
Vol. 23(1992) ACTA PHYSICA POLONICA B No 2

TRAPPED SURFACES IN NONSPHERICAL 
OPEN UNIVERSES*

* This work is supported by the Government Grant No PB 2526/2/91.

P. Koc, E. Malec

Institute of Physics, Jagellonian University 
Reymonta 4, 30-059 Cracow, Poland

(Receiυed February 11, 1992)

We continue our investigation of formation of trapped suifaces in 
strongly curved geometiies which do not contain gravitational waves. The 
expansion of open, fiat universes does not change substantially the results 
obtained hitherto in the case of asymptotically and conformally flat space- 
time. The necessaiy and sufficient conditions for the formation of trapped 
surfaces are given, which explicitly demonstrate that the quicker universes 
are expanding, the morę matter is required to develop a trapped surface.

PACS numbers: 04.20.Cv

1. Introduction

The attempt to prove the Cosmic Censorship Hypothesis [1] may be di- 
vided into two steps. The first step would be the proof that singularities are 
surrounded by trapped surfaces. That of course requires a suitable defini- 
tion of what is meant by the term “singularities”; our results suggest that it 
is possible to prove the so called “trapped surface conjecture”, according to 
which massive singularities have to be trapped. The word “massive” means, 
in our previous work, geometries that comprise a large amount of matter 
(or, morę generally, a lot of scalar 3-curvature) inside a fixed volume.

The next step should be the proof that trapped surfaces are enclosed, on 
initial Cauchy slices, by the portion of an event horizon lying in the Cauchy 
slice. Thus, one would wish to prove, that trapped surfaces, once they 
appear, always imply the existence of event horizons, that is, the existence 
of a black hole.

The second part of this programme has not been done, at least in suf- 
ficiently generał situations, but the first problem is relatively well shaped 
(see [2] for a review).
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In this paper we will examine the formation of trapped surfaces in 
nonspherical cosmologies. We will study an open, expanding universe, which 
locally is inhomogeneous and anisotropic, but very far firom bounded regions 
coincides with a fiat, homogeneous and isotropic Friedman-Robertson-Wal
ker universe. We combine techniques of two'previous papers [3,4], to prove in 
Sections 3 and 4 that in conformally flat universes (initially) time-indepen- 
dent perturbations give rise to the formation of trapped surfaces if and 
only if the amount of energy is large comparing to the size of region in 
which it is compacted. A part of Section 4 pursues further the previously 
obtained results on the formation of trapped surfaces in asymptotically and 
conformally flat geometries.

The order of the rest of this work is following. Section 2 is introductory 
one. Section 5 shows that there is an upper limit for the amount of matter 
inside a volume of a flxed size. That result has been proven earlier (see [2] 
for the discussion of known results), and it suggests that the old idea of 
Einstein [5] that singularities do not exist, may be true, at least for some 
types of singularities, e.g., massive ones. Morę conclusive statements would 
require the solving of the problem of the existence of maximal slices, or its 
equivalent used below, slices of constant mean curvature.

Section 6 discusses the formation of surfaces that are pointwise trapped. 
The last Section comprises some comments on the obtained results and on 
possible generalizations.

2. Preliminaries

Initial data for the evolution of Einstein equations consist of energy 
density p and matter current J⅛, which are prescribed on a space-like hy- 
persurface Σ with a three-geometry defined by induced metric tensor gab 
and with an immersion of Σ into 4-dimensional space-time given by an ex- 
ternal curvature Kab = jftgab∙ This whole set of functions is not arbitrary, 
sińce they have to satisfy the initial value equations:

<3⅛ - ΛΓo6ΛΓβb + (K*a)2 = 16τrp, (2.1)

DaKab - DbKaa = -8πJb. (2.2)

In (2.1) <3>JJ[<∕] is the scalar curvature of Σ. Da in (2.2) denotes covariant 
derivative of the 3-dimensional metric. We put c = 1,(7 = 1.

As it was mentioned, we consider a cosmological Friedman-Lemaitre 
model (with k=0) with conformally flat perturbations. We describe solu- 
tions in terms of their finite deviation from homogeneous-isotropic back- 
ground. It is necessary to point out that we do not apply linearization 
procedurę and our analysis is generał one.
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Łet us relate the background quantities (denoted by a hat) and per- 
turbed ones as follows:

<7αb = *‰ 9ab9bc = ⅛, gab = Φ~4gab, (2.3) 

9 ab = a(i)9ab, (2.4)

Kab = ~gab = β(t)gab, (2.5)

Kab = Φ4Kab + δKab = β(t)gab + δKab, (2.6)

p = p + δpt Jb = δJb. (2.7)
Ali indices of non-hatted quantities are raised and lowered with the 

metric (2.3). ŚF is a conformal factor. In (2.4) gab denotes a fiat metric 
and α(t) is a scalar function determined by Friedman equation. In (2.5) 
β(t) = ⅛lnα∕2∙

We employ, following [7], special coordinates adapted to equipotential 
surfaces S (i.e., surfaces of constant Φ). In these coordinates the three- 
dimensional linę element reads

ds2 = Φ4(σ)a(t)(gσσdσ2 + gττdr2 + gψφdφ2 + 2gτφdrdφ). (2.8)

Here σ > 0, σ foliates the level surfaces of the Φ∙, that from now one are 
assumed to be convex, and τ, φ are quasi-angle variables.

Remark. One can show, that outside matter the surfaces of constant 
Φ coincide with surfaces of constant g,oo∙ Therefore, the equipotential sur
faces have a transparent physical meaning — these are surfaces of constant 
redshift — and might be detected experimentally.

The cosmological background satisfies the following relation

(gabKab)2 - (9adgbcKdcKab) = 6β2 = 16πp. (2.9)

We restrict our attention to the case, when

δKab = 0, (2.10)

which guarantees us the absence of gravitational waves. This allows us to 
use the total proper rest mass as the quasilocal measure of the gravitational 
energy. The constraints (2.1, 2.2) reduce to a single equation

= 16πtfp. (2.11)

The metric gab is fiat, hence the scalar curvature of the conformally 
related metric gab reads
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V2≠
≠5 ’

Inserting this into (2.11) we obtain the Lichnerowicz eąuation:

V2<f = -2τrfyΦ5.

3. Necessary condition

In this chapter we will find a necessary condition for a surface S to be 
an averaged trapped surface. We start with expressions for the orthonormal 
unit vectors to S, in all the three metrics that were defined hitherto:

n*  = (τ3-I==,0,0), fιt = ( ^⅛r-=,0,θ), ń*  = (-7⅛=,0,0).
∖φzy∕agσσ J ×y∕agσσ ' yV9σσ 7

(3-1) 
We define the mass of the inhomogeneity as follows

δM = j SpdV = y 8pΦβdV.

v p

Let us multiply eąuation (2.12) by Φ and integrate over the volume V. 
Using the above definition of SM we get

(3.2)

(3-3)

We need to calculate the following quantities, (i) the divergence of the 
normal unit vector n‘, i.e., the mean curvature of a surface S in the physical 
metric gik

Dini = ±∂i(Jgni) = 
y/3

<⅝7-ln√ξ χ ⅛Φ∂σΦ
^2y∕agσσ ^4Va9σσ,

(ii) the mean curvature of S with respect to the background cosmological 
metric

(3∙4)

(3∙5)

(2.12)
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Above ξ = 9ττ9ψφ ~ 9τφ∙ Inserting (3.4) to (3.5) we obtain the identity

f9°f = (l>ini - ⅛ (3.6)

We replace the integrand of the last term of (3.3) by the right hand side of 
(3.6), in order to get

SM = f ∂iΦ∂iΦdV [ DinidS + [pdS. (3.7)
2τr J 8τr J o7Γ J

V S Ś

A surface S is called an averaged trapped surface, if the mean expansion 
d of outgoing futurę directed nuli geodesics which are orthogonal to S is 
nonpositive,

y ddS < 0,

S

where $ relates to the initial data of Einstein equations <7α⅛, Kab by

i? = Dana - Kabnanb + gabKab = Dana - Kabhanb + gabKab
= Dana + 2/3.

In the last two equations we take into account (2.6) and fiKab = 0. The 
condition that S is an averaged trapped surface reads now

y(Dana + 2β)dS < 0 (3.8)

s
We rewrite (3.7) in the following form, by adding and subtracting a 

term containing /3:

(3-9)

Now let us assume that S is an averaged trapped surface. In such a 
case the flrst two terms of the above equation are positive. A classical 
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isoperimetric inequality (see, e.g., [7]) gives for a convex surface S in the 
three-dimensional fiat space the estimation

/ pdS ≥ ⅛y∕~"κS

Ś

(5 denotes an area of S and p is just the mean curvature of S with respect 
to the Euclidean metric gik). Thus we may conclude that

Let us remark also that the third term on the right hand side of (3.9) 
is equal to (∕3∕4τr)S,. Taking into account this fact, the last inequality and 
Eq. (2.9), we may infer the following

Theorem 1. (a necessary condition). Under the assumption of:

δKaa = 0,

if an equipotential convex surface S is trapped then

where S denotes the area of a surface S.

4.Sufficient condition

Let us start from the assumption that an equipotential surface S is not 
tτappe<L Then its averaged expansion is positive,

The equation (3.9) and the above inequality imply

(4-1)

We define quantities
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(4.2)

(4.3)

Rad(S(σ)) equals to the proper radius in the case of spherical symmetry 
W- It is reasonable to conjecture that Rad(S,(σ)) is bounded from above 
by the largest proper radius of the volume enclosed by the surface S in all 
geometries when the equipotential surfaces are convex [4,7]. We prove now 
an important technical estimation:

Lemma. Assume that 6p > 0. Then

Rad(S(σ)) ≥ D(S(σ)). (4-4)

Proof.
For σ — 0 the equation (4.4) becomes an identity. Thence it is sufficient 

to show that δσRad(S(σ)) ≥ 5σZ>(S,(σ)), t.e.,

I⅛om the maxiιnum principle and δp > 0 : ∂σΦ < 0, hence the above 
equation holds true assuming that

(4-5)

It is possible to prove even a stronger inequality

(4-6)

Eq. (4.6) was proven in [4], under certain (conjectured) property of 
convex foliations in fiat geometry. Here we shall present a different proof, 
communicated to one of us (EM) by Eanna Flanagan.
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At the beginning, we prove (4.6) under a morę stringent condition than 
stated in Łemma, namely we assume that δp = 0 outside S.

Let Φ be a function satisfying the Łaplace equation outside S and having 
the values —1 on S and 0 at infinity. It can be seen that Φ = 1 + (1 — A)!?, 
where A is a value of Φ on S. The inequality (4.6) is now equivalent to

Let us define quantities

The first quantity is related to the electrostatic capacity and the relation 
between the two was discussed by Szegδ [9], who proved that for any convex 
surface embedded in Euclidean 3-space M > 4τrC,. This ends the proof of 
Łemma in the case of 8p = 0.

(4.6) holds also in the case of non-vanishing (outside S) matter density. 
Let us assume that Φ and χ have the same boundary values, A at S and 
1 at infinity and V2χ = 0, V2Φ = — 2πδpχ5. Notice that V2(Φ — χ) < 0; 
thus, from the maximum principle, u = Φ — χ achieves its maximal value 
somewhere between S and infinity. Since u = 0 at S, this implies that at S 
we have ∂σ{Φ — χ) > 0, i.e.,

χ satisfies the inequality (4.6) at S, according to the preceding proof. Be- 
cause of the last inequality and the boundary condition u = 0 at S, we 
conclude that also Φ fulfills the property (4.6). This ends the proof of 
Łemma.

Now we may replace the last two terms in (4.1) by Rad(5(σ)), as to get

8M < 5√∕- + Rad(S,(σ)). (4.7)
V 6 τr

If S is not trapped, then the amount of perturbative mass inside it can not 
exceed expression on the right hand side of (4.7). Thus we have proven the 
following:
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Theorem 2. (a sufficient condition). Assume that:

Sp > 0,

SKab = 0.

If the amount of perturbative mass satisfies the inequality

SM > + Rad(S(σ)),

then a convex surface S is trapped.

5.Mass of perturbations is bounded

Erom Eq. (3.6) we have

This equation can be rewritten in the form

SM = Z>(S(σ)) + [ pdS - f (Φp + 2fισ∂σΦ)dS.
o7T J 4τr J

Ś Ś

Erom (4.2) and the inequality (4.5) we get

SM < 2P(5(σ)).

By the preceding Łemma, the following holds true. 
Theorem 3. Under the assumptions:

Sp > 0, SKab = 0.

the amount of perturbing mass is bounded from above,

SM < 2Rad(5,(σ)).

Inserting the above equation in (3.7) and replacing the first and the last 
terms of (3.7) by Z>(S(σ)) (see Eq. (4.2)) we obtain
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6. The existence of pointwise trapped surfaces

Using (3.4), one gets the following from the definition of the mean 
expansion d

6.1)

If S is not pointwise trapped, then certainly the largest value of the expan- 
sion i? is positive, i.e.,

4Φ(-∂σΦ) ≤ Φ2 max(np). (6-2)
Here and below max(∕) means the maximal value of f(x), for x ∈ S. 

Combining (6.1) and (6.2) one obtains then

The last equality follows from Eq. (3.9), as expressed in terms of the 
mean expansion and D(S(σ)) (see Eq. (4.2)).

The inequality (6.3) has always to be true, if S is not pointwise trapped, 
as indicated above. Thus, if (6.3) is broken, then S has to be trapped. In 
particular, from the inequality (4.4) of our Lemma, we may conclude the 
following

Theorem 4. Assume that inside an equipotential surface S the follow- 
ing conditions are fulfilled:

(i) δx*  = o,sp>o,
(ii) SM > Rad(S,(σ)) + ⅛βS + ⅛ ∕ nσ[max(nσp) - nσp].

Then S is pointwise trapped.
S

7. Concluding remarks

We have discussed the formation of trapped surfaces in the class of 
conformally fiat deformations ( which initially do not change the expansion 
of the geometry) of Friedman fiat expanding universes. Trapped surfaces 
have a well defined physical sense, namely a bundle of light rays which 
emanates from a trapped compact surface S (orthogonally to it) increases 
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its intensity, at least initially, when moving outwards. That is unlike our 
everyday,s experiencej we know surfaces (say, concave mirrors) that have the 
property of focusing light rays, but they are not closed. A compact trapped 
surface S plays a role of a compact reflector; from this intuitive definition it 
is obvious that trapped surfaces can exist only in strongly curved geometries.

We have proven that, assuming the absence of gravitational waves, 
trapped surfaces can appear only in the presence of large masses (Section 
3) and that they must appear if concentration of matter in a fixed volume 
is large. Surprisingly, the amount of perturbed mass in a Unitę volume 
has to be bounded from above (Section 5). The formation of trapped sur
faces requires the morę matter the larger is their nonsphericality (Section 
6). Moreover, the expansion of the Universe (as represented in the above 
statements by the Hubble constant β or the averaged matter density p ) 
makes it morę difficult to form a trapped surface, in the perfect agreement 
with intuition.

The all results are strict, sińce all inequalities are saturated in some 
spherically symmetric situations [3].

These results might be proved also in another foliations of the space- 
time. A generalization of the radial gauge (in which Tr A = K° — no 
summation over σ) allows one to consider spacetimes with initial data off 
time symmetry, sińce then the notions of minimal surfaces and apparent 
horizons are identical1.

1 I thank Niall O’ Murchadha and Jemal Guven for discussing that point.

The existence problem of these foliations is not solved as yet, similarly 
as for the constant mean curvature foliations that are used in this paper.
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