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It is pointed out that the vector particie of the 3+1 dimensional 
Abelian Higgs model can form bound states with a vortex. The modes 
of the vector field bound by the vortex are efl⅛ctively represented by a 
two-dimensional Proca field living on the vortex. We also notice that 
a heavy-string limit of the vortex yields a bosonic string with internal 
degrees of Reedom given by the two-dimensional Proca field.
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l.IntroductionThe Abelian Higgs model is well-known for its very interesting features. Apart from being a textbook example of the Higgs phenomenon, it contains sectors with nonzero topological charge which is the winding number of the Higgs field. The ground state field configuration in the sector with the unit topological charge is given by a static, straight-linear vortex, [1,2]. The vortices have been observed in superconductors of the ∏-type. It has been shown by Nielsen and Olesen [2] that the vortex can be regarded as a field-theoretical prototype of a relativistic string.In the following we shall consider the single-vortex sector of the model. This topological sector is defined by the requirements that the winding number for the Higgs field Φ is +1, and that the total energy per unit length of the vortex is finite. We shall consider the case of the static, straight-linear vortex. Generic fields Φ and Aμ in the single-vortex sector (Aμ is the Abelian gauge field), are given by sums of the proper fields of the vortex, denoted by φ(0∖A(°∖ and of perturbations Φ<∙1∖A(μ∖ The vortex fields φ(0∖ A]t0) obey 



512 H. ArodŹthe classical field equations and they mimmize the energy per unit length of the vortex, Thus, any perturbation of the vortex increases the energy (except for the translational and rotational zero-modes).In generał, we expect that any localized perturbation of the vortex will disperse very quiddy - that is,its magnitude will decrease while its spatial size will increase in all directions with time - because all fields in the model have nonzero mass, due to the Higgs mechanism. However, in the presence of the vortex this reasoning is not complete. The point is that inside of the vortex tubę the Higgs mechanism does not operate fully. The proper Higgs field of the vortex Φ<°) vanisheβ on the center linę of the vortex, and it exponentially approaches its vacuum value v in the directions perpendicular to the vortex∙ Thus, outside of the vortex the standard Higgs mechanism works and the vector field acquires a nonzero mass miλ ~ υa, but within the vortex tubę the Higgs field is smali and the would be mass term for the vector field vanishes on the center linę of the vortex. Therefore, one may expect that those modes of the vector field which are localized on the vortex and propagate along it, can have special properties.In fact, in the present paper we show that there exist particular smali perturbations of the vortex which do not disperse in the directions perpen­dicular to the vortex. These perturbations are given by certain modes of the AQl∖√l3l) fields. We shall show that they can be regarded as the two- dimensional massive vector field (the Proca field) living on the vortex. The mass mf of the Proca field is smaller than the mass of the vector field. Therefore, one can say that the modes of the gauge field living on the vor- tex describe the vector meson of the mass captured by the vortex to form a bound state. Of course, the total energy is higher than the energy of the vortex. Thus, the particular perturbations we have found should be regarded as excitations of the vortex.Our considerations are restricted to a particular kind of the smali per­turbations of the vortex, An analysis of all perturbations does not seem to be possible at the moment — let us recall the fact that even the vortex solution itself is quite cumbersome [3].The plan of our paper is the following. In Section 2 we fix our nota- tion and we recall the basie facts about the vortex solution. In Section 3 we describe the smali excitations of the vortex. Section 4 is devoted to a discussion. In particular. we consider there the heavy-string limit of the vortex. 2. Reminder of the Abelian Higgs modelLet us recall the Łagrangian of the Abelian Higgs model,
L = (∂>i- iqAμ)Φ*  (∂μ + iqAμ)Φ - ∣λ(<Fff - ^)a - (1)



Bound States of the Vecioτ Field with a vortex... 513and the corresponding Euler-Lagrange equations
(∂μ + iqAμ)(∂μ + iqAμ)Φ + ⅛λφ(φ-φ - = 0, (2)

∂vFμv = iq(Φ∂μΦ*  - Φ,∂μΦ) + 2g3A',<FS. (3)

P P (6)where p = ^∕(x1)2 + (a:2)3 is the radius in the (z1,®2) piane, and 
θ = arctan(ι2∕z1) is the azimuthal angle.Energy per unit length of the vortex is given by the formula
It can be written in the following form [4]

The gauge invariant energy-momentum tensor has the formTμμ = (∂v + iqAv)Φ{∂μ - iqAμ)Φ*  + (∂μ + iqAμ)Φ(∂v - iqAv)Φ,

-gμv(∂, + iqAβ)Φ{∂σ - iqAσ)Φ*  + gμμ^Φ*Φ  -+ ∣ff'∙,'FλσFλ' - FμσF* 6 l'σ. (4) In the topologically trivial sector one can remove the phase of the Φ field (the Goldstone field) by an appropriate nonsingular gauge transformation. Then, the field Φ becomes real. Next, one introduces a new Higgs field χ,
⅛(≈) = v⅛χ(e), u =which has the mass m2 = 2μ,. The gauge field absorbs the Goldstone field and becomes massive, m∖ = 4q3μ3∕λ.Now, let us tura to the single-vortex sector. The static, straight-linear vortex lying on the ι8-axis is a solution of equations (2), (3) of the following form [1,2] 4°) = 4°) = 0, A^ = --H(p), A^ = -H(p), (5)

φ(°) = eiθF(p),

‰t∙, = J dxldxiT00.

(7)



514 H. Arodźwhere the superscript “ ’ ” denotes the derivative with respect to p. The functions H(p),F(p} have the following asymptotic behaviour. For p → 0
H(p)≈b0p, F(p)≈blp. (8)For p sufficiently large

H(p) ≈ - — + ⅛"m",, F(p) ≈ 1 - cle~lilp, (9)
QP y/Pwhere [5]

M = min(2τ∏A, mχ).The vortices are observed for λ > 2q2. This condition is equivalent to m’ > m\.

3. The smali perturbations of the vortexNow, let us investigate smali perturbations of the vortex solution. We shall use the following notation.
(10)where a = 0,3 and £ = 1,2. We shall also use the two-dimensional LaplacianΔ ≡ (∂∕∂z1)2 + (∂∕∂z2)2.For the vortex solution 4^°^ = 0. The vortex solution obeys the Lorentz gauge condition ∂μA^μ = 0. We do not impose this gauge condition on all fields Aμ because the gauge is already fixed by the form (5), (6) of the vortex solution. In order to obtain equations for the smali perturbations we substitute in Eqs (2), (3)<F = Φ<°) + ≠, Ai = Aco>' + ai,and we retain only the terms linear in ≠, a' and Aa. We obtain the following equations for ≠, a,, Aa.

(U)
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j 2 2
- ∂β∂βai + ∆α*  + ∂i(∂βAβ + ∂kak) = -2J⅛0>φ(0)ai

A+ Ζ^l2∣(0)i(φ(0)*̂  + φ(0)^*)
A+ + ^fl∙φ(o)*  _ ψW*Q iψ - ψ'∂iΨm) , (12)
A

- ∂a∂aφ + (⅜ + ⅛4°>) (¾ + iqA^}ψ = iq(∂aAa + ∂i<ty^

+ 2iqak (∂k + iqA^Φw + μ2 - 1)≠ + μ2 (φ<0>) V . (13)
The system of equations (11) — (13) is quite complicated. Fuli analysis of the spectrum of the smali perturbations is out of our reach. We shall only consider particular perturbations which describe the vector field bound by the vortex. We shall assume that the fields of the vortex are not changed in the linear approximation, i.e.≠ = 0, ai = 0. (14)Let us notę that this assumption excludes the zero modes from our consid- erations. It follows from equation (13) that

∂aAa = 0. (15)Then equation (12) is also satisfied , while equation (11) reduces to
ą 2 2

-∂fstfAa + ΔΛα = -^-AaF2{p). (16)
AEquation (16) can be analysed further with the help of separation of vari- ables. We separate (z0,®3) from (x1,z1) :

Aa = Wα(z0,z3)≠(z1,z2).Then, it follows from equation (16) that Wa, φ obey the following equations
-∂β∂βWa = cWa, (17)-Δ≠+^⅛2(z>)≠ = c^, (18)

where c is the separation constant.Equation (18), after dividing it by 2, has the form of two-dimensional Schroedinger equation for levels ε = c/2 of a particie of unit mass in the potential well
vm=⅛⅛ω



516 H. Arodź(c = h = 1). The slιape of the potential well is given by formulae (8), (9). Its height is 2q3μ3∕λ and the width is of the order M~1. It is elear that the eigenvalues ε∣ = cf∕2 are positive (we assume that A > 0). Using well-known results for the potential well¼(p) = VoΘ(∕>-α),we can estimate the largest eigenvalue ε1 corresponding to a bound state. For the potential well Vr1(p) the highest bound state has the energy [6,7]

Any two-dimensional well, no matter how narrow or shallow it is, always has at least one bound state [6,7]. The strength of the potential well is characterized by the parameter ξ ≡ a3V0. In our caseξ ≈ M~32q3μ3A~1 < 0.5if A > 2g3. States with nonzero angular momentum appear if ξ ≥ 2.88, [7]. Thus, in our case the bound states are the s-states, and the corresponding wave functions depend only on p.Let ≠∣, l = 1,2,..., denote the wave functions of the bound states determined from equation (18). We may choose them to be real valued. They are orthogonal to each other and normalized to 1. Then, the generał solution of equation (16) can be written in the form
(19)

where Wfa(zp) obeys the equation
-∂p∂βWfa = ctWfa, (20)with C/ = 2εt, and the Lorentz condition

∂aWfa = 0. (21)The modes of the gauge field which are given by formula (19) are localized on the vortex because the eigenfunctions φi exponentially vanish for p > a.

In our case



Bound Siates of the Vector Field with a vortex... 517Using formulae (4), (14), (19) and the orthogonality of the eigenfunc- tions φl it is easy to compute the energy per unit length of the vortex. The result is
- + £ (j(⅛W⅛ - 0,H¾)1 + ∣e,((∣y⅛)1 + (W⅛)1)) ,(22)

where JSτ0rtex is the contribution of the vortex alone (t.e. of the fields
φW). We see that the contrib”ł5n" nf w"7) *n formula (22) has the form of energy density of the , real-valued Proca field of themass ml3 = cl. The Lagrangian of such a field has the form (23)Lw = -l(∂aWp - ∂βWa)3 + ∖m3WaWa , (23)where a,β = 0,3. The Euler-Lagrange equations following from the La­grangian (23) imply the Lorentz condition (21), and afterwards they are reduced to equation (20).Momentum per unit length of the vortex is given by the formulae (24)

(25)
Again, this result agrees with the supposition that Wfa is the Proca field — Lagrangian (23) gives the same formula for P8. In order to prove that the energy and momentum densities for the Proca field obtained from La­grangian (23) are equivalent to formulae given by (22), (25) we consider the integrated (over ss8) quantities and we use equations (20), (21).Components of the angular momentum of the perturbed vortex are given by the formula
They do not vanish in generał. The reason is that the perturbed vortex has nonzero electric field B’ = F0i = -∂iA0, i = 1,2, E3 = P03 = <%A3 - <93A0, and the magnetic field -B3 ≡ P13 = - ∂3A^0∖ -Bi ≡ P31 =
-5i-43, -B1 ≡ P33 = ∂iAs. It is easy to see that the angular momentum density of the electromagnetic field, given by the double cross-product x × 
(β X B), does not vanish. Simple computation givesAf81 = M33 = 0.



518 H. ArodźThese components vanish because of the axial symmetry of the perturbed vortex. For the M12 component we obtain the following formula
∞ 

wg, y dppφl (^+∣). 
oIn the derivation we have used integration by parts, and the fact that H(p) obeys the equation 

which is equation (3) in the case of the unperturbed vortex∙ The formula for Ml2 given above might of course change its form if we pass from our approximate solution to the exact solution.
4. Remarks

(i) Our considerations have the obvious shortcoming that they are re- stricted to the smali perturbations of the vortex. To go beyond the linear approximation to the equations of motion does not seem to be a simple task. Let us recall the discouraging fact that even the exact form of the vortex solution itself is not known as yet. The best result till now has the form of an infinite series obtained only for the particular case A = 2q2, [3]. On the other hand, symmetry of the problem is quite large, and it suggests a rather simple Ansatz for the exact form of the flelds pertinent to our problem. We hope that on the basis of this Ansatz we can obtain a proof that the exact solution with the required properties exists. Work in this direction is in progress.In the recent paper, [8], finite perturbations of the vortex exactly obey- ing the field equations (2), (3) have been found. These perturbations are different from the ones considered in our paper, because they are massless and because they modify the Higgs field and the A', i = 1,2, fields already in the linear approximation.
(ii) It is a well-known fact that otherwise unrelated fields can be trans- formed into each other when considered in 14-1 dimensional space-time. In this vein, one may suspect that the classical Proca field in the two- dimensional case is equivalent to a scalar field, because the gauge condition (21) allows us to eliminate one of the two components of this field. Morę precisely, one could introduce the “potential” u,

Wa = eay∂^ru.



Bound States of the Vector Field with a voτiex... 519Then the condition (21) is satisfιed automatically, while equation (20) takes the form
∂β∂0∂1u + cl∂-1u = 0.This equation is equivalent to the equation

∂p∂pu + ct u = δ0 > (26)where t0 is an arbitrary constant. Equation (26) has the following generał solution
u= — + h(xa), (27)Clwhere h(xa) obeys the ordinary wave equation

∂β∂ph + clh = Q. (28)Thus, h(xa) is the usual classical scalar field. On the other hand, the field u is not the usual classical scalar field, because from formula (27) we see that it contains one degree of freedom morę than necessary, namely the b0 modę. Therefore, the two-dimensional classical Proca field is not equivalent to the usual scalar field.
(iii) One of the most interesting aspects of our work is that it has some implications for the stringlike limit of vortices. The idea that the relativistic strings can be obtained from vortices in a field-theoretical model has been put forward by Nielsen and Olesen, [2]. This idea has been elaborated on by Forster [9], and by Gervais and Sakita [10]. It has been shown that the action functional for the Abelian Higgs model in 3 + 1 dimensional space- time, calculated for a thin vortex in a strong coupling limit, contains the action functional for Nambu-Goto string as the leading term. Recently, the relationship between relativistic strings and vortices has been investigated again, see, e.g. [11-14]. This time, the main problem addressed to is the form of the term which is next to the leading Nambu-Goto term. In all these attempts to relate strings to the vortices of the Abelian Higgs model only elementary bosonic strings with no internal degrees of freedom have appeared in the leading order.In the paper [9] it has been shown that all excitations of the vortex decouple in the strong coupling limit. This limit is taken in such a way that μ,R2,λ and q increase, but the quotients μ2R2∕A and ę2/A are kept constant. Here we consider a curved vortex, and R is the minimal value of the radius of curvature of the linę on which the Higgs field vanishes. In this limit the vector particie and the Higgs particie have very large masses, while the energy of the vortex per unit length is kept constant — it is of the order μ2∕A. This energy becomes the string tension. The vortex becomes very



520 H. Arodźthin and it can be approximately regarded as a string. The string tension is a dimensionful quantity. Therefore, we cannot meaningfully say whether it is smali or large. In order to obtain a simple dimensionless characteristics 
κ of the mass of a piece of the string we take the energy stored in the piece of the string of the length equal to the Compton wave length of the Higgs particie, and we divide it by the mass of this particie,

μ2 1 1 _ i 
K λ μ μ A ’Thus, in the strong coupling limit κ is very smali because A is of the order 

μiRi. Therefore, we may say that the string obtained in this limit is light. As argued by Forster, its intemal degrees of freedom are practically frozen, because in order to excite them one needs a very large energy of the order 
μ which is hard to come by in a typical motion of the light string.Erom a theoretical point of view, and also in view of possible applica- tions in cosmology [15], it is also interesting to consider another type of the etringlike limit, namely the heavy∙string limit. In this limit μ2R2 becomee very large, while A and ę3 are kept constant. Then, the masses of the vector particie and of the Higgs particie again become very large, but this time the energy of the vortex per unit length is also of the order μ2. The vortex again is very thin and can be regarded as a string. However, the relative mass of the piece of the string, given by κ ~ A-1, does not vanish in this limit. For A = 1 the piece of the string is as heavy as the Higgs particie. The mass of the Proca particie m3 is also of the order μ3. Therefore, we expect that the degrees of freedom given by the Proca field will be excited during a typical motion of the curved vortex. The corresponding string will have intemal degrees of freedom represented by the two-dimensional Proca field. For etill morę energetic motions of the heavy vortex one should not neglect emission of the Higgs and of the vector particles from the vortex. In this regime the string is coupled to certain modes of the Higgs and of the vector fields. Calculational details of the heavy-string limit of the vortex will be presented in a forthcoming paper.Notę added in proof: Aft er this paper was written we have learned that the idea of the vector field propagation along the vortex has been outlined in the paper by R.Ł. Davis, Nuc. Phys. B294, 867 (1987).
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