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(Received July 7, 1990; revised version received Ociober 2Ą, 1990)Classical Yang-Mills mechanics is slιortly reviewed. Tlie family of basie periodic orbits corresponding to different values of energy was found. Several unstable bifurcations existing in this family are presented in detail and compared with their counterparts from tlie ZOO of stable bifurcations. A brief discussion of the separatrix splitting is also included.PACS numbers: 03.50.Kk

IntroductionTlie Yang-Mills (Y-M) mechanics is the dynamical system arising as the Y-M potentials in the wliole Y-M gauge theory are assumed to be time dependent only. Of course the resulting equations of motion strongly depend on a cliosen gauge group and a fixed gauge. We have limited ourselves to the SU(2) gauge group and the simplest gauge choice. Thus we have obtained the one-parameter system of Hamiltonian equations in four dimensional phase-space. This dynamical system was extensively studied for the special value of the above mentioned parameter. The theory arising then is claimed to be chaotic [1]. Any other possible choice of the parameter gives rise to a completely di∏erent system, exhibiting weak chaotic behaviour only [2] It turns out however that this system is also ińteresting from the other point of view. Namely: a family of unstable bifurcations can be observed very clearly using rather simple numerical procedures. Ali (stable) bifurcations in four dimensional Hamiltonian systems aro described in detail [3]. However from the physical point of view unstable bifurcations are morę interesting 
(257)



258 J. Karkowskias they are elosely related to the syminetry properties of the system under stUdy. This i⅛ our motivntiθri tb preśeht tliem and compare with tlieir stable ćbliłitbrparts.Tlhe pap⅛r is organized as fołlowś: Sect. 1 presents the Y-M dynatiii- cal system and (shortly) ⅛he numeric⅛l algoritlimsused in our analysis. In Sect; 2tħ⅛ f¾iiιily of basie, jJferłodic orbłts (dependent on energy E) is ślud- ied in detail. The route Of the PCM (principal characteristic multiplier) on tħ⅛ fcbπiplejt plaħe is partictilarly interesting. Sect. 3 presents grapliically tli⅞ (UħSlabi⅛) bifιircatiδhs bxUtiilξ ih the above ιt½ntioned family of tra- jectorięś. We alsb compare iħ⅛itt ⅛vitħ tlie appropriate members of ZOO óf Stable biłurcations. The last Śection ihvolves the (short) description bf the so-fcalłed s¾>aratrix Splittih⅛ Włiich e⅛h be observed in our model.
1. Yang-MHłs mechaιiics

W⅛ ir'e⅛ard Y-M mecliani⅛l as iħ⅞ 'dynamical system corresponding to the SU(2) gauge tiieory with tħe ⅛iιflpNn Jpossible gauge choice [1|. This system is gbvfe⅛red by the fbUóWńg s⅛t bf Łagrangian type diIΓerentiaΓeqιιa- tióhk: 5 = —to(⅛w - uz), ≡ ⅛ ⅛(⅛te — ⅛⅛), δ = zasili — uz), 
fu — -t{∙sw — ⅛z)∖ (1.1)sńbject to the kińematical cbhstraint:Az — śz + uw — uw — 0. (1.2)(Λ dot over,a Iet⅜⅛ denotes tħ⅛ difΓerentiatibn with respect to tinie.) It can easily be chec⅛e⅛ tfiat

i1 ≡ ,(s ⅛ w)(% - ż) - (a + w)(u - z),X3 = (<ś - ⅛>)(⅛ + z) - (ś - w)(u + z), (1.3)are constants of motion of the Ecjs (1.1) and the constraint (1.2) requkes the equality L\ — Ł?. Taking this into account we can reduce Eqs (1.1) and (1.2) to the two dlmenslonai Hanultóhian system with
(1-4)
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and L ≡ Zl = Z2. φ⅛μ systęip wi⅛ £ = P *∣U⅜4 ⅛∏4is daimed to be ⅛⅛o∣ip [⅜]. ∣∣⅞ apąljtątiye hęhąyfoyr for £ P WP⅛⅛ty 4epends on tlię 4®flftłt? vajuę gf £ pnd W® liffljt PW∣4ff fo ⅛8 ≈≡HR1⅛ chgicę Z3 = g.5. ⅞hg Jiaμyltoιφφ (J.4| i§ ⅞fogμ⅛F ft»f |«l = ty∣ ≡4 tlips the (z1 y)-plane ⅛ 4m<le4 ⅛tp four ⅛cgjy∣pct⅛ w⅛ ⅛ι⅜Fare limite4 to tlie rggipn z >. |y| ⅛⅛f bgrąusg gf ∣⅛ synupg$fjg§ z ⅛⅛ y and x → -z, y → -y ąny pt⅛er ⅛p⅛g will ⅛i⅛4 t⅜β m⅛¼ T⅛≡ inotion of the system hąs a∣∣ o⅞gillftt∣Ag SłłflfftFtftF Wfe lff ≡ ft⅜4 V 4ir*a<4i9RS apąrt frorp the oyly §plutipn for wlydi y(t) ≡ 0 [?]. W® ≡fli⅛ lt frpflł further ponsidejrątigns ąs pyr giną is fg s^upy perjp4ic sp∣utipps ⅛y4 tlfofr bifurcatipns. This ąllpws <13 Śo F?4g& Om? ⅛≡ 3JF3tyffl h ⅛p ⅛W9 order (non-IIajniltpąiąii) difi⅛rentjal ęgyątjpns with Olg phft3P pf yr⅛gftigy psęillątipąs as thę pęw Udppendeąt yąrjąbfo. Jt j; ⅛∣ypr^ ∣g gg½ thąt this redpction hąs ą gfohM ęhąrąctpr ⅛p4 13 VftU4 0» tl⅛ W⅛0⅛ phasp spącę. Tp be morę pręcisę: w ⅜fM>β t⅛e PP∣⅛R^≡8⅛ typ? yąfiąhlęs:
VV = (M)It can easily be prpved that <f> > β wh⅛t justifięą pyr plioipe of thp in4epeydent variable. The variable / is pąlpylątyil ffoW A? eyęrgy felWl4⅜ ąę ą fyyętipnjof z, p,} φ, tłie enęrgy JS ąiyj fhę pąpąinefęr Z: Fipąlly We obtain the following set of differential equatioμs [2j:dz _________ py_________

dφ ~ m(jp, jr, p; g,'ty ’

⅛ _ JOgiAiLfiM. fl 7⅜

Where p = p?, p ≡ f/z ąnd tlιe (rather εpιnpljca⅛ed) formulas for the fynctioys l ąnd m are giyen below:
l(y», *»?>#?£)  = -£?* + ?

where
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with: τn(φ, x, p; E, L) = 1 + pυ2 sin φ cos φ + b
3 + z (1 - z)3

(1-8)
b = 2L2υβ sin2 φ,' ∣α+ ∣(2-d1 -d2) , if∆>θ∙,z = ia +1 (1 + c√(1 - a)2 - 36) > if δ <0; 
a = (2jE — p2) v4 sin2 <p, 

di — ∙^∕(1 - a)3 + ∣(5 + a) + 9χ∕∆, 
d2 = √(1 - a)3 + f (5 + a) - 9√Z,
Δ = lb3 + b2 (∣(5 + a)2 - ∣(1 - a)2) + jfc(l - a)3 , c = min(cos ψ1, cos ψ2, cos ψ3),≠ι = ∣i ≠a = ∣ + ⅞! ≠3 = t-f, —(1 — a)3 — ∣5a2∖((1 - a)2 - 35)2 /ψ = arccos (1.9)

The system (1.7) is very suitable for numerical calculations because it ensures tliat the obtained (numerical) solutions remain strictly on the con- stant energy surface. Our numerical analysis is based on several algoritlims: the fŁfth order Runge-Kutta method with adaptive stepsize control [4], the Bulirsch-Stoer method with the Richardson extrapolation [4] and the Gear,s algorithm for stiff differential equations [5].
2. The family of periodic orbitsWe have found the one parameter family of periodic orbits of the system (1.4). The parameter is the energy E which varies between 0.1 and 100.0. (The other parameter — as was mentioned in the previous Section — is fixed: L2 = 0.5.) The orbits of our family are basie in the sense that they consist of only one oscillation in the y direction. Fig. 1 presents a view of a typical trajectory in the (x, t∕)-plane on the background of the equipotential lines of the potential given in (1.4). For each periodic orbit Γ from the family we regard the Poincare mapping P [3] on the local transversal section 5 of 

Γ defined by the condition y — 0 and restricted to the constant energy surface ∑β. S may be described by the pair of coordinates (®, p ≡ px). 
Γ corresponds of course to the fixed point of P. According to the symplectic eigenvalue theorem the characteristic multipliers of P are A and A-1 (for
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Fig. 1. A typical periodic orbit on the background of equipolential lines (E = 0.5). complex A tlιe equality |A| = 1 must also be fulfilled). In practice we obtain A regarding the system (1.7) linearized in the neighborhood of Γ. The so- -called principal characteristic multiplier (PCM) [3] is defmed as that A for wliich |A| > 1 in the real case or Im A > 0 in the complex case. The PCM moves on the complex piane with varying energy. Its route (see Fig. 2) gives

Fig. 2. The route of the PCM on the complex piane (∙Emjn = 0.1, Eτaιa = 100.0). us an important qualitative information about the system under study. The fixed point of V is called elliptic if the appropriate PCM satisfies: |A| = 1 and hyperbolic if ∣Λ∣ > 1. This terminology becomes obvious when we compare the two phase portraits on the Section 5 corresponding to both just mentioned cases (Fig. 3). Loosely speaking the dynamical system in the neighborhood of elliptic Γ is integrable and chaotic if Γ is hyperbolic.
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Fig. 3. The neighboιhood of the fιxed point of P: (a) elliptic case (E = 1.0), (b) hyperbolic case (E = 1.51).
3. Iteview of bifurcations

It can easily be checked that Hamiltonian (1-4) bas no critical points. Therefore possible bifurcations existing in our dynamical system must be connected with its periodic solutions [3]. In tłiis Section we present sev- eral bifurcations we lιave found in the family of the basie periodic orbits described in Sect. 2. Each bifurcation of a given trajectory corresponds of course to the bifurcation of a appropriate fιxed point of the Poincare map- ping P introduced earlier. Fig. 2 suggests that the PCM acquireβ (for our periodic solutions) all complex values on the unit circle in the upper half piane. The possible (stable) bifurcations in such case are classified and may be the following ones: eięission (absorption), phantom kiss and subtle di- vision (murder) [3]. However our system possesses the symmetry: y → —y mentioned in Sect. 1. This symmetry may be easily broken by many dif- ferent perturbations and therefore the Hamiltonian (1.4) is not structurally 



Reυiew of Bifurcations in Yang-Mills Mechanice 263stable. That is why it seems interes ting to compare bifurcations existing in our model with their stable counterparts. We expect the periodic trajecto- ries of our family to bifurcate when the PCM takes the value exp(t'2rr∕n) with n = 2, 3, .., (n = 1 is excluded because for E → 0 the PCM tends to but never reaches 1.0). Let us begin with n = 5. The emission of two trajectories then occurs (Fig. 4). One of them is elliptic and the other hyperbolic.

Fig. 4. The emission of two orbits: elliptic (solid) and hyperbolic (dąshed); (n = 5, E = 0.04, PCM = exp(0.40104IIi): (a) (®, p) view, (b) (a:, y) view.Their periods ąre flve times greater than the appropriate basie ones (as in the stable case). The cases with n ~ 3,4 are similar. The phantom kiss is not observed, Inetead the emission of two orbits (eliiptie and hyperbolic) takes place as for n ≡ 5. When n s? 3 (Fig. 5) the new periods are thrice as much as the basie periods, The case n = 4 differs in this respeet however, because the periods of the new orbits are only doubled (Fig, 6). The siwi lar situation occurs for n ≡ 2, The transition of the basie trajectory from elliptic to hyperbolic Is accompanied by the emission of the (elliptic) orbit



264 J. Karkowski

Fig. 5. Tlie basie period trajectory (solid) with the emitted one (dashed); (n — 3, E = 1.083, PCM = exp(0.66806IIi): (a) of hyperbolic type, (b) of el- liptic type.
with the same period (Fig. 7). This bifurcation resembles the (stable) subtle division but then the new period is doubled. In generał case n odd the emission takes place identical with that of the stable case. When n is even the situation differs because the periods of the new orbits are twice less as expected for stable bifurcations. The above mentioned symmetry y → 
-y is responsible for this fact (compare [6]). The basie trajectories are invariant under this symmetry and posses two turning rest points. Therefore their projections on the (x, p)-plane wind twice the same route during each period. The similar situation occurs for bifurcations with n odd. For n even however, the new trajectories are either non-invariant under the existing symmetry or do not posses turning rest points. Therefore they follow only once their route on the (z, p)-plane during each period. From the other side the Poincare section S (defined by y = 0) is obviously invariant under 
y → — y and the fixed points of the Poincare mapping P are reached twice a 



Review of Bifurcations in Yang-Mills Mechanice 265period for orbits of the first type and once for the trajectories of the second type. These are the sources of the described complications.

Fig. 6. The einission of new trajectories (n = 4, E = 1.505, PCM — exp(0.50002Πi)≡ (a) elliptic one, (b) hyperbolic one.
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Fig. 7. The (unstable) subtle division. Tlie basie trajectory (solid) and the emitted (dashed) elliptic one (n = 2, E = 1.505, PCM = 1.02417): (a) (i, p) view, (b) (®, y) view.
4. Separatrix splittingIn the foregoing Section we lιave described two types of bifurcations existing in our model: the subtle division (n = 2) and the emission (n = 3, 4, 5). When the emission takes place two new periodic orbits appear: one elliptić and the other hyperbolic. Tliis type of bifurcation is closely connected with the so-called separatrix splitting: an important and hardly understood reality accompanying the transition front integrable to chaotic region [7]. We briefly present how it happens limiting ourselves to n = 3. Let Eo be the value of our maili parameter (i.e. energy) for which the emission (with n = 3) occurs. When E > Eo and the difference E - Eo is smali the three points at which the (emitted) hyperbolic orbit intersects the Poincare Section ć> are very close to the ∩xed point corresponding to the basie periodic trajectory. The sides of the triangle assigned by these three points (together with their extensions) from the figurę (called separatrix) invariant under the Poincare mapping P (Fig. 8). The separatrix divides 

S into disconnected parts which can be grouped into three subareas also invariant under P.This picture is nearly the same as that corresponding to the linearized βquations in the μeighborlιood of the givβn periodic orbit. For E mych greater than Eo lιowever, tłje separatrix spljts bito six very pop⅜plic⅛lβd εnrves crossing each other and fli∣ing the section S. Tlie invariant subregion? of fS seęjn not to eκist any ιμore, Nimwfcal cprμputations give a piety fe like thftt Oft Fig- 9- It is impossibje of course to calculąte strict∣y the value of E which the separatek splitting begins ayd what is the shąpe of the splitted Unes.
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Fig. 8. The numerical picture of the separatrix near the bifurcation energy value (ń = 3, E = 1.1).
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