
Kullback–Leibler divergence between the PPO policy actions and the IC
actions is used as the cost function. This is done for 5 epochs with batch
size set to 64 and 128 for cascading stage and geometric ensembling
tage, respectively. The entire process is repeated until 106 or more
teps in total are taken.

ppendix B. Additional experimental results

This section contains additional results which were omitted in the
ain part of the paper.

.1. Computer vision

For brevity, in the main part of the paper we have only shown a ta-
le summarizing the results of acceleration on multiple architectures for
he ImageNet dataset. Here, we provide an alternative representation
f these results. Moreover, we include the results for CIFAR-10, CIFAR-
00 and TinyImageNet datasets in Table B.1. Figs. B.4, B.5, B.6, and B.7
how results of the on ImageNet, CIFAR-10, CIFAR-100 and Tiny Im-
geNet, respectively. Additionally, Figs. B.8, B.9, B.10 show values of
593
Hindsight Improvability for CIFAR-10, CIFAR-100 and Tiny ImageNet,
respectively.

B.2. Transfer to the OCT2017 dataset

We investigate how early exit methods work in a practical trans-
fer learning setting by training the ICs on different dataset then the
backbone network is trained on. We use ResNet-50 from the torchvi-
sion package, which is pre-trained on ImageNet. To obtain a baseline
standard classifier, we remove the final linear layer of the pretrained
classifier and train a new linear layer with the number of outputs
corresponding to the number of classes in the target dataset. Only then
we proceed to train the ICs.

We use the OCT-2017 medical dataset (Kermany et al., 2018) as the
target dataset. The training dataset consists of 83 484 high-resolution
retinal optical coherence tomography images categorized into four
classes, with one class meaning healthy sample, and three diseases.
Table B.2 shows that ZTW outperforms other methods by a significant
margin, and manages to cut down the time required to obtain the

accuracy of the baseline by over 75%. This suggests that leveraging
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Fig. B.1. Mean and standard deviation of returns for multiple confidence thresholds on various Atari 2600 environments. Some environments allow significant computational
savings with a negligible or no impact on performance.
Table B.2
Results on the OCT2017 dataset when using an ImageNet pretrained core network. Test
accuracy (in percentages) obtained using the time budget: 25%, 50%, 75%, 100% of
the base network and Max without any limits.

ResNet-50 (94.6)

Model 25% 50% 75% 100% Max

SDN 81.5 93.8 94.6 94.6 94.6
PBEE 56.5 90.3 90.3 94.5 95.2
ZTW 89.4 98.0 98.4 98.5 98.5

the power of previous ICs is especially useful when the features are
not perfectly adjusted to the problem at hand, i.e. were trained for
594
ImageNet classification and used for pathology classification data from
a completely different domain.

B.3. Reinforcement learning experiments

In Fig. B.1 we show the results for all eight Reinforcement Learning
environments that we ran our experiments on. Degree of time savings
depends heavily on the environment. For some of the environments,
such as AirRaid and Pong, the ICs obtain a similar return to that of the
original policy. Because of that the resulting plot is almost flat, allowing
for significant inference time reduction without any performance drop.
Other environments, such as Seaquest, Phoenix and Riverraid, allow
to gradually trade-off performance for inference time just as in the
supervised setting.
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Fig. B.2. Comparison of geometric and additive ensembling on ResNet-56 with cascade connections, conducted on CIFAR-10, CIFAR-100, and Tiny ImageNet.
Fig. B.3. Effects of stopping gradient in ResNet-56 trained on CIFAR-10, CIFAR-100, and Tiny ImageNet.
B.4. Geometric vs. additive ensembles

In the main paper we proposed two variants of ensembling, and then
subsequently analyzed differences between them. In Fig. B.2 we provide
additional accuracy vs. inference time results for other datasets.
595
B.5. Stop gradients in cascade connections

In the main paper we demonstrated that stopping the gradient
between ICs in cascade connections improves overall performance. In
Fig. B.3 we provide additional results for other datasets.
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Fig. B.4. Inference time vs. accuracy obtained on various architectures trained on ImageNet.
Fig. B.5. Inference time vs. accuracy obtained on various architectures trained on CIFAR-10.
B.6. Impact of the number of classes

Additionally, we check how the number of classes in the given
problem impacts the results of each method. To do this, we take the
CIFAR-10 dataset, which consists of 10 classes and divide the examples
596
into two more general classes, which can be approximately described
as modes of transportation (includes airplane, automobile, horse, ship,
truck) and animals (bird, cat, deer, dog, frog). Thus, we obtain a dataset
for binary classification which we dub CIFAR-2. We train and evaluate
the proposed methods on this dataset with different backbones. Results,
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Fig. B.6. Inference time vs. accuracy obtained on various architectures trained on CIFAR-100.

Fig. B.7. Inference time vs. accuracy obtained on various architectures trained on Tiny ImageNet.
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Fig. B.8. Hindsight Improvability of various architectures trained on CIFAR-10.

Fig. B.9. Hindsight Improvability of various architectures trained on CIFAR-100.
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Fig. B.10. Hindsight Improvability of various architectures trained on Tiny ImageNet.
Table B.3
Results on the CIFAR-2 dataset.

ResNet-56

Data Model 25% 50% 75% 100% Max

ResNet-56
SDN 95.5 96.5 96.5 96.5 96.5
PBEE 91.2 94.1 96.3 96.5 96.6
ZTW 95.7 96.6 96.6 96.6 96.6

VGG
SDN 96.6 97.6 97.6 97.6 97.7
PBEE 91.2 96.4 97.2 97.4 97.6
ZTW 96.7 97.6 97.7 97.7 97.7

WideResNet
SDN 95.2 97.0 97.3 97.3 97.4
PBEE 89.3 93.0 95.9 97.0 97.4
ZTW 96.3 97.4 97.6 97.6 97.6

MobileNet
SDN 95.7 96.4 96.4 96.4 96.4
PBEE 91.9 94.3 96.2 96.4 96.4
ZTW 96.0 96.4 96.4 96.4 96.4

summed up in Table B.3, show that although performance of ZTW is
always on par or better than the baselines, the gap in performance is
much smaller, with SDN achieving identical performance in some cases.
Although, this might be due to the fact that CIFAR-2 is simpler than
original CIFAR-10, we note that Zero Time Waste is better suited to
non-binary classification problems.
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