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Statistical properties of the spectra of quantum two dimensional bil- 
liards are shown to be linked to the naturę of the dynamice of the corre- 
sponding classical systems. Quantised pseudo-integrable billiard exhibits 
level repulsion, in spite of non chaotic dynamice of its classical coun- 
t er part. We conjecture that the level statistics of a qnantum pseudo- 
integrable system depends on the genus of the invariant manifold equiv- 
alent to its classical phase space. A model of biiliards with finite walls 
suitable to investigate the problems of chaotic scattering is proposed.

PACS numbers: 05.45.⅛b, 03.65.-w

1. Introductipn

Classical biiliards where studied for several years by mathematicians 
and physicists as simple dynamical systems of various interesting features. 
A particie bouncing on a piane between hard elastic walls exhibits different 
kind of dynamice depending on the shape of the billiard. Its motioń is 
regular in a rectangular or circular billiard and the system is integrable. 
Two independent integrals of motion are known, the dynamice of the system 
is restricted to an invariant two dimensional torus and each trajectory might 
by predicted for arbitrary long times with arbitrary precision [1,2]. However, 
if a circular obstade is put inside the rectangle (Sinał billiard) or the cirde 
is transformed into a stadium (Bunimovich billiard) the system becomes 
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chaotic [3,4]. The Kolomogorov entropy of the system is positive [5] and 
two neighbouring trajectories in the phase space diverge exponentia∏y in 
time. This feature limits a possibility of computing the long time behaviour 
of a trajectory starting from a given point in the phase space.

These different properties of the classical billiards exert an influence on 
their quantum analogues. Chaotic behaviour of the classical model mani
fest s itself in the statistical properties of the spectrum of the corresponding 
quantum system [6,7]. Whereas for integrable systems the Poisson distri- 
bution of the level spacing statistics was found [7,8], the spectra of the 
classically chaotic systems display level repulsion and the Wigner statistics 
of level spacing was observed [8-11]. Interesting piece of information can 
also be extracted from eigenfunctions of quantized billiards. In generał the 
classically chaotic systems produce irregular eigenstates - messy looking ob- 
jects without any spatial correlations [12]. On the other hand it was shown 
by Heller [13] that some eigenfunctions of chaotic system display regular 
structures, which can be associated with classical periodic orbits. These 
objects, całled guantum scars were later analyzed by numerous authors [14- 
17]. A theory linking the properties of spectrum of quantum system with the 
presence of classically unśtable periodic orbits has been eśtablished [18-20], 
but several questions concerning the classical to quantum correspondence 
for chaotic systems remain still open.

In this work we focjis our attention on classical and quantum billiards. 
Section 2 reviews main results obtained for classical integrable and chaotic 
billiards, while the subsequent section concerns the pseudointegrable sys
tems [21]. In particular the billiards in rational polygons provide variety of 
pseudointegrable systems characterized by an integer genus g of the classical 
phase space 1 > g > oo [22]. Such systems are nonintegrable but also non 
chaotic: the largest Lapunov exponent (and the Kolomogorov entropy) is 
not positive [23].

In Section 4 the quantized billiards are considered. We recall the sta
tistical properties of spectra that allow to diflerentiate between classically 
regular and chaotic systems and discuss the phenomenon of quantum scars 
occurring for some eigenfunctions. In the next section the level statistics 
for simple pseudointegrable system - the ”L” shape billiard is presented. In 
spite of the fact that the dynamics of the corresponding classical system 
is not chaotic, the level repulsion, typical to classically chaotic models, is 
observed. On the other hand, the nearest neigbour spacing distribution for 
this case differs significantly from the Wigner surmise and we conjecture 
that it depends only on the genus of the classical phase space. This hypoth- 
esis might be supported by recent measureinents of the absorption spectrum 
of microwave resonators performed by Stockmann and Stein [24,25].

In Section 6 we consider the billiards with penetrable walls and show 
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their usefulness to study chaotic scattering [26-28]. Section 7 contains con- 
cluding remarks and a list of open questions that require further investiga- 
tion.

2. Classical chaotic billiards

A classical Hamiltonian system with n degrees of freedom is called inte- 
grable, if there exist n independent integrals of motion [29], and the phase 
space is homeomorphic with the n dimensional torus. Integrable systems 
are analyzed in detail in every handbook for classical mechanice and usually 
attract a lot of authors attention. One might think, therefore, that inte- 
grability is in some sense typical to all Hamiltonian systems. This is not 
the case - integrable systems are of measure zero in space of Hamiltonian 
systems and are so often discussed in literaturę only ⅛ecause it is relatively 
easier to find their solution.

A classical two dimensional billiard consists of a particie moving on a 
piane between reflecting walls. Dynamice of this system depends on the 
shape of the endosure. Only for few particular boundaries the billiards 
are integrable. Some of them like rectangle, equilateral triangle or circle 
are depicted in figurę 1. According to the Arnold theorem [29] the clas
sical dynamics is restricted in this case to a 2-dimensional invariant torus 
embedded in the 4 dimensional phase space, the motion of the particie is 
regular and two close trajectories can diverge linearly in time. However, in 
the generic case, the 2-dimensional billiard is non integrable, and a typical 
trajectory explores 3-dimensional manifold of the constant energy. Distance 
between two neighbouring trajectories D(t) grows exponentially in time and 
the largest Lapunov exponent, defined as [2] 

is positive∙ The Lapunov exponent A characterizes the local instability of 
the classical motion, and may depend on the position of the initial point in 
the phase space. A billiard with trajectory with positive A is called chaotic.

One may speculate that a billiard with a generic shape of the boundary 
is typically chaotic, but it is not at all simple to find a precise condition 
fulfilled by all chaotic billiards. In early seventies it was shown by Sinai 
[30] that a rectangular billiard with a circular obstade is chaotic — see 
Fig. l(b). The desymmetrised version of the system (right triangle with one 
edge rounded — dashed lines) owns the same dynamical properties. One 
eighth of the drde rounding one edge of the triangle is concave and Sinai 
proved that due to this dispersing fragment of the boundary the billiard 
becomes chaotic. This dispersing part of the enclosure plays the role of

(1)
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Fig. 1. Regular billiards ((a), (c), (e)l (g)) and the corresponding chaotic billiards 
((b), (d)1 (f), (h)).

the negative curvature and the mechanism of stochasticity in such systems 
is similar to that one present in geodesic flow on manifold with negative 
curvature [31]. A billiard with convex fragments is also called dispersing or 
hyperbolic.

The billiard in an ellipse is integrable. Lazutkin proved [32] that the 
caustics exists also for a slightly deformed ellipse (curvature remains smooth 
function of the arcs length) and the dynamics in such convex billiard is not 
chaotic. One could speculate, that the elliptic (convex) billiards produce 
stable behaviour, in contrast to the chaotic hyperbolic system of Sinai. This 
picture became morę confusing when Bunimovich presented an evidence 
that the motion in the elliptic stadium billiard (Fig. l(f)) is chaotic [4]. 
Moreover, he found a generał role to constroct a chaotic billiard using arcs 
of the cirde and the straight lines [33]. It occurred that the billiard in a 
half of a circle (or a smaller part of it - Fig. l(g)) is regular, while a part 
of the circle containing its diameter (Fig. l(h)) is chaotic. At a first glance 
is not easy differentiate regular and chaotic billiards even for the simplest 
boundaries: the Figures l(a),(c),(e),(g) present some examples of regular 
systems and the Figures l(b),(d),(f),(h) show the corresponding chaotic 
billiards.

A problem of finding a generał principle to design billiards with positive 
Lapunov exponents attracts still a lot of attention. Wojtkowski found [34] 
a wide class of the chaotic billiards build of convex fragments of variable 
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curvature. For example the billiards in epicydoid, nephroid, cardioid or a 
square with an obstacle in the shape of an astroid are shown to be chaotic. 
These τesults have been further generalized by Markian [35] and Bunimovich 
[36], but the question, what condition is fulfilled by all chaotic billiards, 
remains still unsolved.

3. Rational polygons

The difference between the integrable and chaotic classical systems can 
be easily seen if one investigates the behaviour of their trajectories in the 
phase space. The trajectories of an integrable system are confined to an 
invariant manifold R which is topologically equivalent to a torus (an object 
with genus g equal to one), while the trajectories of a chaotic system explore 
the whole available phase space. There are, however, also dynamical sys
tems, the phase space trajectories of which are bounded on invariant mani- 
folds which are topologically equivalent to multi-handled spheres with genus 
g > 2. These intermediate cases, called pseudo-integrable were analyzed first 
by Zemlyakov and Katok [21]. A classical dynamice of such systems is not 
chaotic [22,23] (zero Lapunov exponent and Kolomogorov entropy), but the 
distance between two neighbouring trajectories grows quadratically in time 
[37]. It is due to singularities occurring in the enclosure of the billiard 
[38,39] like edges, comers or point interactions [40], which split a beam of 
trajectories into two separate parts.

In the following we shall focus our attention on the billiards with polyg- 
onal enclosures. These systems may be divided in two classes. A polygon 
billiard is called rational [23], if all angles between sides of the polygon P 
are rational multiples of x. The phase space trajectories are than confined 
to an invariant manifold R that is obtained by unfolding the original billiard
[38].

Let P be a rational polygon with vertex angles τni∣m^ i = 1, ∙ ∙ ∙, ⅛ and 
let M be the least common multiple of the integer denominators mi. Each 
trajectory in a rational polygon can take at most 2M different directions 
after all successive collisions [41]. This stands in contrast to the dynamics 
in an irrational billiard where the number of directions explored by a single 
trajectory is infinite. The invariant manifold R of the rational billiard P 
consists of 2M copies of the initial polygon. Identifying the corresponding 
opposite sides of R one gets a surface of genus g (a ‘pretzel’ with g holes), 
where [22,23]

(2)

One immediately sees that g equals to unity for all integrable billiards 
depicted in Fig. 2(a): rectangle, equilateral triangle and triangles with an-
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gles equal to π∕3,x∕2, r/6 and w/2, jλ^∕4, w∕4. Polygon R has in these casee 
the shape of rectangle, parallelogram or regular hexagon and is (after iden- 
tification of the opposite sides) topologically equivalent to a torus shown in 
Fig. 2(b).

Fig. 2. (a) Integrable billiards in polygons; (b) the conesponding manifold of
genus 1 - torns. The angles in all pictures are equal φι = ιr∕4, y>j = π∕3, =
2x∕3, φ4 = π∕6, ⅝>5 = 5ιr∕6, ⅛>β = *7 5∙

A simple example of genus 2 billiard is the gnomon and, if it is symmet- 
ric, also its half. Many other examples are known: the rhombus with vertex 
angle equal to w/3, or, in generał, a τr∕3 parallelogram; the triangles with 
the angels (2ιr∕3,ιr∕6,ιr∕6), (3π∕5,τ∕5,7r∕5), (τ∕2,3τ∕8,x∕8), the deltoids 
withangles (2x∕3,x∕3,2ιr∕3,τ∕3) and (3τ∕4,x∕4,3τ∕4,π∕4) or the trapeze 
(π∕2,π∕2,x∕3,2τr∕3). Some of them are presented in Fig. 3(a), while the 
Fig. 3(b) represents the topology of the genus 2 manifold jR. Each orbit is 
instantaneously moving on one torus (like in a regular system) but may skip 
to the other coupled torus. These changes of the torus occur in an erratic 
way and are responsible for certain degree of randomness in the dynamice 
of the pseudointegrable system.

The genus 3 is characteristic for r/4 parallelogram or for a billiard in 
the shape of 3 rectangular steps (an additional “step” added to the gnomon). 
Also the triangles (3τ∕8,3π∕8,ιr∕4, (ιr∕7,x∕7,5π∕7), (r∕8,2x∕8,5ιr∕8), 
(τ∕3,ιr∕9,5x∕9), a rectangle with the right triangle cut away along one 
side or the trapeze (w/2, τr∕2,5τr∕6, τr∕6) (Fig. 4(a)) lead to dynamice on a 
‘tree holes, object represented in Fig. 4(b).

Some exampleβ of g = 4 billiards like π∕5 rhombus, 2ιr∕3 hexagon and 
t/3 arrow are dieplayed in Fig. 5(a). Moreover, in agreement with the
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Fig. 3. (a) Billiards in polygons of genus 2; (b) and the manifold topologically 
equivalent to the phase space.



252 Karol Życzkowski

equation (2), the rhombus with vertex angle equal to π∕(N + 1) or the 
N-steps rectangular staircase (Fig. 6(a)) correspond to manifolds of genus 
g = N sketched in Fig. 6(b). Knowing examples of billiards belonging to 
eacb of the classes labeled by the finite genus g one can study the transition 
between rational and irrational billiards [41,42].

(b)

Fig. 6. (a) Scheme of billiards in polygons of genus N; (b) and the manifold 
topologically equivalent to the phase space.

This approach was applied in [41] where a system consisting of the 
rhombus with various vertex angles β = nπ∕m have been studied with 
the ratio v = β∕π = n/m being the successive rational approximations 
of the golden mean. The genus characterizing such system grows with the 
denominator m and tends to infinity for irrational billiards. The topological 
structure of the phase space becomes then morę complicated what influences 
the character of the classical dynamics. It has been conjectured that the 
irrational billiards (the limiting case) typically allow for the ergodic motion 
[23], but no rigorous prove have been found. The classical pseudointegrable 
billiards can be thus considered as the intermediate case manifesting some 
features of both integrable and chaotic systems.

4. Quantized billiards

Let us consider a point particie moving in the two dimensional infinite 
potential well

V( ∖ J 0, ,,λ
V(t,y)= < (3)

( ∞> {«,»} £ Ω

where the compact set Ω is determined by the shape of the classical billiard 
∂Ω. In order to analyze the corresponding quantum system one needs to 
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solve the stationary Schrδdinger equation, which in this case reduces to the 
Helmholtz equation

(V2 + *2)≠(≈,y) = 0 (4)

with the Dirichlet boundary condition = 0∣{s,y}∈a∏∙ For the inte
grable billiards presented in Fig. 2(a) this can be done analytically [43,44], 
where in all other cases the numerical calculations are necessary [12,22,45].

As it has been discussed in Section 2 the classical dynamics depends 
strongly on the shape of the billiard and can be characterized by the largest 
value of the Lapunov exponent. Since the classical trajectory looses its 
meaning in quantum mechanice the concept of the Lapunov exponent (1) 
can not be easily generalized for quantum mechanics. Some progress in 
this matter has already been achieved [46,47], but instead of analyzing the 
time evolution of quantum wave packets it is far morę convenient to inves- 
tigate the statistical properties of the set of eigenvalues of the stationary 
Schrδdinger equation.

Let {Eq,Ei,E2, ...} denotes the infinite sequence of the eigenvalues 
and {φo, ≠ι, </>2,...} the corresponding sequence of the eigenfunctions of the 
equation (4). According to the Weyl formula [48] the mean spacing between 
levels of the quantum billiard J = (-E⅛ι — E{) is in the first approximation 
inversely proportional to the area of the billiard Ω. Further corrections to 
this formula take into account the specific features of the billiard,s enclosure 
like corners and edges [48].

Defining the scaled spacing by s< := (FJt⅛ι — Ei)∕S it is useful to study 
the probability distribution P(s) for a given system. It has been demon- 
strated [7,8] that for the dassically integrable systems the level spacing 
distribution is given by

Pp(s) = e-. (5)

The above distribution is called Poisson, sińce it describes the statistics of 
random numbers obtained in the Poisson Process. In other words the lev- 
els of a. typical regular system (harmonie oscillator is not generic!) do not 
display any correlations and behave like random numbers. Poisson distri
bution (5) is represented by a solid linę in Fig. 7. The largest probability 
occurs for smali spacing s and it is probable to find two levels close to- 
gether. This property is called level clustering. Numerical investigation of 
a generic integrable billiard (rectangle with incommensurate sides) proved 
[44] that its level spacing distribution is dose to Poissonian. This property is 
not restricted to the integrable billiards only, but is universal for dassically 
regular systems [8].

The levd spacing distribution for dassically chaotic systems displays 
quite different behaviour exhibiting the level repulsion (P(s → 0) → 0). 
Numerous studies of various chaotic systems [6,8-12,49-52] showed that the
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Fig. 7. Level spacing distribution P(s) - bold linę represents Poisson, dashed 
linę Wigner distributions and three faint lines result from additive ensemble with 
coupling parameteι Λ = 0.1, 0.3 and 0.5.

level statistics may be described by ensembles of random matrices [53,54]. 
For chaotic systems possessing the time reversal symmetry the Gaussian 
Orthogonal Ensemble (GOE) is applicable [55]. It consists of symmetric 
matrices build of random Gaussian numbers with zero mean and the vari- 
ance inversely proportional to the matrix size N. The GOE level spacing 
distribution, obtained in the limit N → oo, might be well approximated by 
the Wigner surmise, received for 2×2 matrices [56,57]

(6)

The accuracy of this approximation is sufficient to analyze a set of, say, 104 
eigenvalues. For much larger samples, however the difference between the 
numerical data and the Wigner formula (6) becomes visible [58].

The above distribution, represented by a dashed linę in Fig. 7, displaye 
linear level repulsion: for smali spacing P(s) ~ s&; β = 1. For systems with- 
out generalized time-reversal symmetry, like billiards in magnetic field [59] 
the Gaussian Unitary Ensemble (GUE) should be applied and the quadratic 
level repulsion β = 2 was reported for Aharonov-Bohm billiards [60] and pe- 
riodically kicked top [61].

Magnetic field also may change the properties of regular billiards. The 
billiard in an ellipse becomes chaotic for sufficiently strong perpendicular 
magnetic field [62]. In this case only a fraction b of the classical phase space 
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is occupied by a chaotic layer. Fair approximation of the level spacing 
distribution was proposed by Berry and Robnik [63] by superposition of 
two independent spectra corresponding to regular and chaotic systems. The 
obtained family of distributions is labeled by the parameter b ranging from 
0 (Poisson distribution) and 1 (Wigner distribution).

Another family of distributions can be obtained by a composition of two 
ensemblee of random matrices [64,65]. Consider an ensemble Hχ composed 
of the diagonal random matrices with Poisson spectrum Hq and the GOE 
member G

(7)

where the coefficient c = (1 + λ2)~1∕2 is introduced to keep all eigenvalues 
in a bounded energy rangę [65]. For A = 0 one starts with the Poisson 
distribution obtaining GOE spectrum in the limit A → oo. In the simplest 
case of 2 X 2 matrices the resulting level spacing distribution Pχ(s) can be 
ezpressed in terms of the Tricomi function [65]. Moreover, recent numerical 
investigation proved [66] that it is also suitable for large matrices pertaining 
to the additive ensemble Hχ. Three cases of this distribution obtained for 
A = 0.1, A = 0.3 and A = 0.5 are represented by faint lines in Fig. 7. In 
contrast to the Berry Robnik formula for arbitrary smali positive values of 
A Pχ(0) = 0 and the linear level repulsion occurs Pχ(s) ~ ts. The slope 
t decreases with a growing parameter A and in the limiting case A → ∞ 
approaches the value w/2 characteristic to the Wigner distribution.

Several other families of distributions interpolating between Poisson and 
Wigner were found [67-70] and applied for investigation of various quantum 
chaotic systems. Interestingly the Brody distribution [67] provides good 
approximation of the level spacing distribution received for different sys
tems, in spite of the fact that there is no physical arguments supporting 
this choice. The GOE level distribution seems to be universal for quantum 
chaotic systems, with an exception of the composite, elongated billiards or 
systems like the quantum kicked rotator, where the dynamical localization 
occurs. On the other hand the transition from regular to chaotic motion (or 
from localization to delocalization) has not any universal properties and is 
system dependant.

Apart of level spacing distribution, measuring the distribution of dis- 
tances between neighbouring leveh it is appropriate to analyze the number 
variance ∑2(-fc) (average variance of the number of states in an interval con- 
taining on average L levels) or the spectral rigidity Δ3(Z) [71,55]. These 
quantities take into account higher correlations between eigenvalues and 
are associated to the dynamics of the corresponding classical model. For 
regular systems both measures grow linearly with L [72]. On the other 
hand for chaotic systems, described by GOE, the spectral rigidity grows as 
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Δ3 ~ ln(L) [60]. This property is universal for smali values of Z, while for 
L > Le the discrepancies from the above prediction are observed [73]. The 
critical value Lc is determined by the period of the shortest periodic orbit 
and obviously depends on the system. Moreover, fluctuations of the spec- 
tral rigidity Δ3 and the number variance Σ2 for large values of L may be 
explained by the existence of dassical periodic orbits [74]. These features, 
specific to each particular chaotic system, cannot be described by the theory 
of random matrices and universal ensemblee.

In a classically chaotic system the unstable periodic orbits are of mea- 
sure zero and their presence does not change the global properties of the 
dassical dynamics. On the other hand, the quantization can enhance role of 
some of the periodic orbits and they may significantly influence the quan- 
tum dynamics. They manifest themselves not only in the speciflc properties 
of the spectrum (fluctuations of the density of the spectrum [18] and the 
spectral rigidity [73]) but also affect some eigenstates of a quantum system. 
In contrast to regular and organized eigenfunctions of integrable quantum 
systems, the eigenstates of classically chaotic systems are usually irregular 
and their nodal lines form an erratic pattern [12]. The values of the wave 
function behave like a Gaussian random variable (with the zero mean and 
the variance inversdy proportional to the area of the billiard [12]), the path 
correlation function of such eigenstate decays to zero and exhibits random 
fluctuations [75] and the spatial correlation function is isotropic and oscil- 
lates with the displaςement length |s| like the Bessd function Jo(∣β∣) [12]. 
These quantitative description makes it possible to diflerentiate precisely 
between regular and chaotic wave functions.

This simple picture has been changed when Heller found [13] that also 
some eigenstates of the chaotic stadium billiard display easily recognizable 
regular structures caused by dassical periodic orbits and exhibit space cor- 
rdations diflerent to those predicted for irregular states. Such objects, de- 
tectable in the plot of a given eigenstate ∣≠n(≈, 1∕)∣2 as increased density 
of probability, are called quantum scars [13,14], and might be regarded as 
flngerprints of the dassical dynamics. The semidassical theory of quantum 
scars has been devdoped [15,76] providing an approximation for the wave 
function, averaged over a smali energy interval. Recently it has been sug- 
gested [16,17] to investigate quantum scars not only in the configuration 
space but in the phase space as well. The Wigner [16] or Husimi [17,77,78] 
distributions of the eigenstate aid to associate a given scar with the periodic 
orbits responsible for localization.

Even though this approach proved to be successful, the fundamental 
question what eigenstates are at all scarred, still waits for its answer. Fur- 
thermore one may address a question what eigenstates are scarred by a 
given periodic orbit Γ. Let us construct a coherent state ⅛ζ4(θ) localized 
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in the vicinity of a phase space point A that generates the periodic orbit 
Γ. Already the expansion of !Fχ in the complete basis of eigenfunctions φn 
allows us to find relevant eigenstates yielding considerable scalar product 
α∣ = K^A∣≠∣)∣2∙ The corresponding eigenvalues Ei label eigenstates scarred 
by the analyzed periodic orbit Γ [79]. In order to work directly in the en- 
ergy domain let us consider the time evolution of the initially coherent 
wave packet. Defining the autocorrelation function

C(t) = (!?a(0)|^W), (8)

we pass to the energy domain by the Fourier transform

∣W(ω)l = | y C(t)exp(-iωt)dt∖.

The function ∣VF(ω)∣ provides an important piece of information: its peaks 
indicate the energy intervals containing scarred eigenfunctions. This ap- 
proach has been effectively applied to a simple time dependent system — 
periodically kicked top [79]. The semiclassical approximation of the propa
gator and autocorrelation function does not allow to locate a single scarred 
eigenstate, however, it marks the quasienergy rangę where scarring is most 
probable. Analogous method may be ałso applied to study the scarring 
phenomenon in quantized billiards, particularly using the technique of semi
classical approximation of the autocorrelation function developed recently 
for the stadium billiard by Tomsovic and Heller [80].

Having computed numerically several eigenstates φn of a considered 
system one may select the scarred states simply by analyzing the proba- 
bility density ∣≠n(*>  10∣2∙ κ⅛r to define quantitatively the the degree 
of scarring it has been proposed [81,82] to integrate the density along each 
periodic orbit Γr. The quantity

Ir := J j>p ∣≠n(≈≈, l∕)∣2d*  (9)

measures the localization of the eigenstate ≠n along the orbit Γr and the 
prefactor normalizes the mean value of I” to unity. Here L stands for the 
length of the orbit, S denotes the area of the billiard and the integration 
variable ds = (dx2 + dy2)1/2.

Defined above quantity Z” is useful to state whether n-th eigenfunction 
is scarred by a given periodic orbit Γr [81], but does not help to answer the 
morę generał question, if a particular eigenstate is at all scarred. One may 
compute the space correlation function or the distribution of the wave func
tion values and compare the numerical results with the predictions obtained 
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The function F{ff) has a simple interpretation as the probability distribution 
of angles in the momentum space. For a classical periodic orbit in a billiard 
consisting of K segments the function F consists of, at most, 2K singular 
lines in the rangę θ E [0,2π) (the time-reversal symmetry is assumed). Their 
positions on the θ axes are determined by the angles ezplored by the orbit 
and their relative heights are proportional to the total length of the segments 
laying at the selected angles. The sequence of these lines is characteristic 
to each periodic orbit: knowing the classical angular distribution F(θ) one 
may uniquely point the appropriate periodic orbit or its associates. In the 
opposite case of a classical ergodic trajectory the angular distribution is 
continuous (all possible angles are explored) and fluctuates around its mean 
value {F) = l/2r.

The integrated squared deviation of the angular distribution

(U)

indicates the localization of the probability density around some distin- 
guished angles. The formulae (10) and (11) can be directly applied to an- 
alyze an eigenstate φn of the quantum billiard. Łarge value of the factor 
pn shows that the state ≠n is scarred. Moreover, the shape of the angular 
distribution Fn(θ) facilitates the correct identification of the periodic orbit 
responsible for the detected scars. Notę, however, that the precision of this 
method is limited. The scars - concentrations of the probability density 
along the periodic orbit, have a finite width (depending on the eigenenergy) 
what causes broadening of the peaks in the angular distribution and com- 
plicates their interpretation. For eigenstates corresponding to higher levels

(10)

Working in radial coordinates kx = k cos(0), ⅛s = fc sin(0), we define for 
each eigenstate the angular distribution function

theoretically for irregular states [12] treating considerable discrepancies as 
an evidence of scarring. This method, however, does not provide any infor- 
mation, what periodic orbit is responsible for the detected scars. To com- 
promise both goals we suggest to analyze the eigenstates in the momentum 
representation



Classical and Quanium Billiards ... 259

the widths of the scars decrease but the periodic orbits become morę com- 
plicated and consist of a larger number of segments. It causes an increase 
of the number of peaks in the angular distribution F(θ) so some of them 
may overlap.

5. Pseudo-integrable quantum billiards

Since it is not possible to get analytically the levels and eigenmodes 
of the quantized pseudointegrable billiards one is left with the numerical 
methods developed for quantum chaotic billiards [45,22]. As a simple ex- 
ample of the pseudointegrable billiard we have taken the symmetric gnomon 
depicted in Fig. 8(a). This system, also called “L - shape” billiard, has the 
classical phase space of genus 2. This becomes elear after inquiring the man- 
ifold R represented in Figs 8(b) and 8(c). It consists of four copies of the 
original billiard. Identifying the corresponding opposite sides, as denoted 
in Fig. 8(c), one obtains a pretzel with two holes indeed. The autocorre- 
lation function for the classical L-billiard was investigated by Henyey and 
Pomphrey [37] while its quantum analogue has been studied by Richens and 
Berry [22].

Fig. 8. Schematic picture of the billiard investigated (a); polygon R equivalent to 
the corresponding invariant surface (b).

Every space reflection symmetry divides eigenstates of a quantum sys
tem into two parity classes. Studying the spectral properties of a system it is 
necessary to consider each class separately [8]. Applying the numerical tech- 
nique presented in [22] we obtained about 3000 levels for the antisymmetric 
parity class of the quantum L-billiard [83]. In order to avoid missing some 
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eigenvalues the totalnumber of levels evaluated was compared with the pre- 
diction of the Weyl formula [48]. Since each half of the symmetric gnomon, 
i.e. the trapeze (π∕2,7r∕2,7r∕4,3τr∕4), has the phase space with the same 
topological properties we may expect that both parity classes (symmetric, 
with Neumann boundary conditions along the symmetry linę or antisym- 
metric, with the Dirichlet boundary conditions) have similar statistics of 
the level spacing.

Let A denotes the length of each arm of the billiard and B its width 
— see Fig. 8(a). We constructed a family of billiards of the same area 
S = B2 +2AB = 8x, to ensure the mean spacing for each parity classes equal 
to unity. The level spacing distribution occurred to be almost independent 
on the shape of the L billiard in a wide rangę of the parameter A. Also the 
rationality of the number A/B, which plays an important role in the classical 
dynamics [23], seems not to influence the character of the distribution P(s) 
in quantum billiard [83]. The level spacing distribution does not depend 
on the energy itself. The statistical analysis done separately for the highest 
quarter of the energy rangę coincides, within the statistical error, with the 
statistics obtained for the lowest levels.

A typical numerical results of the level spacing distribution obtained for 
A = 8 are presented in Fig. 9. Notę that the probability of level degeneration 
in the system is negligible and the level repulsion characteristic to classically 
chaotic systems is observed. This fact requires a comment, inasmuch as 
the pseudointegrable L-billiard is not chaotic. The source of the pseudo 
integrability — a comer in the enclosure of the billiard can not induce 
chaos into the classical dynamics. The set of trajectories hitting the comer 
is of measure zero. As discussed in the preceding section a single classical 
periodic orbit can essentially affect the global properties of the quantum 
system. In a similar manner one singular point in the boundary of the 
billiard may modify the Poisson spectrum of a regular system.

The numerical results presented in the histogram in figurę 9 do not co- 
incide, however, to the GOE distribution (or to the Wigner surmise) typical 
to classically chaotic systems [50]. The distribution resulting from the ad- 
ditive random matrices (7) might be used instead [66]. Best fit obtained for 
A = 0.38 is represented by the bold linę in the picture. The simple model of 
additive matrices is useful to describe the level statistics of pseudointegrable 
system. One might interpret the coupling between two tori in the classical 
phase space as the perturbation G in Eq. (7) changing the properties of 
the Poisson term Hq corresponding to the regular motion on a torus. On 
the other hand the quality of the fit is not excellent and suggests that the 
employed distribution can only be regarded as a rough approximation of the 
results obtained.

Numerical results for P(s) are similar for all the shapes of L-billiard
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Fig. 9. Level spacing distribution P(s) for the first 2673 leveb of the antisymmetric 
parity class of the Ł-shape billiard with A — 8.0. Best fit of the additive random 
matrices with A = 0.38.

considered (excluding the limiting cases of A → 0 and A → oo). It might 
be therefore tempting to speculate that the level statistics of the pseudo
integrable quantum billiards is determined only by the genus of its invariant 
surface. Some preliminary results of the level distribution for other quan- 
tum pseudointegrable systems of genus 2 seem to support this conjecture. 
Shudo and Shimizu studied the quantum billiards in pseudointegrable tri- 
angles of genus 2 (right triangles with vertex angle a equal to π∕4 or τr∕5 
or 2τr∕5) and reported [84] similar properties of P(s). Śeba gave another 
example of the genus 2 billiard introducing a singular point interaction [40]. 
Shrinking the radius of the circular obstacle in the Sinai billiard to zero 
one gets a pseudointegrable system. Its level spacing distribution displays 
characteristic linear level repulsion with the slope different as this typical 
to chaotic systems [85]. Comparable results were recently reported [86,87] 
for other pseudointegrable billiards with singular perturbation.

Up to now we discussed the theoretical studies of the quantized bil
liards. An interesting complementary picture provide recent experiments 
performed with microwave resonators. Stockmann and Stein [24] trans- 
mitted the microwaves through thin metallic resonators of different shapes 
and measured the absorption spectra. Since the Schrδdinger equation of 
quantum billiard is equivalent to the Helmholtz equation (4) describing the 
microwaves in 2 dimensional resonator, the observed absorption dips corre- 
spond to eigenvalues of the billiard. The level statistics for the resonator 
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in shape of Sinai billiard fits well [24] to the expected Wigner distribution 
(6). The thin antenna, used to transport microwaves into resonator, may 
be regarded as a point interaction and influences the measured spectrum. 
Experimental results of level spacing distribution obtained for rectangular 
resonator [25] are resembling these presented in Fig. 9, which are received 
for pseudointegrable billiard of genus 2.

β. Quantum chaotic scattering

The classical dynamice of the Sinai billiard is equivalent to the be- 
haviour of a point particie bouncing in an infinite lattice of the circular 
elastic scatterers represented in Fig. 10(a). Its dependence on the radius 
of scatterers R is given in [88]. Analogically, the equilateral triangular bil
liard with the circular obstade, corresponds to the scattering in an infinite 
periodic hexagonal lattice — see Fig. 10(b).

(b)

Fig. 10. Scattering billiard systems: (a) Sinai billiard gives the rectangular lattice; 
(b) circular obstade in equilateral triangle leads to the haxagonal lattice.

In addition to investigation of the bounded systems (or infinite lattices) 
it is interesting and instructive to study simple open systems consisting
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Fig. 11. Model of the billiard with penetrable walls suitable for study of chaotic 
scattering.

of three [27,89] or four [90,91] reflecting disks. The classical scattering in 
such systems is highly unstable and chaotic: the finał direction of outgoing 
trajectory depends strongly on the incoming angle and angular momentum 
(measured respectively the center between disks). This classical feature 
manifest itself in the corresponding quantum system. Differential cross sec- 
tion dσ∕dθ oscillates with the angle θ and the total cross section σ displays 
erratic fluctuations as a function of energy [90,92]. Similar effects occur 
in problems of quantum scattering not only on ħard reflective walls of the 
billiards [27,90], but likewise on soft [93-95] or singular [96,97] potentials 
and are the subject of a considerable interest.

Consider a two dimensional billiard with hard impenetrable walls en- 
circling the compact set Ω. In addition to study the bounded quantum 
problem inside Ω one may analyze the open scattering problem outside the 
set Ω. Is is known that these two models are related [92]: a chaotic dy
namice inside the billiard leads to the irregular scattering outside. Both 
problems might by directly coupled by making the walls of the billiard pen- 
etrable. Walls with finite height and width complicate the analysis, sińce 
a resonant phenomena connected with the finite width of the walls appear. 
In is therefore advantageous to consider the limit of very thin walls and to 
discuss a model defined by a singular potential [98]

θ, {χ,y}⅛∂∩
~ {χ,y}e∂Ω (12)

where ∂Ω is the boundary of the billiard and 7 is a coupling constant. A 
scheme of this system iś shown in Fig. 11. For zero coupling constant the 
walls are not penetrable and one encounters two separate systems.
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In the case of a positive value of the coupling parameter 7 the wave 
packet can penetrate the walls of the billiard. The resulting scattering 
system may be described in the S matrix formalism [99]. The long living 
quasistationary states (resonances) are represented by the complex poles 
(z = E-iε)of the analytically continued Green,s function. For 7 = 0 the 
poles are located on the real energy axes and represent the eigenvalues of 
the bounded billiard. With nonzero coupling constant they lay in the lower 
part of the complex energy piane. The real part of the pole determines the 
energy of the corresponding resonance and the imaginary part its width. For 
smali 7 all resonances are narrow and well separated. The average width 
(ε) grows with 7 and the resonances start to overlap. Due to this fact the 
dependence of the total cross-section on energy becomes complicated [100]. 
This feature is known in the theory of nuclear reactions as the Ericson 
fluctuaiions [101].

It is interesting to analyze the statistical properties of the resonant poles 
on the complex piane. In the case of a weak coupling the poles are localized 
close to the real axis and the statistics of spacing between neighbouring 
resonances reveals the dynamics of the classical billiard in the set Ω. For 
chaotic billiards the Wigner distribution is expected. The statistics of the 
resonance widths ε is given in this case by the Porter-Thomas distribution
[55].  Łarge value of the coupling constant 7 causes spreading of the poles far 
into the lower half of the complex energy piane. It is then useful to study 
the distribution of the distances ( in the two dimensional Euclidean met- 
ric) between closest poles. The Poisson process on the piane (uncorrelated 
random points uniformly drawn on the piane) the next neighbour distribu
tion is given [8] by the Wigner formula (6) characterized by the linear point 
repulsion. On the other hand, the statistics of poles of the chaotic billiard 
with transparent walls displays cubic repulsion P(s) ~ s3 [97,100]. Similar 
results were recently obtained for the distribution of complex quasiener- 
gies of a periódically kicked system with dissipation [102] and may be well 
approximated by the distribution of the 2 × 2 Ginibre ensemble [103]

Pg(«) = 2(9π∕16)2s3 exp ( — 9πs2∕16). (13)

The statistical study of an open quantum system consists also on an 
analysis of the properties of the unitary scattering matrix S. It has been 
conjectured [28,90] that the S matrix of a system displaying chaotic irregular 
system can be described by the Dysons circular orthogonal ensemble (COE) 
[104]. Several features of the distribution of the eigenphases of a COE mem- 
ber on the unit circle are comparable to the corresponding characteristics 
of the level distribution of GOE matrix [55]. In particular the spacing dis- 
tributions are the same for both ensembles and are well approximated by 
the Wigner surmise [8], This property the S matrix has been checked by
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Blumel and Smilansky for a system consisting of a periodic array of scat- 
tering discs [105]. In agreement to the predictions of the random matrix 
theory [55] the statistics of the squared moduli of the elements y = ∣Srnn∣2 
was found to be Poissonian. Both statistics P(s) and P(y) are different, if 
the corresponding classical dynamics is regular [105], and thus are helpful 
in studying the quantum chaotic scattering. It has to be noted, however, 
that also non chaotic systems with COE like S matrix are known [106].

7. Concluding remarks

Aft er many years of intensive studies several aspects of the dynamics of 
classical billiards are well understood. In particular a generał definition of 
chaotic billiard (with positive Kolomogorov entropy) is established [1,31]. 
Some classical billiards are shown to be chaotic [3,4,33-36], but there are 
still no universal methods allowing to state, whether the billiard in a given 
two dimensional enclosure is chaotic.

Not so much is known about the corresponding quantum billiards, sińce 
up to now no precise definition of quantum chaos has been formulated 
[5,107]. One is left with an phenomenological approach analyzing various 
features of quantum systems [8]. It has been conjectured [50] and later 
confirmed in series of numerical experiments [51,107] that quantum ana- 
logues of classically chaotic systems display spectral fluctuations properly 
described by ensembles of random matrices [54]. Several statistics quantita- 
tively measuring the properties of spectrum of the quantum system allow to 
determine the naturę of the corresponding classical dynamics. As a simple 
example let us mention the level spacing distribution P(s): it reveals the 
level clustering for generic integrable systems and the level repulsion for 
classically chaotic billiards.

A particular dass of classical pseudointegrable systems, with the phase 
space of genus g > 1, possess some properties of both categories and may be 
regarded as an intermediate case. Classical pseudointegrable billiards are 
not chaotic (zero Kolomogorov entropy), but their quantum counterparts 
exhibit level repulsion. The level statistics differs, however, from the GOE 
distribution typical to classically chaotic billiards. We conjecture that the 
level spacing distribution of a quantum billiard depends solely on the genus 
g of the corresponding classical phase space.

Moreover, the level spacing distribution Ps(s), universal for all billiards 
with genus g, approaches the Wigner surmise (6) (morę precisely, the GOE 
distribution) in the limiting case

(14)
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It is possible to find in the literaturę arguments supporting this the- 
sis. Cheon and Cohen considered the approximation of the Sinai billiard 
by a 7V-steps stair-like billiard [108]. The level statistics for this quantum 
system of genus N becomes very dose to the GOE predictions already for 
N = 6. Further, Shudo and Shimizu analyzed the quantized rhombus bil
liard with an irrational angle a, what corresponds to the case of g → oo 
[84]. Although this system does not display the classical chaos (Lyapunov 
exponents vanιsh), its quantum analogue shows level statistics very close to 
the GOE distribution, characteristic to quantized chaotic systems.

However, the above conjecture can not be valid without restrictions. 
Dittrich and Smilanski have shown [109] that the classically chaotic com- 
posite billiard consisting of several cavities coupled by narrow holes displaye 
the Poissonιan level statistics. This is due to the dynamical localization or, 
in other words, due to superposition of several independent Wigner spec- 
trae. The same reasoning might be applied to the elongated pseudointe
grable billiards, so the statement (14) is not valid for composite systems 
where localization occurs. Furthermore, in the limiting case of large inte- 
gers N, the pseudointegrable billiard of genus N approximating the chaotic 
Sinai billiard displays different properties than the billiard of the same genus 
approximating the integrable system.

The level distribution of quantum pseudointegrable systems confirms 
the hypothesis that the singular points in the billiards boundary of mea- 
sure zero strongly influence the quantum dynamice. In a similar matter 
classical periodic orbits generate quantum scars — ordered structures ex- 
isting for some eigenstates of the quantized chaotic billiards [13-15]. This 
phenomenon is already understood to some extend [77-79], but the recently 
developed semiclassical theory of scarring [16,17] is not capable to predict 
what eigenstates are scarred by what periodic orbit. In spite of a consid- 
erable effort [18,89,110-113] it is not yet elear how precisely the classical 
periodic orbits determine the density of the spectrum of the corresponding 
quantum system.

Billiard with penetrable walls may serve as a model open system suitable 
to study properties of quantum scattering [98]. The statistical approach is 
successful also in this case. The distribution of the complex poles of the 
S matrix [97] or the statistics of the eigenphases of the unitary matrix S 
[105] allows to distinguish between regular and chaotic scattering. For a 
classically chaotic billiard Ω the open system, deflned by potential (12), 
leads to the scattering matrix S well described by the theory of random 
matrices [53-55,104]. However, the properties of scattering system build 
of a pseudointegrable billiard Ω have not been investigated in detail. In 
generał it would be interesting to investigate, in what manner the pseudo 
integrability of a classical system and the topology of the phase space affect 
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the fundamental properties of the quantum analogue, studying for example, 
the quantum propagators obtained from the classical trajectories.

A further work is also needed to elucidate the role of quantum scars in 
chaotic scattering. One might expect that some resonances, corresponding 
to scarred eigenstates of the bounded billiard, are influenced by classical pe- 
riodic orbits. This leads to the specific behaviour of the angular dependence 
of the differential cross section.
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