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Classical Yang-Mills mechanics is studied numerically in detail. Several typical trajec- 
tories corresponding to different values of energy were found. The Lyapunov characteristic 
functions together with the generał qualitative analysis suggest that the system for sufficiently 
big energy exhibits weak chaotic behaviour.
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IntroductionWeak and strong interactions are described — as is widely believed — by the Yang- -Mills (Y-M) theory. This theory is based on partial differential equations of strongly nonlinear type. The methods in use for such mathematical problems are rather poor up to now. Therefore only partial solutions of the whole Y-M theory are known. From the other side the mathematical difficulties encountered in the so-called Y-M mechanics — the dynamical system closely related to the Y-M theory — are not so great. That is why it seems worth examining.The equations of the Y-M mechanics arise as the Y-M potentials in the whole Y-M theory are assumed to be time dependent only. The actual form of these equations depends of course on a fixed gauge. In our considerations we limit ourselves to the “classical” version of the Y-M mechanics corresponding to the simplest possible gauge choice. This dynamical system may be viewed as a one-parameter conservative Hamiltonian system in four dimensional phase space [1, 2]. However the authors of the papers [1, 2] consider Y-M mechanics for a very special value of the parameter only. The theory arising then is claimed to be chaotic. From the other side the existence of the non-chaotic region is proved for a slightly different version of the Y-M mechanics [3]. Therefore in the present paper we continue this subject by accomplishing — in our opinion — a morę reρresentative choice of the above mentioned parameter. In Sect. 1, after some technical manipulations 
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we get fina∏y the base of our study: the system of two first order, time dependent differential equations. Although this system is non-Hamiltonian it is very well suited for numerical calculations. Sect. 2 involves two definitions of chaos adopted for our purposes. Sect. 3 — the main part of our paper — presents several numerical orbits of the system under study. They correspond to different values of the initial conditions and energy. Along each trajec- tory the linearized equations are analyzed and the appropriate Lyapunov functions are obtained. Ali results are presented graphically to give a better qualititative insight into considered problems. In Sect. 4 we resume our paper. Some generał conclusions and com- ments are provided to stress that the Y-M mechanics is a chaotic system in a weak sense only.
1. Yang-Mills MechanicsWe regard Y-M mechanics as the dynamical system corresponding to SU(2) gauge theory in the way described in [1]. This system is govemed by the following set of the Lagrangian type differential equations:s:= — w(sw —uz), ż = u(sw-uz), u = z(sw-uz), w = -s(sw-uz), (1.1) subject to the kinematical constraint:

sz—śz + uw—uw = 0. (1.2)(A dot over a letter denotes the differentiation with respect to time.) Introducing new variables r1, θ1, r2, θ2:

(1-3)
it easily tums out that the quantities L1 = r↑∂1 and L2 = r2∂2 are constants of motion of (1.1) and the constraint (1.2) requires the equality L1 = L2. Taking this into account we may reduce (1.1) and (1.2) to the system of two equations with one parameter L ≡ L1 
= L2 *

rl = ⅛ -i rl(r21-r22), r2 = ⅛ +⅜ r2(r21-r22).
r1 r2The above equations can be obtained from the following Lagrangian: (1.4)

(1-5)This system with L = 0 was studied extensively in [1, 2], It is claimed there to be chaotic. However L ≠ 0 imρlies quite different behaviour of (1.5): r1 = 0 and r2 = 0
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Fig. 2. The equipotential lines of V(rl,r2') = ∣(r}-'-j)2 + i

straight lines become then singular. (Compare Fig. 1 and Fig. 2 where the equipotential lines are presented for L = 0 and L ≠ 0.) In the present paper we analyze the equations (1.3) in the region rL, r2> 0 with L ≠ 0. The behaviour of the potential for big values of rL, r2 is similar to the appropriate case with L = 0 and only one trajectory of (1.4) reaching infinity is expected: namely that one with r1 ≡ r2 [2]. Ali other orbits are anti-
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cipated to have oscillating character both in r1 = r2 and r1 + r2 = const. directions. The total energy E of (1.5) is of course the constant of motion and (1.5) can (in principle) be reduced to the time-dependent Hamiltonian system with two-dimensional phase space [4], In our case, however, it can be done only locally but this is useless for the numerical analysis. We reduce (1.4) to the system of the two time-dependent first order differential equations in a little bit different way. First four new variables x, p, I, φ are introduced:
(1.6)

(∕, φ are the action-angle type variables). Then it can easily be checked that φ > 0; so 
φ may be chosen (instead of time) as the new independent variable. The energy formula allows us to calculate / as a function of x, p, φ and the parameters L, E. Finally we obtain the following system of differential equations:

(1-7)where the explicit forms of f and g are rather complicated; to present them some additional functions must be introduced earlier:

and

v = — , a = (2E—p2)c4 sin2 φ, b = 2L2p6 sin2 φ, x
Δ = ⅜ b3 + b2[⅛ (5+4α)2 - ⅜ (1 - α)2]+⅜ b(l - a)3,

dl = ^∕(l-α)3+⅜b(5+4α)+9√X
d2 = V(l-α)3+⅜b(5+4α)-9 √d, (1.8a)
ψ = arccos -(l-α)3-⅜⅛α2∖.(√(l-α)2-3b)3∕
y> γ 2π ψ 4π

Λ-τι v> = y + yi ''.-y + y,c = min (cos γl, cos γ2, cos ψ3), 
_ fta+⅛(2-dl-d2), if d≥0,(.⅜α+⅜(l+c'∕(l-α)2-3b), if Δ < 0. (1.8b)

Using this notation we find that the functions f, g from the formula (1.7) have the form:
___________ pv g _ l(Φ, x,p;L, E)

m{φ,x,p∙,L,E), m{φ,x,p∙,L,E),
(l∙9a)
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(1.9b)
Although the obtained system of differential equations (1.7) is non-Hamiltonian it is well suited for a numerical study. We will examine it for several differeιit values of energy E and one fixed value of the L parameter: namely L2 = 0.5 (the influence of a value of L on the qualitative behaviour of our system is very weak).

2. Chaos in dynamical systemsThe notion of chaos is not unique. Let us briefly recall two simple definitions of chaos and adopt them for our purposes.Let Jl be a compact symplectic manifold and Γ,2 ,1 the evolution operator corre- sponding to some Hamiltonian H on Jl (that is F,2 tl (q,1,p1) = (⅞2,p2) where {ql,pi) =⅛(tι)>p(tι)), ⅛2,P2) = (9O2),PO2)); ⅛(0,X∂) is the solution of the Hamiltonian equations generated by H and (q,p) denotes of course a point of Jl). We say that the dynamical system (Jl, H) is chaotic if the following condition is valid [4]:ιim = vol(g) „ nt2→00 vol(J≡r) vol(j⅛f), l J
where 3F, <3 are arbitrary subareas of Jl and vol ( ) denotes the volume of the approp- riate area. We propose to cali the dynamical system strongly chaotic if it satisfies the above definition. Let us stress that in practice the condition (2.1) is very difficult to check. Although our system of differential equations (1.7) is non-Hamiltonian and the space of 
{x,p) is not compact it seems worth asking if some mixing property similar to (2.1) is fulfilled. We will return to this question in Sect. 2.The second notion of chaos we want to adopt is concerned with the so-called Lyapunov exponents [6, 7]. Let us consider a set of differential equations:

dx
~dt = f{t, x), (2.2)

where x, f are some n-dimensional vectors. Let x(t) be the solution of (2.2) satisfying the initial condition x(t0) = x0. The first variation ∆x of the trajectory x(t) obeys the set of linear non-autonomous differential equations:
d(∆x)

dt
((Λx) o ⅜)∕(t, *(0)∙ (2.3)
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We define (the one- and two-dimensional) Lyapunov functions in the following manner:
λi(t,x(t)∙, t0, ∆xo)

∣∣U(t, t0; x(Q)dx01|

IMχ0∣∣

λ2(t, x(t); t0, ∆xo, ∆yo) =
∖∖U(t,t0∙,x(t))Δx0 a U(t, t0; x(t))∆yo||∣∣dx0 ^ 4Foll

(2-4)where U(t, x(t); t0) is the time evolution operator of (2.3) and ∆xo, ∆yo are the n-dimen- sional vectors playing the role of the initial conditions at t = z0∙ The Lyapunov exponents are simply the limits of the appropriate Lyaρunov functions for t → oo. We cali the trajec- tory x(t) chaotic if żmai = max ( lim λ1(t, x(t); t0, Jx0)) > 0. (2.5)
j7o '~,∞The system (2.2) is chaotic if all its orbits are chaotic in the above sense. Of course λmaι cannot be obtained in numerical calculations and we will only examine the Lyaρunov functions for possibly big values of time. Let us notę that λ2 gives some information about non-Hamiltonian character of the system under study; it is strictly zero for Hamiltonian systems.

3. Numerical resultsLet us begin this Section with some important remarks. We ħave tried to find some typical orbits of the system (1.7) for different values of E. Several numerical algorithms have been applied: the fifth order Runge-Kutta method with adaptive stepsize control [8], the Bulirsch-Stoer method with the Richardson extrapolation [8] and the Gear,s algorithm for stiff differential equations [9], All trajectories we have found start with φ0 = 0, p(φ0) = 0 and different values of x(≠0). Each orbit was calculed forward in inde-

Fig. 3. An example of a trajectory with a smali amplitudę (E — 0.5, x0 = 1.72)
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Fig. 4. An example of a trajectory with a big amplitudę (E = 0.5, x0 = 1.1)

0.00 1.00 2.00 3.00 4.00 5.00

Fig. 5. Another example of a trajectory with a smali amplitudę (E = 2.0, x0 = 1.785)

Fig. 6. Another example of a trajectory with a big amplitudę (E = 2.0, x0 — 0.6)

Fig. 7. An example of an ergodic trajectory (E = 4.0, x0 = 0.55)
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Fig.'8. Another example of an ergodic trajectóry (£ = 8.0, x0 = 1.85)

Fig. 9. The two dimensional Lyapunov functions for trajectories with big amplitudes (7: E = 0.5, xQ = 1.1; 
2: E = 2.0, x0 = 0.6; 3: E = 8.0, x0 = 0.525)pendent variable φ to some φ1 > φ0 and then backward to φ0 to restore the appropriate initial conditions. This was a test of the accuracy of the chosen numerical algorithm. The maximal possible value φ1 was reached in each case. Along the fixed orbit the Lyapunov functions were calculated for different ∆xo, ∆yo. The following results have been obtained:As was anticipated earlier in Sect. 1 all trajectories have oscillating character but the amplitudę in the x-direction e.g. Λ∙max- xmin is different for each oscillation. It is impossible to foresee its changes. For smali values of E (for instance E = 0.5) two types of orbits should be distinguished: those with xmax— xmin less than ~ 1.0 (Fig. 3) and
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Fig. 10. The two dimensional Lyapunov functions for trajectories with smali amplitudes (/: E = 0.5, 
x0 = 1.72; 2: E = 2.0, x0 = 1.785; 3: E = 8.0, λ⅛ = 1.85)

Fig. 11. Temporal convergence of the one dimensional Lyapunov function (E = 0.5, x0 = 1.1; 1:

∆xo = (1.0, 0.0); 2: ∆xo = (0.0,1.0))

those with xmaι — xmin greater than ~ 10.0 (Fig. 4). This feature seems to remain valid for E ≈ 2.0 (Fig. 5 and Fig. 6) but it fails for E 4.0. Let us compare two trajectories (Fig. 7 and Fig. 8). The oscillations of the first (E = 4.0) are at the beginning quite large but then become very smali. The amplitudę of the second (E = 8.0) increases rapidly after some smali oscillations. Thus using the terminology of Sect. 2 we can say that our system is rather regular for smali E and becomes chaotic for greater values of E indicating the mixing property. Of course this statement is based od pure qualitative analysis only
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• Fig. 12. Temporal ∞nvergence of the one dimensional Lyapunow function (E = 8.0, x0 = 1.85; 7: ∆xo 
= (1.0,0.0); 2: ∆xo = (0.0,1.0))

Fig. 13. The one dimensional Lyapunov functions for the trajectories with big amplitudes (7: E = 0.5, 
xa = 1.1; 2: E = 2.0, x0 = 0.6; 3: E = 8.0, x0 = 0.525)

and the strong condition (2.1) cannot be appjied here. It should also be noted that the system under study is close to Hamiltonian system because the Lyapunov function λ2 remains very smali all the time (Fig. 9 and Fig. 10).Let us now apply the second definition of chaos from Sect. 2. We have examined the JLyapunov function λ1 for all orbits presented earlier. Their shapes and magnitudes —
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Fig. 14. The one dimensional Lyapunov functions for the trajectories with smali amplitudes {1∙.E = 0.5, 
x0 = 1.72; 2: E = 2.0 x0 = 1.785; 3: E = 8.0, x0 = 1.85)

as is expected for chaotic systems [7] — do not depend on ∆xo (at least for sufficiently big values of φ — Fig. 11 and Fig. 12 illustrate this fact for E = 0.5 and E = 8.0 corres- pondingly). But the main result of our analysis is the following one: the Lyapunov function 21 does not depend in practice on energy E for trajectories with big amplitudes (Fig. 13) and rather strongly increases with E for orbits with smali amplitudes (Fig. 14). Morę generally: the region of smali x, p is morę chaotic than the rest of the (x, ∕>)-space.
4. CortclusionsLet us briefly resume our considerations. First of all it should be noted that our numerical results of Sect. 3 do not depend on the chosen algorithm. So these results are believable. However they give mainly the qualitative description only. This description shows that our system is chaotic for sufficiently big energy in the area of smali values of x and p. Although we did not examine the system for different values of the L it is not expected to depend strongly on this parameter. It should be stressed that the greatest value of the Lyapunov function λl we have obtained does not exceed the value 0.25. It is not too much comparing to ~ 1.45 of the Lorentz system which is regarded as the “classical” chaotic system [6]. Also the mixing property in our system seems to be limited because the orbits with extremely big amplitudes remain such for all oscillations. How- ever these trajectories are very difficult to examine. Thus generally speaking the Y-M mechanics is the dynamical system exhibiting a weak chaotic behaviour only (at least in (x, p) surface) and the attempts to interpret the main features of the whole Y-M theory on the base of chaos seem to be exaggerated.
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