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Our purpose is to study the impact of chaos-generators on the dy
namice of nonlinear systems. As an example two simplified models of 
chemical reactions have been chosen with different coupling to the ex- 
ternal noise. Numerical analysis together with analytic predictions for a 
stationary situation show possibility of noise induced periodicity.
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1. Introduction

Nonlinear dissipative systems exhibit natural strong sensitivity to the 
influence of extemal noise. It has been found both theoretically [1] and 
experimentally [2] that the eflfect of external noise may lead to interesting 
and nontrivial effects. Deterministically observed stationary states of the 
system may be shifled and the noise may create new states which have 
no deterministic analogue. Moreover, the noise can induce transitions be- 
tween stochastic states [3] which may be further investigated in terms of 
“stochastic ratę ławs” [4].

(3)
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The effect of multiplicative noise in oscillatory systems has been con- 
sidered in a great variety of physico-chemical examples [5]. In the case of 
a well understood electrical parametric oscillator [2], experimental results 
rep ort ed stabilization of the non-oscillatory regime in the presence of noise. 
The theoretical explanation of these findings has been based on the detailed 
analysis of the Hopf bifurcation by use of a reduced system of equations 
leading to a universal normąl form [6]:

= (a +iΩ)z - Kz∖z∖3, (1.1)

where z is a complex amplitudę and α, Ω and K are real fluctuating pa- 
rameters. Exact solutions tp t¼e Fokker-Planck equation describing the 
dynamics of fluctuations near instability has been obtained for a class of 
models [5] by imposing white noise perturbations on the model parameters 
a, Ω, K.

The goal of this paper is to study a similar type of a noise-induced 
behaviour in “real” oscillatory system in which a and Ω are complex di- 
mensionless combinations of physical and chemical parameters describing 
the process of combustion.

We do not limit ourselves to a gaussian white noise idealization of fluctu
ations in the parameters. Instead, we investigate dynamie properties of the 
system perturbed by a móre realistic shot-noise generator, whose statistical 
properties and longtime behaviour are well known [7], [8].

In Section 2 we briefly present the model and discuss stationary prop
erties of fluctuations imposęd on the system.

The simulation results are represented and analyzed in Section 3. Some 
comparative analysis of the dynamics with a morę primitive model of a 
chemical reaction exhibiting oscillatory states (Brusselator) is discussed.

Finally, concluding remarks are found in Section 4.

2. The model

The model consists of two consecutive first-order chemical reactions

A-^ χklW b + Q, (2.1)

converting an initial reactaht A into a finał product B through a single 
intermediate species X. The second reaction is exothermic and the ratę 
constant fcj(T) obeys an Arrhenius temperaturę dependence 

⅛ι(T) = ½ιexp(-^), (2-2)
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where E is the activation energy. For simplicity we have assumed that 
the ftrst reaction is thermoneutral and has zero activation energy (⅜ does 
not vary with temperaturę); as for the energy transfer we have assumed a 
Newtonian cooling (i.e., proportional to the temperaturę difference).

Dimensionless form of mass and energy balance for (2.1) leads to a set 
of equations [9]:

(2-3)

where θ stands for the dimensionless temperaturę rise, a represents dimen
sionless concentration of X and μ, √e, 7 are parameters. In particular 7 
represents the ratio 7 = RTa∕E, where R is gas constant, Ta is ambient 
temperaturę and E — activation energy. A typicał value of 7, being a 
dimensionless measure of the activation energy, is less then 1.

The model can display osćillatory behaviour and the conditions for the 
Hopf bifurcation require [6,10]:

(2-4)

where Θ* s is a stationary-state temperaturę rise.
Direct analysis of (2.4) shows that Hopf bifurcation cannot occur if the 
activation energy E becomes too smali in comparison with the thermal 
energy RTa, i.e. if E < iRTa or equivalently if 7 > | (c/. Fig. 1).

Close to the bifurcation point the system (2.3) can be linearized to the 
form:

(2-5)

where z, y measure excess of α, θ, from their stationary values α⅛g, Θm, The 
system can be easily transformed to the form (1.1). A real part of the 
complex coefficient K can be expressed in terms of partia! derivatives of 
functions f,g:
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Fig. 1. Positions of Hopf bifurcation pointa of the model (2.3) in κ — μ parameter 
piane for 7 = 0.21. Outside the curve stationary solution for any parameter values 
is a stable focus, inside — a stationary state is unstable and is surrounded by a 
stable limit cycle.

According to the Hopf bifurcation theorem [6], periodic solutions of (2.3) 
parameterized by μ, κ and 7 are stable limit cydes if Re K < 0 and are 
repelling if Re K > 0.

With the fuli Arrhenius dependence, the model yields [11] the following 
form of the stability parameter Re A:

n, „ 1 - - 2?(3 - 2%) - 372⅛∙,(4 - ⅛∙,) - 673⅛∙,2 „
Re κ  ---------------------------S(l + 7⅛)^--------------------------- (2-7’

Erom the above expression it becomęs readily understood that some com- 
binations of the dimensionkss activation energy and the stationary-state 
temperaturę rise may change the stability of the limit cycle emerging in the 
system via the Hopf bifurcation.

In the following we examine the behaviour of the system when the 
parameter 7 fluctuates according to regular perturbations y(t) imposed on 
its average:

7(t) = 70 + σy(t) (2.8)

and
⅞(t) = -τ~lty(t) + ξ,

ζ = τl∣2 ∑xnδ(t-nτ), (2.9)
n

τcθrr defines an intrinsic relaxation time of y, τl∣2xn stands for the intensity 
of “kicks” ξ whose distribution is assumed to be generated by a logistic map: 

xn+ι = Tzn = 2x2n - 1. (2.10)
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For τ → 0, Eqs (2.9) (2.10) are known [12,13] to be equivalent to the 
Langevin equation, provided initial sb0 is distributed according to some 
smooth probability distribution and T has so called y>-mixing property (in 
particular, φ-mixing property is inherent for the mapping (2.10)). The pro- 
cess y(t) converges then to the continuous time Ornstein-Uhlenbeck process 
in velocities (and 7(t) represents an “integrated” O-U process in positions).

Statistical properties of y(t) can be easily verified [13] by use of a “prop
agator” A:1

and integration is done between subsequent time steps nτ < t < (n + l)τ 
(for extended analysis of the process (2.9), see e.<j.[12]).

The first moments and correlation functions of xn can be derived 
straightforward basing on the ergodic properties of the map (2.10) [7,8]:

(2.U)

(2.12)

where Z^p(j1,i2,t3) ls the sum taken over 3! permutations of indices.
Erom (2.11) and (2.12) we get following expressions for the averages:

(2.13)

(2-14)

which in the long time limit (n → 00) tend to:

1 By integrating (2.9) with (2.10) one gets the recurrence relation used in our 
numerical analysis pf the noise: yn+ι = Ayn + τ*∕3xn.
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Fig. 2. Stationary probabiłity distribution of 7 = 7(t) — 7 = σy(t). Parameter 
valuest (a) — A = 0.8, σ = 0.1, 7 = 1, (.b) — A = 0.5, σ = 0.1, r = 1, (c) — 
A = 0.1, σ — 0.1, r=l. Dashed linę stands for function (2.16).

Asymptotically, stationary probabiłity distribution of y, Ps(y), can be ap- 
proximated by a Gaussian and deviation from it can be represented by the 
Gram-Charlier expansion [14]:

¾⅛)=⅞-⅜>(h∑⅛[,)). (2.15)
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The functions H∕c are Hermite polynomials, σ stands for the dispersion 
of y, and the coefficients c⅛ are determined by the moments {(δy)n), 6y = 
V ~ <!/)•

Direct use of (2.14) yields:

Ps(y)=(1 yλ ) Z exp ( - y2(l - A2)) 

*(1 + ⅛(^1-λ2)3-K1-λ2)M 

+ ⅛(f⅛ " 3H4y4(1 “ λ2)2 “ 12(1 - λ2⅛2 + 3)). (2.16)

Figures 2 (a), (b), (c) present stationary probability distributions of 7 = 
7(t) ~ 7o = °ry(t) affected by fluctuations y(t) with distinct parameters 
τ,corr (c/. (2.11)). One can see that for A ~ 1 formula (2.16) gives quite 
satisfactory results, whereas for A → 0 the distribution does not remain 
gaussian.

3. Impact of a shot-noise generator on the dynamics 
of a Salnikov model

Typical behaviour of the model and its dynamie properties viewed in 
functional dependence of the parameters μ, κ have been discussed elsewhere 
[10], [15]. Our aim is to check evolution of the system in the domains of 
deterministic determined regions os steady states (c/. Fig. 1)

For a value of 70 = 0.21 (chosen to fulfill the Hopf bifurcation criterion: 
7q < 0.25), and μ = 0.04, κ = 0.015 (the conditions sufficient to get deter
ministic, stable limit cycle oscillations), we have operated with numerically 
generated noise {y(t)} by varying values of a and τcorr (c/. Figs 3, 4).

The trajectories of the system (2.3), (2.8), (2.9) have been generated in 
the iteration of about 10s steps. At the same correlation time of the noise 
τcorr and by varying intensity of the noise <r, we have observed emergence of 
a stochastic driven stable limit cycle with the amplitudę inereasing with σ.

Due to complexity of the system (nonlinearity of Eq. (2.3) does not 
allow for a standard evaluation of a respective normal form close to the 
bifurcation point in the presence of noise), one is not abłe to determine 
parametrically conditions for occurrence ofa “stochastic Hopf bifurcation”. 
In fact, exponential form of the kinetic equations would require an infinite 
series of moments used in the elimination of noise variable. We are assuming 
therefore that the system is exposed to a longtime limit form of the noise 
whose stationary properties are then well known [13].

In particular, for a stationary noise {y(t)} we get:
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(3-1)

For the parameters chosen

7o = 0.21 and κ = 0.015 < ∕c⅛lβx = (1 — 47)e 2 = 0.022,

2 Upper and lower branches of Hopf bifurcation points can be derived from (2.1)
as the only solution for which κ — 0.

which is the maximum value for Hopf bifurcation to occur at a given 70 
parameter, deterministic steady state is a stable limit cycle which looses 
stability along the upper branch of Hopf bifurcation points2 (bifurcation 
degenerates). In fact, from (2.7) one gets change of the stability of the limit 
cycle at the value 0**  = 9.344 (which is the upper branch of Hopf bifurcation 
points) if at the same time κ becomes smaller than the corresponding 
obtained from Eq. (2.4), i.e. κ < κ*  = 2.767*10 -3. The lower branch 
of Hopf bifurcation points consists (for commonly chosen parameters) of 
nonphysical states (θ < 0).

In the presence of noise, the determinant of the quadratic equation for 
θ**  (see numerator in Equation (2.7)) depends on averages (7), (72), (73). 
For the set of parameters, 70 = 0.21, κ = 0.015, μ = 0.040, after imposition 
of the noise, we observe appearance of a limit cycle shifted in the phase 
space as compared to the position of its deterministic analogue (c/. Fig. 3). 
The corresponding value of 0* 1*,  at which ReJf changes the sign, can be 
calculated by use of (3.1) and reads θ**  = 22.3, i.e. the noise stabilizes the 
position of a deterministic Hopf bifurcation point.

Figs 4 (a), (b) present a different situation where before the noise has 
been imposed on 7, the system possessed a single stationary state, i.e. a 
stable focus (now we have chosen 7® = 0.21, κ = 0.015, μ = 0.035). Noise 
generated in 7 is shifting again the phase diagram of the system, so that one 
observes a limit cyde induced by extemal noise at, effectively, lower values 
of μ,
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Fig. 3. Phase portrait of the system (2.3) in the region of limit cycle oscillations 
(μ = 0.040, κ = 0.015, 70 — 0.21) in the deterministic and stochastic case.
(a) —— — deterministic LC, x — A = 0.1, σ = 0.05, r = 1, ♦ — A = 0.1, σ = 
0.1, τ = 1. (b)---------- deterministic LC, Δ — A = 0.1, σ = 0.05, τ = 1, x —
A = 0.8, σ = 0.05, r=l.

Fig. 4. Phase portrait of the system (2.3) in the region of one stable stationary 
state(μ = 0.035, κ — 0.015, 70 = 0.21) in the deterministic and stochastic case.
(a) U — deterministic stationary state, + — A = 0.5, σ = 0.1, τ = 1, * — 
A = 0, σ = 0.1, τ = 1. (b) O — deterministic stationary state, + — A = 0.5 σ = 
0.1, τ = 1, * — A = 0.5, σ = 0.08, τ = 1.
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This qualitatively new characteristic of the system is due to the very 
coupling of the dynamics (2.3) to the external noise in 7. It is only because 
of the highly nonlinear form of the evolution equation (α(t), θ(t)) that 
one observes occurrence of qualitatively different steady states in the region 
where, deterministic, their emergence would be forbidden. This behaviour is 
by no means a generał phenomenon; instead, it is fully generic, depending 
on a particular form of a nonlinear evolution equation and the form of a 
coupling to the noise.

As a counter-example let us use the same type of noise to check sta- 
tionary behaviour of a less complex model of a chemical reaction, i.e. the 
Brusselator, whose dynamics is also known to produce limit cycle oscilla- 
tions. The model is described by the set of equations:

X = A-X + X2Y-BX,
Y = BX-X2Y. (3.2)

For the sake of clarity we chose A = 1. The system (3.2) is equivalent to:
x = y + 2xy + x2y - x3 ,

y = —x, (3.3)

where x and y determine variations from steady state (Xλ, F,) = (A,B∕A) ≡ 
(1,1) known to undergo Hopf bifurcation for Bc = 1÷√12 = 2. Let us assume 
further that B fluctuates, B = Rc+7≡2 + 7, where 7 is described by 
(2.8), (2.9) with 70 = 0.3 (3.3) reads then:

x = y + 2xy + x2y- x3 ,

y= -x. (3.4)

To analyze behaviour of the system close to the Hopf bifurcation point, 
we restrict ourselves to tħe flow of (3.4) within the center manifold. By use 
of a smooth coordinate to produce eventually Eq. (1.1) with:

Re^ = -∣-⅞7∙ (3-5)

As it can be easily seen from the form of Re K, stationary (longtime limit) 
fluctuations of 7(t) are not going to change stability properties of the emerg- 
ing limit cycle provided intensity of perturbations is not too big to change 
the character of the bifurcation point (72 has to be smaller than 4).

Fig. 5 presents results of the simulation of (3.3) with the noise of the 
form (2.9) imposed on the parameter B = Be + 7. Obviously, this time the 
noise stabilizes the limit cycle observed in the purely deterministic case.
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Fig. 5. Limit cycle oscillations in the Brusselator model; deterministic---------- ,
stochastic simulations — ♦. Parameter values: A = 1, γo = 0.3, B = 2.3.

6. Conclusions

The concept of noise-induced transitions has achieved wide interest and 
has found numerous applications in theoretical studies of the effect of ex- 
ternal noise in nonlinear systems. On the other hand, domains of chaotic 
motions embedded in mecħanical processes driving time-evolution of a phys- 
ical system are known to influence its dynamie properties [13], [7] in the 
similar way as it is observed in the presence of noise. This rises the question 
when and under what conditions chaotic motions can be source of a random 
behaviour and wether that could imply existence of a unified theoretical de- 
scription in terms of mechanice and the theory of stochastic processes.

Theoretical and numerical investigations presented in this paper reveal 
richness of behaviours which so far remain unexplored and would require 
further experimental justifications. Noise, understood as a limit of a purely 
deterministic dynamie process (with the inherent chaotic regimes) is not 
simply a source of a disorder in a nonequilibrium system. Its presence may 
induce (even at relatively Iow intensities) quite organized behaviours and 
transition phenomena.
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