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We show that the proton impurity in a neutron matter can create an inhomogeneity 
in density which acts as a potential well localizing the proton,s wave function. At Iow densities 
this inhomogeneity is a neutron bulge, whereas at high densities a neutron deficiency (bubble) 
occurs. We calculate variationally the proton,s energy using a Gaussian wave function. The 
neutron background is treated in a Thomas-Fermi approximation. The Skyrme interactions 
are used. We find that the localized proton has lower energy than the piane wave proton for 
densities below the lower critical density n1 ≥ 0.3λo, and above the upper critical density 
nu ≤ 2.2n0, where nQ = 0.17 frrr3. We discuss some implications of the proton localization 
for magnetic properties of neutron matter containing a smali admixture of protons.

PACS numbers: 21.65+f; 97.60.Jd

1. IntroductionThe behaviour of proton impurities in a neutron matter has not been studied in a wide density rangę. This is an interesting nuclear physics problem which has also consequences for neutron star physics. Neutron matter containing a smali admixture of protons is the materiał which forms the inner crust and the core of a neutron star [1], A crucial question is whether the proton component remains a normal Fermi liquid down to very Iow proton concentrations, or whether it shows a morę complex behaviour. As was shown in Ref. [2], magnetic properties of strongly asymmetric nuclear matter depend sensitively on the behaviour of the proton admixture.In this paper we study the behaviour of proton impurities in a neutron matter. It is known that the proton chemical potential in pure neutron matter is negative as a result 
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of attractive proton-neutron interactions. Morę importantly, ħowever, various parametriza- tions show that it decreases fast with increasing neutron matter density, reaching a minimum roughly at the saturation density. At higher densities the proton chemical potential increases and becomes positive at high enough densities (Fig. 4). This suggests that a uniform density neutron matter surrounding a proton might not be the lowest energy state. A single proton in neutron matter can lower its energy by inducing a density inhomogeneity around it. This density excess at densities below n1, and density reduction for densities above nu, make the proton chemical potential lower and also produce an effective potential well, which can influence the proton,s wave function.In order to judge if the nonuniform density configuration is of lower energy one has to account also for the positive contributions to the energy. These arise due to the local change of the neutron matter density, the gradient of the neutron density and the proton momentum.The problem we consider in this paper is closely related to the question of the efiective mass of a proton impurity in the neutron medium. Baym, Bethe and Pethick [3] argued in a qualitative discussion that the proton effective mass in a neutron matter should be considerably higher than the bare mass. This is due to the attractive proton-neutron interactions. For highly asymmetric nuclear matter, containing a proton fraction of the order of a few percent, the proton effective mass was calculated by Sjδberg [4], who found the proton effective mass to be smaller than the bare mass. Sjoberg [4] assumed the system to be a two-component Fermi liquid. If the arguments of Refs. [3] and [4] are correct, there should exist a critical proton fraction, above which the proton eflective mass abruptly decreases to the values found by Sjδberg.Cajculations which we present in this paper show that the single proton wave functions in neutron matter containing a smali proton fraction are of finite extension rather than being piane waves, at least at densities below n1 and above nu. This means that a single proton is localized. In terms of the Landau Fermi-liquid theory, localization of quasi- particles corresponds to a divergent effective mass [5]. Thus the calculations presented here support the conjecture of Ref. [3].The paper is organized as follows: In the next Seetion we present basie formulae describing the energy of the proton impurity in neutron matter for localized and nonlocal- ized impurities. In Sect. 3 we describe the Hamiltonian used to calculate the properties of neutron matter and the proton chemical potential. The Thomas-Fermi energy density for neutrons is also considered in this Seetion. In Sect. 4 the energy of the localized proton is calculated variationally. The results of our calculations are discussed in Sect. 5. In the last Seetion we briefly show implications of the proton localization for magnetic properties of neutron matter containing a smali proton fraction.
2. Proton impurities in neutron matterLet us consider a neutron matter containing a smali proton fraction x. Our aim is to compare energies of two phases: a normal phase (of uniform density) and a phase with localized protons. We will proceed in the spirit of the Wigner-Seitz approximation and 
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divide the system into cells, each of them enclosing a single proton. For simplicity the cells are assumed to be spherical. The volume of the celi is V = l∣ne, where the proton density 
np ≡ x⅜∣ for smali x.The normal phase is of uniform neutron density mn and the neutron chemical potential is gN. In the uniform density configuration protons are not localized and their wave funct- ions are piane waves. The energy of the celi, which is a sum of proton and neutron energies, reads

Eo = Vε(nf,, np), (1)where ε(nfi, ne) is the energy density of the uniform phase. For smali proton density, i.e. for Iow x, we can expand the energy density
b(∕in, np) ≡ e(nN, O)+μv(nfi, 0)np. (2)In the following we shall adopt abbreviations e(mn) = e(nN, 0) for the energy den⅛ity of pure neutron matter and ∕⅛(hn) = μp(⅝, θ) for the proton chemical potential in pure neutron matter. The energy of the celi is thus aρproximatelyEo = μp(nN)+Vε(nN). (3)Our aim is to compare the energy of the normal phase, where protons are nonlocalized, with the energy of a phase where protons are trapped into potential wells, corresponding to the nonuniform neutron density distribution, which most likely form a regular arrange- ment. We treat this proton “crystal” in the Wigner-Seitz approximation.Let us consider a Wigner-Seitz celi with nonuniform neutron matter distribution n(r) surrounding the proton whose wave function is Ψp. In the local density approximation one can identify the proton effective potential with the local proton chemical potential 

μp, as will be shown in the next Section. The proton,s effective potential varies locally with neutron matter density n(r). This results in a potential well μe(n(r)) which affects the single proton wave function. The energy of the Wigner-Seitz celi E1, is:
(4)

The first term is the energy of the proton confined to an effective potential well υeff(r) = ∕⅛(n(r)). This is an attractive potential well. When the derivative of the proton chemical potential with respect to the neutron density is negative, n(r) is assumed to have a maxi- mum at the center r = 0. At high densities the derivative of the proton chemical potential becomes positive and in this case «(r) is assumed to have a minimum at the center. This is shown schematically in Figs. la and lb. Ψp(r) is the localized proton wave function. In Figs. 2 and 3 we show schematically the proton,s probability distribution Ψp(r)7'p(r), and the effective potential ueff(r) = μp(n(r)).The two other terms in the Eq. (4) describe the contributions to the energy due to the local change of the neutron Fermi momentum and the gradient of the neutron distribution, respectively, in the Thomas-Fermi approximation. Here ε(π(r)) is the local neutron matter energy per unit volume.- The parameter BN is the curvature coefficient for pure neutron
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Fig. 1. The neutron density distribution in the Wigner-Seitz celi which lowers the proton,s chemical potential 
for n < nl (a) and for n > n⅛(b)

Fig. 2. The proton,s probability distribution in the localized stałe
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Fig. 3. The effective potential well corresponding to neutron density distributions of Fig. la and lb. The 
localized proton is trapped into this potential well

matter. In Sect. 3 we describe the choice of 5N. The celi volume V in Eq. (4) is the same as in Eq. (3).Let us remark that Eq. (4) has a typical form of the energy of non-topological solitons [6] for fermions interacting with background fields which form a bag-like configuration. In our case the neutron density n(r) plays, in the Thomas-Fermi approximation, a role of the background field. The proton is confined to the “bag” madę by the neutron density distribution.To evaluate the energy El, Eq. (4), one can derive the Euler-Lagrange equations and solve them selfconsistently for Ψe(r) and n(r) with appropriate boundary conditions. If El ≤ Eo, the localized proton wave function is the ground state of the system. In this paper we shall not attempt to find the minimum energy configurations by solving the fuli Euler-Lagrange equations. Instead we will use a variational ansatz for the proton wave function Ψp(f) and for the neutron density distribution n(r) containing variational parame- ters which will be optimized to give the minimum energy.In order to decide which is the ground state configuration we should compare the energies Eo, Eq. (3), and El, Eq. (4), assuming the same number of neutrons:
∫ d3rn(r) = l-7n.v. (5)
VThis means that the neutron density variation 3n(r) = n(r)-nfi conserves the baryon number:
∫ d3rδn(f) = 0. (6)
VBefore evaluating the energy difference between the two configurations, ΔE = El^-Ea, we shall briefly describe the Hamiltonian we use.
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3. The HamiltonianWe choose to work with the Skyrme forces [13] to calculate the properties of the neutron matter and the proton chemical potential. The Skyrme forces were often used in studies of neutrpn star matter [7-10]. The Skyrme potential we use reads
v(r) = t0(l + x0Pσ)<5(r)+⅜ t1(k'2δ(r) + δ(r)k2) + t2k' ∙ δ(r)k+⅜ t3(l + x3Pσ)nyδ(r), (7)where k = ∕'∕2(V∣ — V2) acts on the right of the delta-function and k' is the same operator acting on the left of <5(r). Pσ is the spin exchange operator.The Hartree-Fock Hamiltonian correspónding to the contact Skyrme potential (7) is of the formH = τ⅛ (3t1 —12) (VnN+V/iP)2—3⅛ (3t1+ r2) (Vn⅛+Vnp) +Wj, (8)where Ht reads

H1 = (√- +Bn)tn+ + Bp) τp + n2[h + dnγ-(0.5 —x)2(α3 + α4nγ)], (9)\2mN ∕ ∖2mp /with b = 3t0∕8, d = t3∕16, a3 = to(0.5+xo) and α4 = Z3(0.5 + x3)∕6. Here τt and Bt areτt = ∑ ∣V≠∣0∣2, t = N, P, (10)
i

βt = i[(tι + t2)n+int(t2~t1)], t=N,P. (11)The proton fraction is x and the total density is n = πn + πp, where nt = ∑ ∣<∕>∙t*∣ 2.
iThe Hartree-Fock Hamiltonian depends only on local densities of neutrons a∏d protons, their gradients and on local kinetic energy densities for protons and neutrons. The latter quantities for piane waves becomeτt = ⅜ (3π2)2z3nl5z3, t = N, P. (12)In our calculations we use two sets of the Skyrme force parameterś. The first set, (I), is t0 = -1057.3 MeV fm3, t1 = 235.9 MeV fm5, t2 = - 100.0 MeV fm5, t3 = 14463 MeV fm6, x0 = 0.2885, x3 = 0.2257 and y = 1.0. These are the Vautherin and Brink [11] parameterś modified as described in Ravenhall, Bennet and Pethick [12]. The second set (II) dueto Lattimer [10]reads: t0 = -2499.85 MeVfm3, t1 = t2 = 0.0, t3 = 16410MeVfm3 + 3∖ 

x0 = .0.2, x3 = 0.1924 and γ = 0.209.3.1. Proton chemical potential in uniform neutron matterThe energy of the nonlocalized proton with the momentum k in a uniform density neutron matter is
k1 V^''__ ____Ep(⅛) = ——. +. > <fc, ∕ ∖υ∖k, l >,

2łłip
∣7∣≤⅛f

(13)
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where kF is the neutron Fermi momentum. The proton chemical potential in this case is the energy (13) corresponding to zero momentumμp = Ep(fc = 0). (14)The proton energy Ep(k), Eq. (13), for the potential (7) using Eq. (14) becomes
ι '

Ep(k) = —— + 4(rt + t2)«N^2+M«N)- (15)
2mpWe calculate the proton chemical potential using the Hamiltonian (9) sińce μp can be expressed as

μp =
SHl—— (nN, nP = 0).
onP

(16)
This gives the proton chemical potential in the form

Pp = |TN(ti + «2) + 2nN[6 + dn^-i(a3 + a4«^)]+ njv[dyι⅛+α3 + α4(l -i y)n⅛]. (17)We show in Fig. 4 the proton chemical potential μp as a function of the neutron Fermi momentum kF, for both sets of the Skyrme parameters. One can notice that μp decreases with increasing neutron Fermi momentum reaching a minimum at neutron densities close to the saturation density 0.17 fπr3.

Fig. 4. The proton,s chemical potential in pure neutron matter as a function of the neutron Fermi mo
mentum kp. The curves 1 and 2 correspond to the first (I) and second (II) set of the Skyrme force parameters, 

respectively



8303.2. The proton effective potential in a local density approximationLet us consider the energy of a single proton in a neutron matter of slightly nonuni- form density n(r). The proton will eχperience an effective potential associated with the neutron matter inhomogeneity and its wave function Ψp will no longer be a piane wave. The proton energy in a local density apρroximation becomes
Ep = -<fc>2+ ) <Ψp,1∖v∖Ψp,1>, (18)2mP / j

∣T∣≤⅛F(r)where <k> is the mean momentum of the proton, kF(r) is the local neutron Fermi momentom corresponding to the neutron density n(r). Using Eq. (15) this formula gives+⅜ (t1 + t2)n(r)] ∣VtPp∣2 + ⅛(nω)^*^p] • (19)
Expressing the proton energy in the form

Ep = <fc>2+ fd3r^‰t(r)Ψp(r) (20)
we can identify the proton chemical potential μp(n(r)) with the effective potential feff(r). The other terms in Eq. (19), the proton kinetic energy and the term representing the momentum dependence of the effective interaction, can be combined into a kinetic energy of the proton whose effective mass depends on local density:

-—= ------F⅛(t1 + t2)π∙ (21)
2∕7ij∣t 2/iipThe second term here is proportional to the neutron matter density n(r), therefore it is unimportant at Iow densities. At the saturation density this term for the first set of the Skyrme force parameters is a less than 30 % correction to the kinetic energy. For the second set of the Skyrme parameters this term vanishes.As we have explained, the density dependence of the proton effective mass is rather weak for densities below the saturation density and will be ignored in the following. At higher densities, n > n0, the formula (21) will be used.3.3. Thomas-Fermi energy of neutron matterWe will treat the neutron background in the Eq. (4) in the Thomas-Fermi aρproxima- tion. This means that for the kinetic energy densities τt the formula (12) is used and an appropriate gradient term is introduced.In the spirit of the nuclear Thomas-Fermi model [14-17] the energy of the neutrons in the celi can be written as

En = ∫ d3re(n(r)) + BN ∫ d3r(Vn(r))2.κ v
(22)
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Here ε is the energy per unit volume in the local density apρroximation and we use the Hamiltonian H1 (9) to obtain it.The coefficient BN of thegradient term in Eq. (4) is obtained as follows: In the nuclear Thomas-Fermi model the gradient term contribution to the energy density is
Bs[V(hn + ∏p)]2, (23)with Bs obtained by fitting the properties of the nuclei. Conventionally Bs is written as

Bs = ~η (24)8mand η = 12 fm3 gives the best agreement with the binding energies [15], The surface thickness is however better reproduced for smaller values of η with η = 8 fm3 giving the best values [15].The coefficient Bs (24) is appropriate for symmetric nuclear systems with equal number of protons and neutrons. For isospin asymmetric systems a term of the form-⅛¾-< (25)
should appear [3, 18, 19] in the energy density with & = η∣3. Combining Eqs. (24) and (25) we find

(26) 8mIn our numerical calculations we use Bti = 31.6 MeV fm5 corresponding to η ≥ 9fm3. Also SN = Bs for η = 12 fm3 (Bs = 62.2 MeV fm5) is used in order to show how the results depend on a particular choice of BN. One can regard Bs(η = 12 fm3) as an upper limit of Bn.

4. Variational estimate of the energy of the localized protonWe assume a simple trial form of the proton wave function and the neutron density variation. For the proton wave function we use a Gaussian:
'Pf(r) = (⅜ πΛp)^3z4 exp (- ^r2 ) . (27)

Here RP is the rms radius of the localized proton probability distribution. We treat this quantity as a variational parameter and minimize ΔE with respect to jRp.The neutron density variation δn(r) is chosen to be:
δn(f) = a(ψ*(r)Ψ 1ff)- ~ (28)
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and the neutron density is n(r) ≈ nti+δn(r). (29)Here α is the secθnd variational parameter; a > 0 corresponds to the neutron density enhancement around the proton and a < 0 corresponds to the reduction of the neutron density in the proton vicinity as compared with the uniform background.Using the trial fprms of the proton wave function and the neutron density variation the energy difference ΔE becomes 

(30)
The first term is the proton kinetic energy. The second term, which is attractive, originates from the interaction of the proton with the neutron background. The third term accounts for the local change of the neutron Fermi momentum. The last term is due to the gradient term in the Eq; (4). The gradient term plays a stabilizing role for smali values of RP.We calculate the energy difference ΔE for smali proton fraction x, i.e. in the limit of large volume V. The first and the last terms were calculated assuming that the Wigner- -Seitzceliradius Rc is muchbiggerthan Rp, Rc > Rp. Denoting ΨpΨp = p(r)and expanding in 1/K we have

(31)
The integralin the second term doCs not depend on the celi vohιme sp that this term vanishes in the limit K→oo. Exρa∏ding in the.same way the energy density, we obtain from the third term in Eq. (30)

(32)

Here also the integral in the last term does not depend on the celi volume, sińce p(r) is a Gaussian, and this term vanishes for large V.
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The above procedurę allowed us to separate contributions to ΔE which depend only on the neutron matter propertjes and the first order corrections in proton density nP. These corrections play a crucial role in determining the critical proton fraction*x c, above which a delocalization transition occurs.The energy difference ΔE is shown schematically as a function of the proton localiza- tion radius 7?P in Fig. 5. One can notice that there eχists a rangę of values of Rp for which 
ΔE is negative. We denote by AP the value of Rf corresponding to onset of instability, i.e. the highest value of Re for which ΔE ≤ 0. Rp corresponds to the minimum of ΔE as a function of Rv and the value of ΔE at the minimum is ΔEm.In Fig. 6 we show the minimum energy difference ΔEm as a function of the neutron

Fig. 5. The energy difference ΔE, Eq. (30), shown schematically as a function of the proton localization 
radius Rp for a fixed value of z. The minimum zł Em occurs at Λp. Rp corresponds to the onset of instability 

ΔE = 0

Fig. 6. The minimum energy difference złEm, as defined in Fig. 5, as a function of the neutron Fermi mo
mentom kp. The curves 1 and 2 correspond to the first (1) and second (II) set of the Skyrme force parameters, 

fespectively. Results for two values of the gradient term coefficient 2⅛r are displayed



834Fermi momeritum for both sets of the Skyrme force parameters and for two values of the gradient term coefficie∏t Bn. Only negatfve values are indicated. There are two distinct density regions where ΔEm < 0. For the first set of the Skyrme parameters and for the lower value of Bti these are densities below the lower critical density nl ≡ 0.3no and above the upper critical density n„ ≤ 2.2n0∙ Negative values of ΔE indicate that the localized proton has lower energy than the proton whose wave function is a piane wave. The low- -density localization corresponds to a local density enhancement around the proton (a = 2.0), Fig. la. For densities above na, the proton is localized in a region of lower density as compared with the uniform background, i.e. there is a low-density bubble around the proton, Fig. Ib.In Fig. 7 the radius R⅛, below which the instability occurs, is displayed as a function of the neutron Fermi momentum for a = 2.0 for densities n < nl, and for a = —1.0

Fig. 7. The maximum localization radius R?, as defined in Fig. 5, as a function of the neutron Fermi mo
mentum kF for the same sets of the Skyrme force parameters as in Figs. 4 and 6. The curves correspond 

to BN = 31.6 MeV fm,

Fig. 8. The minimum energy difference ∆Em as a function of the parameter a for density = 0.0185 fm 3
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Fig. 9. The maximum localization radius Ap and the radius AJ? corresponding to as functions of the 
parameter a for density nu = 0.Ó185 fm3

Fig. 10. The relative density excess at the center of the celi, ∂m(0)∕λn, for A| and Ag1 as functions of the 
parameter a. The curves are for = 0.0185 fm-3

for densities n > na. The radius increases with increasing density, reaches a maximum and then decreases. These results correspond to BN = 31.6 MeV fm5. The values of B“ practically do not depend on density. For BN = 31.6 MeV fm5 Bp ≤ 1.7 fm and for 
Bκ = bs, B ” ≤ 1.8 fm in the whole density rangę n < n1 (a = 2.0).In Fig. 8 the energy difference d£m is shown as a function of a for fixed density nN = 0.0185 fm 3 and for BN = 31.6 MeV fm5. The minimum occurs at α≡ 2.5 and 4£m is negative for a in the rangę 0.70 < a < 10.0. In Fig. 9 we display the radius Z?” as a function of a for this particular density. The radius increases with increasing values of a reaching 3.6 fm at the highest value of a. Also the radius Bp is shown in this figurę displaying a similar behaviour, i.e. increasing with a up to 8.5 fm at a = 7.0. Corresponding values of the relative density excess at the center of the Wigner-Seitz celi, <5h(0)∕hn, for 
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Rp = Λp and Rp = Rp are shown as functions of a in the Fig. 10. In the former case the density excess first increases for a < 2.0 and then decreases with increasing a. In the latter case the density excess is rather constant and smali after sharp decrease for a < 2.0.
5. Discussion of the resultsWe have shown above that proton impurities in uniform density neutron matter can become localized at certain densities by suitable deformations of the neutrcn backgrourd. The chemical potential of the localized proton

jUp(πn) = ⅛(wN) + ^JEm('⅛) (33)is lower than for the nonlocalized case for n < n1 and n > nu. At Iow proton concentra- tions x we can write the chemical potential of nonlocalized protons as
⅛(λn, np) ≥ jup(wn) + (MX⅜.

UTlp
(34)The last term varies as x2,i for smali x. The chemical potential for localized protons docs not depend on x for x <⅛ xQ andZ⅛(7⅛> /!p) = ⅛('7n), (35)where μP(nN) is given by Eq. (33). This means that for Iow x the configuration with localized protons is preferred energetically to the one with nonlocalized protons. At Iow densities, however, the state with the protons confined to the nuclei >immersed in a neutron gas has still lower proton chemical potential and forms the ground state of the system [3]. Thus the state with localized single protons is a metastable one for n < n1. Calculations show[3] that the nuclei disappear at a density slightly lower than the saturation density and at higher densities the uniform state with delocalized protons has lower energy. Our results show that, for Iow x, the state with localized single protons has lower energy than a uniform configuration for n > nu. This means that in the ground state of the system for n > na the single protons are localized.We have assumed that the neutron background can be treated in the Thomas-Fermi approximation and the interaction of a single proton with the background is properiy aęcounted for by a local value of the proton chemical potential. The energy difference ΔE, Eq. (30), was calculated assuming that the proton effective mass depends only on the mean neutron density nN, .Eq. (21). With this assumption we have neglectcd in the energy density a term proportional to a(t1 + t2)ΨpΨp(VΨp)2 which giyes rise to a contribution to ΔE proportional to ocRp 5. Such a term is a smali correction to the gradient term. To account for the corresponding uncertainty we show results for two values of the gradient term parameter _BN.In the Thomas-Fermi Hamiltonian, Eq. (22), only the lowest-order gradient term is present. This Hamiltonian is thus valid only for sufficiently slowly varying .density distributions. Higher order terms will be of importance for smali values of 7?P whichis- the size of the neutron distribution inhomogeneity. One can notice that for higher values of 
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the parameter tz we obtain slowly varying neutron distributions and the Iowest order gradient term is expected to be sufficient in this case.In view of this fact one should take the values of ΔEm with some caution, especially those corresponding to smali values of Rf. Higher. order terms are expected to increase the energy E,l at Iow values of Rv. On the other hand they are less important at higher values of RP and, in particular, we expect the values of RP, corresponding to the onset of instability, to be rather insensitive to these corrections.The calculations presented here are of variational naturę so that the obtained energy is an upper limit to the true energy. Exact solution will lower the energy.Another uncertainty of our conclusions is related to the Skyrme parametrization of nucleon interactions. The parameters of the Hamiltonian (8) are chosen to fit the prop- erties of nuclei [11] and some calculations of neutron matter energy [20], They are thus supposed to account properly for nuclear interactions at densities below the saturation density n0 = 0.17 fm 3. Extraρolation to higher densities is subject to uncertainty. We use thus two sets of the Skyrme parameters which give a different high density behaviouf.The naturę of the phase with localized protons should be studied morę carefully. In the Wigner-Seitz apρroximation we are not able to distinguish a solid phase and a morę disordered configuration in which “dressed protons” would behave very much like a gas of nuclei in a neutron background. At very Iow proton concentrations one would expect the latter possibility to occur.
6. Implications for magnetic properties of neutron matter with a smali proton fractionThe localized proton phase would have profound consequences for the magnetic properties of the neutron matter containing a smali proton admixture. Localized protons in the presence of unpolarized neutron background (i.e. neglecting spin interactions) would have their magnetic moments unchanged and the system could beccme polarized by a residual magnetic field in the same way as the usual ferrcmagnets. When we account for the nuclear spin interactions which are quite strong it turns out that the neutron background is polarized and the localized proton creates a magnetic domain.Let us assume for simplicity the effective proton-neutron spin-spin interaction to be a contact potential [21] Kr = gp"σi ∙ σ2δ(r1 -r2)- (36)The main contributions to the strength gpn come from the one-pion exchange, the ρ-exchange and the second-order tensor interaction [22], The above three contributions, calculated in Ref. [22], give the value gp" ≈ — 2.0fm2.To see that the system is unstable with respect to smali spin fluctuations we calculate the energy variation δε aśsoćiated with a smali polarization &N(r) = πt(r)-n,(r) of the neutron background in the celi along the direction of the proton spin:& = -J-(1 +GSn) +

2Nn ■
(37)
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The first term is the change of the neutron energy density [2] expressed in terms of the Landau Fermi-liquid theory; GqN is the spin-dependent Landau parameter for neutron matter; Gqn = 1.0 [23], and WN is the neutron density of states at the Fermi level. The second term is the interaction energy due to the spin potential Eq. (36).Minimizing the energy variation δε (37) with respect to <5⅛(r) we findspnΛr<⅛W = - ~ Ψp(f)Ψp(r) (38)
1 ÷ θoand the corresponding <5fraiπ⅛iπ(0 = - √⅛(∏W)W∙ (39)

2(1 + (j0 )Integrating <5εmin(r) over the whole Wigner-Seitz celi we find the energy of the celi with the polarized neutrons to be lower than the energy with unpolarized background neutrons provided there exists any proton-neutron spin interaction.The magnetic moment of the celi, which we will cali the effective magnetic moment of the proton, is
heff = ⅛+hN ∫ d3rδsf<(r). (40)Here μp and ;zN are the proton and neutron magnetic moments, respectively, and <5⅛(r) is given by Eq. (38). The system thus behaves, in the Wigner-Seitz approximation, as a collec- tion of magnetic domains, each of them possessing a magnetic moment μcft. Such a system displays a ferromagnetic instability as discussed above.Magnetic phase of the strongly asymmetric nuclear matter is of importance for neutron star physics as it can produce a permanent magnetic field. Most of the neutron stars possess strong magnetic fields of the order 108 to 1012 G. This subject will be considered in detail elsewhere.We are grateful to P. Haensel and W. Broniowskifor interesting discussions on subjects considered here.
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