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(Received March 20, 1991)The correct forms of the equations of motion, of the boundary condi- tions and of the conserved energy-momentum for a classical rigid string are given. Certain consequences of the equations of motion are presented. We also point out that in Hamiltonian description of the rigid string the usual time evolution equation F = {H, F} is modified by some boundary terms.PACS numbers: 03.50. Kk; 11.10. Ef; 11.17. +y

1. IntroductionNowadays there exist quite a few string models, e.g. Nambu-Goto string [1], several kinds of superstrings [2] and a morę recent one — the rigid string [3, 4). These models are expected to have many different applications. The rigid string, in which we are interested in this paper, is expected to appear in a string interpretation of QCD. Such a hope has been expressed in papers [3], and it is supported by other investigations [5]. The rigid string also appears as an idealization of a thin vortex, even though there is some controversy about this [6, 7]. Such idealization of the vortex is useful for description of cosmic strings [6]. The rigid string (or rather its Euclidean version) has also been considered in a statistical theory of random surfaces, in connection with two-dimensional, quantized gravity [8].Investigations of the rigid string model are not easy to carry out because equations of motion of the classical string and the corresponding canonical 
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496 H. Arodź, A. Sitarz, P. Węgrzynstructure are rather complicated. In particular, it seems that the classical equations of motion cannot be linearized by an appropriate choice of coor- dinates on the world-sheet of the string. Nevertheless, several interesting results have akeady been obtained. Several special solutions of the classical equations of motion have been found [9]. It has been noticed that the en- ergy of the classical rigid string is not bounded from below [10]. Canonical formulation of the model has also been constructed [11, 12]. Formal quan- tization of the rigid string has been considered in papers [13]. Mean field approximation for the quantized rigid string has been considered in papers [14].Our meiin goal in this paper is to rederive the classical equations of motion, boundary conditions and conserved energy-momentum of the rigid string. The first reason to discuss in detail such basics is that the rigid string model is an example of a Lagrangean field theory with higher order derivatives. In such case the seemingly standard derivations contain many interesting points which, in our opinion, have not been sufficiently emphasized. The second reason is that one can find in the literaturę many misleading or even erroneous statements concerning the equations of motion, the boundary conditions and the energy-momentum.We also make several observations about properties of the rigid string. We point out that in generał it is not possible to have so called orthonormal coordinates on the world-sheet of the rigid string with the additional prop- erty that the evolution parameter is the physical time, i.e. ≈0(τ, σ) = r. We prove that the ends of an open rigid string move with the velocity of light. Another our observation is that Hamiltonian description of the open, rigid string involves some boundary terms. Because of their presence the physical-time-evolution of the open rigid string is generated by a Hamiltonian which is not equal to the conserved energy of the string. We also notice that the classical rigid string can have tachyonic trajectories. Let us recall that Nambu-Goto string is not tachyonic on the classical level — it becomes tachyonic only after quantization.The plan of our paper is the following. In Section 2 we present the derivation of the Euler-Lagrange equations of motion, of the boundary conditions and of the conserved energy-momentum in the case of a generic Lagrangian with second order derivatives. In Section 3 we present the corre- sponding formulae in the case of rigid string, i.e. for the specific Lagrangian given at the beginning of Section 3. There we also derive some simple conse- quences of the equations of motion. In Section 4 we point out the peculiar features of the Hamiltonian formalism appearing in the case of the open rigid string.Morę detailed investigations of dynamics of the classical rigid string will be presented in a forthcoming paper [15].



Classical Rigid String 4972. Basic formulae in the case of a generic Lagrangian with second order derivativesWe shall consider an open string described by the action
S = y d2uC(xμ,xμ,a.xμ,ab), (1)

Rwhere a, b = 0, 1, (u°, u1) are coordinates on the world-sheet of the string, 
zμ = xμ(u0, u1) and xμ,a ≡ .In the following we shall frequently use another notation for the coordinates, namely τ ≡ u0, σ ≡ u1. R denotes the rectangle τ1 ≤ τ ≤ τ⅛, 0 < σ ≤ π. The world-sheet Σ of the string is the image of R by mapping 
xμ(u0, u1). Thus, Σ is a surface in Minkowski space-time M. The metric in M is We assume that τ = u0 is a time-like evolution pa-rameter, i.e. i2 > 0, x° > 0, where xμ ≡ ∂oxμ, and σ ≡ u1 is a space-like parameter, i.e. x'2 < 0, where x,μ ≡ ∂1xμ. If we additionally assume that for all τ

xμ(τ,σ = 0) = xμ(τ,σ = π). (2)we obtain a closed string.Let us perform the variation
xμ(u) → xμ(u) ÷ δxμ(u). (3)In the case of the closed string we additionally assume that

δxμ(τ,σ = Q) = δxμ(τ,σ = π). (4)Straightforward computation gives the following formula for the variation of the action S corresponding to the variation (3).

(5)
where

(6)



498 H. Arodź, A. Sitarz, P. W?grzyn

(?)

and eβδ is the totally antisymmetric symbol, e01 = +1.Using Stokes theorem we can write δS in the following form

(8)
(9)

(10)where 6R denotes the boundary of the rectangle R. The advantage of this form of the variation δS is that it involves the least possible number of derivatives of the variations δxμ. The remaining derivatives of δx in formula (10) cannot be removed by any partial integrations.The Z-terms present on the r.h.s. of formula (10) for δS can be regarded as a contribution from the corner points of the rectangle R. For the closed string they cancel each other. However, for the open string they give a nonvanishing contribution if the Lagrangian £ depends on zμ,01. The Z- terms have appeared because in the case of open rigid string we encounter a coincidence of the following two mathematical obstacles: the presence of higher derivatives in the Lagrangian, and the fact that the field xμ(τyσ) is defined on the finite-width strip 0 ≤ σ ≤ π, —oo < τ < +∞, which has boundaries.The classical equations of motion and the boundary conditions for the open rigid string follow from the requirement (U)for any variation δxμ obeying the following conditions
δxμ(τ, σ) = 0 

δxμ,0(τ,σ) = 0 for τ = τ1,τ2i σ ∈ [0, π],for τ = τ1,τ2, σ ∈ [0, tt] .
(12a)(12b)to the fact that Lagrangian (1) contains theThe condition (12b) is due second order derivatives with respect to the evolution parameter t. Erom (12a) it follows that

δxμ,1(τ,σ) = 0 for τ = τ1,τ2 σ ∈ [0,τr]. (13)



where (21a)
is constant during the τ-evolution. We notice that the last two terms on Wthe r.h.s. of formula (20) cancel with the term J <fo,⅜(⅛^5 ). Therefore, o ’01the finał formula for the energy-momentum four-vector has the form

(20)

In this case it follows directly from definition (1) that
δS = 0. (19)We assume that xμ(τ,σ) obeys equations of motion (14) and boundary conditions (15). Then, it follows from formulae (8) and (10) that

what corresponds to an infinitesimal translation. We also assume that the Lagrangian is translationally invariant, i.e.

In the case of the closed string δxμ(τ, σ) obeys condition (4). Then, the variational principle (11) implies only the equations of motion (14).Now, let us pass to the derivation of the energy-momentum four-vector corresponding to the action (1). We again use the formula (10), but now
δxμ ≡ eμ = const., (18)

where
and

(15a)(15b)
(16)
(17)

Classical Rigid String 499On the other hand, neither δxμ nor δxμ,i are fixed for σ = 0, σ = 7r, τ ∈ (τι,τ2). Now, it is elear that the requirement (11) implies the following equations of motion -Rμ(τ,σ) = 0, (14)and the following boundary conditions
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The equations of motion (14) can be written in the following form
∂1Bμ + ∂0pμ = 0. (22)Integrating formula (22) over σ, and taking into account boundary condi- tions (15a), we again obtain that

∂oPμ = 0.This is a check that our formulae (21a), (21b) are correct.By a similar reasoning we obtain a conserved angular-momentum tensor 
Mμv for the rigid string. The only difference is that now

δxμ = ωμ (23)instead of formula (18). Here ωμv = -ωvμ are the six infmitesimal parame- ters of Lorentz transformations. After a partial integration, contribution of the Z-terms is cancelled by other terms. The finał formula for Mμv has the following form

where pμ is the momentum density given by formula (21b).
3. The case of the rigid stringThe Łagrangian for the rigid string has the form [3]£ = √≡g(-7 + αΔzμΔz,,), (25)where a ≠ 0, 7 > 0 are constants. The sign of a is not decided upon. For a = 0 we would obtain the usual Nambu-Goto string. The Laplacian ∆zμ is given by the formula
δ*"  = √⅛⅛ ('λ"s"*̂)  ■ (26)where 

gab = ∂axμ∂bxμ (27)
(26)



Classical Rigid Stτing 501is the metric tensor on the world-sheet Σ of the string, gab denote compo- nents of the inverse metric tensor, and g = det(<70t).In the case of Lagrangian (25), equations of motion (14) have the form (7 - α∆aσ∆a!σ)∆α!μ + 2α^∆(∆zμ) - pα6aισ,βzμli∆(∆xσ)j
- 4agabgcd(Δxσγbxσ,cVaxμtd = 0, (28)where Vaxμ,d denotes the covariant derivative of the covariant vector xμ,d, 

d = 0,1, defined with the use of Christoffel symbols for the metric given by (27). Equations (28) are explicitly invariant under reparametrization of the world-sheet Σ.The l.h.s. of Eqs (28) has vanishing projections on the directions tan- gent to the world-sheet U, i.e.

Rμxμ,a = 0. (29)In order to check this, it is convenient to use the identities (valid for any 
a, b, c = 0,1)

Xμ.e^aXμ.b = 0 , (30)from which it also follows that
xμ,cΔxμ=0, (31)because

∆xμ = gabVaxμ,b.Identities (30) are due to the fact that we use the particular metric gab on the world-sheet Σ—the one given by formula (27). Christoffel symbols Γbc corresponding to this metric have the following form
Γ'b = 9cdzμ>d*μ.ab ,and the covariant derivative Vaxμ,d is equal toVαIμ,⅛ = ∂aXμ,b — Γabxμ,c = X<r,ab(δμ ~ 9 x >dxμ>cj •

In fact, identities (29) are Noether identities corresponding to the invariance of the action S with respect to reparametrizations of the world-sheet Σ. Identities (29) follow directly from formula (10) if we consider reparametrizations 
u,a = ua + ea(u), (32)



502 H. Arodź, A. Sitarz, P. Węgrzynwith infinitesimal functions eβ(u) which vanish together with their deriva- tives on ∂R. For such reparametrizations
δS = 0, δxμ(u) = xμ,aea(u),and the K-term and the Z-terms vanish. Hence, we have identities (29). Equations (28) are very complicated. They contain fourth-order partial derivatives and nonlinearities. For a = 0 they reduce to equations of motion for the Nambu-Goto string Δzμ = 0. (33)Equations (33) are also nonlinear. However, it is a well-known fact that they can be locally linearized by choosing so called orthonormal coordinates on the world-sheet Σ (16). For a generic world-sheet Σ such coordinates exist only locally. They are defined by the conditions

xxl = 0, i2 > 0, x'2 < 0, (34a)
i2 = -z'2. (34b)In such coordinates Eqs (33) have the form(⅞2 - 512)zμ(τ, σ) = 0. (35)Coordinates τ, σ which would linearize equations (28) are not known.At this point we would like to remark that in generał it is not possible to have the orthonormal coordinates which would have the additional property that the evolution parameters r is the physical time, t.e.

x0 = T . (36)For the Nambu-Goto string such coordinates always can be introduced [16]. The point is that the definition (34a), (34b) does not specify the orthonormal coordinates τ, σ uniquely — there remains a freedom of transformationsτ → τ'= ∕1(τ,σ), σ → σ, = ∕2(τ,σ), (37)with any ∕1, f3 obeying the condition□ ∕i = 0, i = 1,2, (38)where □ ≡ d% — 52. Comparing Eq. (38) with Eq. (35) We see that we can take τ' = z0(τ, σ). (39)



Classical Rigid String 503In the case of the rigid string, equations of motion in the orthonormal coordinates do not have the simple form of equations (35). Therefore, in this case the transformation (39) does not preserve the conditions (34a), (34b), in generał. Of course, there is a subclass of world-sheet Σ of the rigid string for which coordinates obeying (34a), (34b) and (36) can be introduced. For instance, each solution of equations (33) also obeys equations (28). Thus, the set of world-sheets of the Nambu-Goto string is a subclass of the set of all world-sheets of the rigid string.The functions Bμ(τ, σ), Cμ(τ,σ) which appear in boundary conditions (15a), (15b) in the case of Lagrangian given by formula (25) have the fol- lowing form
Bμ(τ,σ) = √zi(i - a∆xχ∆xλ)glaxμ,a + 2a>∕^glagbcxλ,axχ,bc∆xμ

+ 4ay^∆xσxσ,abglbgacxμ,c + 2α∂o(√z⅛θl∆a!,1)
+ 2a∂b (y^glb∆xμ^ , (40)

Cμ(τi σ) = 2ay∕≡gg11∆xμ. (41)In the orthonormal coordinates (34a), (34b), condition (15b) implies that□ zμ = 0 for σ = 0,π. (42)Condition (15a), after taking into account condition (42) has the form
ηx'μ + 2α∂ι(□a!μ) = 0 for σ = O,τr. (43)Multiplying both sides of condition (43) by x'μ, using the identityx* μ5ι(□xμ) = —(44)and condition (42), we obtain thatz'2 = 0 for σ = 0, τr. (45)Identity (44) follows from another identity,zj1 □ zμ — 0,which follows from identity (31) written in the orthonormal coordinates. Because of relation (34b), we also haveź2 = 0 for σ = 0, τ. (46)



504 H. Arodź, A. Sitarz, P. W?grzynCondition (46) means that the ends of the open rigid string always move with the velocify of light. In this respect the rigid string does not differ from the Nambu-Goto string.The energy-momentum density pμ corresponding to Lagrangian (25) has the following form
(47)In the orthonormal coordinates this formula is simplified to

Pμ = 7* μ •

(48)
(48')Morę detailed study of dynamics of the rigid string will be presented in the forthcoming paper [15].

4. Remarks on Hamiltonian description of the open rigid stringDiscussion of Hamiltonian formulation of dynamics of systems with reparametrization invariance, which is a special case of local gauge invari- ance, is complicated by a problem of constraints. In order to avoid this obstacle, we shall discuss the Hamiltonian description of the rigid string in the physical gauge, which is defined by the requirement that the evolution parameter τ is equal to the physical time x°, i.e.

x0(τ, σ) = τ.In this gauge, the independent dynamical variables are x'(t,σ),i = 1,2,3, 
t ≡ x0. Variations (3) are now replaced by

x(t, σ) → x(t, σ) + δx(t, σ), (49)where x = (≈,). The considerations of Section 2 can be repeated with the only difference that the index μ = 0,1,2,3 is now replaced by the index i = 1,2,3. In particular, the equations of motion and the boundary 

In the Nambu-Goto case (a = 0)



Classical Rigid String 505conditions have the form given by formulae (14), (15) with the replacement 
μ → i. Erom the invariance imder the spatial translations,

δx = ć*  = const,we obtain the conserved momentum — it is given by the spatial components of formula (21). As for formula for the conserved energy Po, it is derived in a standard manner from the invariance of the actiont3 x
S = y dt j da£(x, x, x, x, x,, x") ti owith respect to the time translations

t→t + e.The result is

In order to obtain this formula, the equations of motion and the boundary conditions have been used. Also some partial integrations over σ have been performed.Now, let us pass to the discussion of the Hamiltonian formulation in the physical gauge. We shall follow the approach of Ref. [12]. Our goal is to point out the presence of the boundary terms. In the case of Lagrangian £ with second order derivatives there are two independent “configuration- space-type” variables
Λ _  _t _  Atβι — χ i q2 — χ 5 (51)and the corresponding canonical momenta
d£ a / d£\ o / d£\ pιi = ~∂^ + 9τ^∂^+9^^' (52)

d£ (53)The Lagrangian £ is regarded as a function of the variables g1, q'l,q", q2∙> 
q2, q'z∙ The Hamiltonian is defined by the formula

H ≡ - P2& ~ C(q1, q,1, q", q2, q'2, q2) , (54)



506 H. Arodź, A. Sitarz, P. Węgrzynwhere q2 is the unique function of p2 and of the other variables obtained by solving for q2 formula (53). The function q2 is unique because we have fixed the gauge. The equations of motion (14) are equivalent to the following set of Hamilton equations of motion:
(55)

(56)and

Applying integration by parts and formulae (57) for variational derivatives with H replaced by F, we obtain

Thus, in the case of the open rigid string H differs from Po∙ Let us consider the time-evolution of a functional

are variational derivatives of the functional H. Comparing H with the energy Po we see that

where H = H(q1,q,1,q",q2,q,2,pl,p2) is Hamilton functional,



Classical Rigid String 507Using Hamilton equations of motion (55) we may write that
dF
—— = {F, H} + “the boundary terms”, (59)
dtwhere Poisson bracket {F, H} is, by definition, [12]

6H~δF^ _ δJL6-L∖
δpx δqι δpι δql δp2 Sq2 δp2 Sq2) '

{F,H}≡ j dσ(

The boundary terms (the last three terms on the r.h.s. of formula (58)) vanish in the case of closed string. In the case of open string they give a non-vanishing contribution even in the case of Nambu-Goto string.Equation (59) has a rather unusual implication that the Hamilton H might not be a constant at the motion. Erom Eq. (59) it follows that
= “the boundary terms”. (60)

dtIn the case of Nambu-Goto string the boundary terms in Eq. (60) reduce to
∂H∖* = _$£|'
∂z'lσ=0 δx'L=O ’because of boundary condition (15a), which in this case reduces to ∣∙^ = 0 for σ = 0, π. In the case of Łagrangian £ with second order derivatives, boundary conditions (15a) allow us to transform formula (60) to the form

The r.h.s. of Eq. (61) does not vanish, in generał. Therefore, ≠ 0. Erom formula (61) it follows that
ois constant during the motion, but this is just the energy Po given by formula (50).In generał, the boundary terms will also be present in other gauges, because their appearance is due to the facts that the Łagrangian contains second order derivatives and that the rangę of the parameter σ is finite. 

because of boundary condition (15a), which in this case reduces to = 0 for σ = 0, τr. In the case of Łagrangian £ with second order derivatives, boundary conditions (15a) allow us to transform formula (60) to the form



508 H. Arodź, A. Sitarz, P. Węgrzyn∏owever, in eome particular cases the boundary terms can vanieh. For example, in papers [9] a gauge iβ used which is physical, i.e. s0(τ, σ) = r, and orthogonal, i.e. xx, = 0 (but condition (34b) is not eatiefied). In this gauge Lagrangian (25) can be written in the form which does not contain a*.  Thus,
∂C n 
-t- = 0, 
∂z,and the r.h.s. of formula (61) vanishes.

5. Ending remarksOn the preceding pages we have pointed out several consequences of the fact that the Lagrangian of the rigid string contains the second order derivative8 of the function xμ(τ, σ). Especially interesting is the case of open rigid string, where the boundary terms appear. In this paper we have been interested mainly in Lagrangian and Hamiltonian formalism for the rigid string. An investigation of dynamical properties of the rigid string we shall present in paper [15].Particularly interesting problem from dynamice of the rigid string is to investigate tachyonic trajectories of the string. It is easy to see that such trajectories are possible. From formulae (50) and (21b) (with μ = 1,2,3) one can compute the conserved energy and momentumin the case of Lagrangian (25) in the physical gauge. We shall not quote here these formulae because they are quite complicated. However, in particular case of the following initial data (specified at t = 0) for a motion of the closed rigid string2(0,σ) = ∕(σ), ⅛(0,σ) = ⅛(0,σ) = 0, £(0,σ) = h(σ),the conserved energy and momentum are given by relatively simple formulae:

It foliowe from these formulae that for sufficiently large |A| we can have arbitrarily large |/| while the energy Po has the fixed value. Thus, we can have negative values of 
PμPμ ≡ P0j - P,



Clattical Rigid String 509what corresponds to tachyons. For the Nambu-Goto string (a = 0) this is not possible. One can see this from formulae (21a) and (48,)∙ The conserved four-momentum 
cannot be a space-like four-vector because it is a sum of time-like vectors 
iμ with positive zeroth component, x0 > 0.H.A. wishes to thank the Niels Bohr Institute, where a part of this work was carried out, for its hospitality.
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