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1. Introduction

I would like to report on progress in measuring non-abelian flux distributions in 
the presence of static charges in lattice gauge theory in four dimensions. Projects are 
underway on SU(2) and SU(3) by a number of people: Jacek Wosiek and Andrzej Kotanski 
at the Jagellonian University and Yingcai Peng, Vandana Singh and myself at Louisiana 
State University. Here I will describe the flux problem for qq in SU(2) for quark separa- 
tions of up to 9 lattice units. Although the basie picture of a flux tubę between a heavy 
quark-antiquark pair is well established, the detailed distribution of the flux is just now 
being elucidated. Early work on this problem was done by Fukugita and Niuya [1] and 
Flower and Otto [2], Morę complete study for SU(3) were done by Sommer for the qq sepa- 
ration up to four lattice units [3]. In 1987 we have computed the electric parallel component 
of the SU(2) flux for the square Wilson loops reaching the qq distance of six lattice units 
[4], Jorysz and Michael [5] have studied an extemal adjoint source in SU(2). Sommer [6] 
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investigated thoroughly all flux comρonents for SU(2) using Polyakov lines as sources 
for quark separations up to four lattice units.

Here we present results for all six components of the color field with particular emphasis 
on filtering out contributions from excited states. This is done for the qq separations up 
to six lattice units. We shall also present some results for yet larger (seven to nine lattice 
units) distances. In this case however, contanunation by the higher states of the color 
field cannot be entirely disentangled.

One of the interesting results in these studies [6] is that there are large cancella- 
tions between electric and magnetic components of the energy distribution giving a much 
thinner flux tubę than one would estimate based on a single component. This efiect is now 
clearly seen for the well developed qq tubę.

There are many complications beyond the lattice granularity in trying to develop 
a picture of color fields comparable to the highly intuitive classical electric and magnetic 
field lines. The self interactions of these fields play a central role which destroys the linearity 
of the problem. In addition, only squares of the individual field components are meaningfull 
in the nonabelian theory hence the concept of the field lines has limitted application. 
Quantum fluctuations pose further restrictions on the simple classical analogy. One is primar- 
ily interested in the continuum limit and hence in the scaling and renormalization of the 
lattice results. It is known that the energy density scales accordingly to its canonical dimen- 
sion mass*  while the gluon condensate does not [8]. Hence the behaviors of the electric 
and magnetic components separately are to large extent reflecting the lattice regularization. 
When wieved in this context, the intriguing result that the chromomagnetic energy density 
is negative1 (relative to the vacuum), may not be meaningfull physicaly. Still we believe 
that the fact that the magnetic and electric contributions have the opposite signs is significant.

1 It was first emphasized by Sommer [3] and is fully confirmed by our present simulations.

Having all the above reservations in mind, let us nevertheless digress briefly to look 
at classical euclidean continuum electrodynamics. Of course there is no flux tubę in this 
example. The purpose of this exercise is nothing morę than to fix the notation and ρrovide 
some framework to classify our results obtained for the non-abelian quantum theory. 
In our investigations we employ Wilson loops to represent the world lines of the heavy 
qq sources. It is then necessary to extraρolate to loops with large time extent to suppress 
the effects of creation and annihilation of charges. Consider a current as shown in Fig. 1. 
The electromagnetic potential is

(1)

The effect of finite T is to give finite magnetic components of the electromagnetic field 
F13 = — B2 and F23 = Bt. These are the transverse components, B±. For large Tthe effects 
of creation and annihilation are negligible, B± dies away leaving an electrostatic field. 
Notę however that no longitudinal component of magnetic field is ever generated, 
F12 = B3 = 0. For the non-abelian problem, all components are of the same order of



405

magnitude, for all loop sizes, and do not show the relations exhibited herc. The one simi- 
larity is that the Ez is always the largest and Bz is always the smallest.

In Section 2 we give a few details of the simulation, in Section 3 we report on generał 
features of the data for the heavy quark potential and the flux. In Section 4 we look at 
sum rules, both the sum of flux on a slice transverse to the flux tubę, and the Michael 
sum rules [8] for the volume integral of the flux. It is here where the electric-magnetic 
cancellation is most elear.

2. Simulation

Lattice observable needed to measure the flux is the following 

where W is the Wilson loop, Pμv the plaquette located at x and a is the lattice spacing. 
In the classical continuum limit

^^_|<(fAV)2>4__vac) (3)

where the notation <∙>ρ,-vac means the difference of the average values in the ąq and 
vacuum state. From now on we shall be using field components in the Minkowski space 
and hence

eμv → ⅜(-∙Bt -B22, -B23∙, E21, Ej, El). (4)

Corresρondence between various components and eμv is standard and is also shown in 
Figs 1 and 2 (z = x3, τ = x4). The energy density is

⅜ε = ⅜(E2+B2). (5)
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Fig. 2. Correspondence between plaquettes and components: space-time

Since however magnetic contribution turns out to be negative, there is a strong cancellation 
between the two tenns.

The computations were done on the FPS AP264 array processor at LSU. Our lattice 
size was a 173 × 20 hypercube with helical boundary conditions based on a configuration 
program madę available to us by Mikę Creutz. Updating was done checkerboard fashion 
which requires space dimensions odd and the time dimensions even. We also use Creutz,s 
overrelaxation algorithm [9] altemated with a one or two hit Metropolis in order to decrease 
sweep to sweep correlations. For SU(2) overrelaxation is microcanonical and hence Metro
polis is needed to sample configurations with different energies/actions. We measured 
all rectangulat loop sizes from 1 × 1 to 6 × 9. Because of the large amount of data generated 
and because of the difficulty of getting good statistics, the data was folded on rectangular 
symmetry planes. We also limited the measured flux to a fiducial volume consisting of 
a closed volume surrounding the Wilson loop four lattice spacings in every direction. We 
measured all six components of the flux.

Table I gives the parameters for our measurements. The ρhysical values of the lattice 
constant were taken from Refs [6, 7], these numbers are also consistent with our analysis 
of Wilson loops. As was already mentioned, Wilson loop represents (classically) the world 
linę of the extemal source. Quantum mechanically it provides the projection into the

Parameters used in simulation

TABLE I

β a lat. spacing ^Vtherm Sweeps between 
meas.

No. of meas.

2.5 0.09 fm 2200ovrrl., 2200 metr. 5 ovrrl. 5 metr. 200
2.4 0.13 fm 1700 ovrrl., 1700 metr. 5 ovrrl. 5 metr. 230
2.3 0.17 fm 2862 ovrrl., 2862 metr. 5 ovrrl. 5 metr. 240
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qq sector of the Hilbert space. Projection onto the ground state of the qq string is achieved 
only when the time extent of the loop tends to infinity. On the other hand the interest lies 
in the shape of the flux tubę for large space seρarations. However the large space and time 
separations are very difficult to achieve simultaneously because of the exponential suppres- 
sion of the signal with the area of the loop. For that reason the straightforward measure- 
ment of these quantities would lead to prohibitive computer time or intolerable errors. 
Enhancements of the measurements are essential to beat down the errors.

Fig. 3. Correspondence between plaquettes and components: space

One enhancement is almost trivial but contributed significantly in reducing errors [4], 
That is indicated in the second part of Eq. (2) in which the flux is measured relative to 
a point at infinity. This does not change the lattice average but the main fluctuations of 
PW, which are due to the Wilson loop itself, cancel when the difference, Eq. (2), is com- 
puted configuration by configuration. By taking a point where the correlation vanishes 
the two forms in Eq. (2) are equal. In practice we take a corner of the hypercubic fiducial 
volume as the point at infinity.

The second important enhancement was to do as many integrals analytically 
as is practical. For example the one link integral can be done using

∫
rjτnrr 4-∙dnκn Iι(βb) fr , ⅛κ*]
[<P«2 =j-^Fj[dU]e2 , (6)

where K is the sum of six ‘staples’ coupling to given U in tłfc action [10]. The sum of SU(2) 
matrices in the j = ⅜ representation is a multiple of an SU(2) matrix which we denote by V 

K = bV; b≡(detK)ιz2. (7)

The effect of Eq. (6) when applied to a simulation is to replace a link U occurring in the 
Wilson loop by a corresponding sum of ‘staples’ K. This is indicated in Fig. 4. Since 2? 
involves 18 links, one can expect the fluctuations of the ensemble of K’s to be suppressed 
compared to a single link U in each measurement.

This result is useful as long as subsequent analytic integration does not involve one 
of the links in K. For example, for the potential measurement, this will work for those 
links that make up the sides of a Wilson loop of size 2 x 2, or larger, as long as one link



408

Fig. 4. Links involved in link, corner and plaquette integrals

on each corner is left in its original form. This result must be generalized to handle the 
four links in a plaquette and the the two links that form comers. This has been done by 
B. Bunk [12] in an unpublished report which he kindly madę available to us.

To do the plaquette integral consider the following four-link integral

Z(y, jg) ≡ ∫ [dl∕1dt∕2dt∕3dt74]e-s, (8)
where

4

-S ≡ θ- tr [t71Ult72U1] + 4 tr [<⅛K∏) . (9)

We can reduce this four link integral to a single sum using SU(2) character exρansions. 
The result is

(10)

(11)

•The c’s are ęoefficients of the expansions of the Boltzman factor in characters of SU(2), 
χt0(F). Fuli details will be given elsewhere. By doing the link integrals in a plaquette, the 
result is expressed in terms of the links pictured in Fig. 4. Again the value of the ρlaquette 
is spread over many morę links and the subsequent simulation will see a smaller sweep 
to sweep spread in the values of this ‘fat’ operator. Similarly one can perform the 
corner integral. Details are in the Appendix.

where
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In the vectorized codę, we save the Iong vectors of Wilson loops (or fat Wilson loops) 
oorresponding to all locations of the loop and similarly for all locations and orientations 
of the ρlaquette. We then calculate the cross correlation between these two long vectors. 
To do a naive correlation me⅛urement an estimate of computer time T, gives

T oc ^i∙ttice × ^fldncial> (12)

whereas if one employes fast Fourier transforms we obtain
2*  θC I*lattice  ln2‰βe). (13)

Given the size of our fiducial volume, the fast Fourier transform was essential to beat 
down computer time.

The fast Fourier transforms give all the correlations, not just those in the fiducial 
volume. However, when the fat operators indicated in Fig. 4 get too close together, the 
analytic expressions, derived for the case of nonoverlapρing links, break down. Therefore 
one must recalculate those correlations, dropping the analytic integrations for one or the 
other or both operators. As a consequence self energies, i.e. correlations when plaquette 
is touching the Wilson loop, are harder to measure than morę distant correlations. When 
a link of a plaquette overlaps a link of the Wilson loop analytic integrals must be dropped 
on both operators. Correlations measured with completely unenhanced operators have 
unacceptable errors. Measurements of self energies with an improved treatment will be 
reported later.

3. Results

3.1. Potential

The energy of the static qq sources in the SU(2) gauge theory was studied by many 
authors and is fairly well known [11, 6, 7]. This provides us with rather stringent tests 
of our data and the error reduction technique. Our results for the Wilson loops are consistent 
with the published raw results of Gutbrod [11] which were obtained for the icosahedral 
subgroup of SU(2). Typically statistical errors are smaller by a factor of 4 for large (5x7 
for β = 2.4) loops.

The static potential of the qq pair is identified with the lowest eigenvalue F0(P) of the 
lattice hamiltonian projected onto the qq sector.

<Wz(P, T)> = — Tr(^'λ^rzoSP,^rzαS)
Z

= ∑ exp (- TEi(R)) -⅛-«0 exp ( - TE0), (14)
i

where aEfJ{) = ln (2vao∕2i), 21∙ and 2vac being the eigenvalues of the transfer matri in 
the qq and the vacuum sector respectively. S is the operator which excites the qq states 
from the vacuum and P4j denotes the projector onto the qq sector of the Hilbert space.
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Fig. 5. Dependence of the— In < 0z(7J, T)> on — . Excited states cause deviation from the straight linę 

on this plot

R and T are the space and time extents of the Wilson loop in the physical units, a is the 
lattice constant and Z = Tγ(^~)n,). Customarily one fits, for fixed R, the time dependence 
of < W(R, T)y assuming domination of the first few (usually two to three) states in the sum 
of Eq. (14). Before doing that however, let us slightly rearrange our data in order to get 
some idea on how important are contributions from higher states, and how relevant is the 
extrapolation to large T/a values. Upon rewriting the Eq. (14) one has (Fj(K) ≡ Ei)

- y ln < JF(jR, T)> = W) - -1 C(T), (15)

C(T) = ln Ko+ln (1 + exp ( - T(Vi(R) - F0(K)))) . (16)

i

For large T, contribution from higher states is smali and C(T) becomes independent of T.

Hence plotting the ln < W(R, T∖) versus — gives us a good idea about the uncertaini- 

ties of the extrapolation needed to extract the lowest potential V0(R). Figurę 5 shows such 
a plot for a rangę of R/a vahιes and for β = 2.5. The dependence is indeed aρproximately 
linear for T∣a > 3 showing that the lowest state dominates the sum, Eq. (14), rather early. 
Moreover, the extrapolated value for the intercept agrees nicely with the “time dependent” 
estimate Pes(K) = ln «W(R, T)>∕< W(R, T+1)» for the potential2. Finally, we have

2 Jzes varies in the rangę covered by the size of the dots on the Y axis.

where C(T) contains the contribution from higher states
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Fig. 6. Heavy quark potential in lattice units. The upper numbers are the differences between the potential 
at neighboring points. The lower numbers are obtained from the transverse energy sum rule described 

in Section 3.3

fitted the time dependence using the formula (14) with two and three states contributing 
to the sum. The fit was always (for all R,s and β,s) satisfactory and the lowest eigenvalue 
was stable against changing the number of parameters in the fit. Resulting values for 
V0(R) agree very well with the intercepts as shown in Fig. 5. They are also plotted in Fig. 6 
for β = 2.4.

The detailed discussion of the scaling of the potential will be published elswhere, 
we do not expect that it will reveal any new features of the nonperturbative beta function 
sińce this rangę of parameters was already carefully studied in the literaturę. Our prelimi- 
nary analysis of the potential shows scaling and gives the values for “running” lattice 
constant which are consistent with the results of Refs [6, 7].

We have probed the qq distances up to 1.2 fm, however our data allow also to extract 
the qualitative features of the confining potential for the yet larger separations of the static 
sources. Our rectangular loops contain the information on the potential for distances 
up to R/a = 9 which corresponds to R = 1.5 fm at β = 2.3: Extraction of the lowest 
state is however subject to the systematical error because only the limited rangę of T values 
is available (Ta⅛x∕β = 5) and hence the contamination with higher states is biggęr. Neverthe- 
less results of the fit show that the qq potential keeps growing between 1.2 and 1.5 fm and 
the slope is consistent with the string tension extracted from smaller separations.
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3.2. Flux— generał behavior

Let us start the discussion of flux by looking at the value of the correlation at the center 
of the Wilson loop as afunction of spatial extent, R and time extent T. These are shown 
in Fig. 7. The central value gives the flux at the midpoint between the quarks and for the 
middle time slice. Fig. 7 shows how well the flux data extrapolates to large T for various 
R,s. The largest component consistently has the strongest T dependence. For smali 7?’s,

rza rzo

Fig. 7. Flux at the center of the Wilson loop in lattice units as a function of T, for R = 2a— 5a. Ordinate 
is log10 of components indicated, β = 2.4

where the errors are negligible, the other components are approximately constant for T ≥ 5. 
This is thefirst indication that one does not need to go to very large Tto get reliable data, 
at least for these components. Data for smali Tla (or R/a) = 2, 3 show clearly the lattice 
granularity. Only for larger sizes of the Wilson loop these artifacts die away and the points 
shown in Fig. 7 lie on the smootħ curves. We are presently exρloiting the transfer matrix 
formalism, fitting all components to exρonential forms in T in order to extrapolate to large 
times. This will be reported later.

The suppression of errors in in Figs. 7b-d vs Fig. 7a is due to the use of the fat 
Wilson loop, vs the simple loop. Since the errors increase wfrh increasing T and R, the 
simple loops would clearly iead to unacceptable errors. The smallest component 5∣∣ always 
uses fat operators, and hence always has the smallest errors.
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Fig.*  8. Time dependence of longitudinal profile of the Up component. Lattice*units,  β = 2.4

Fig. 9. Dependence of tire longitudinal profile of the ⅛ on the qq distance. Lattice units, β = 2.4
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Fig. 8 shows the high quality of the B∣∣ data. Shown is the profile of the B∣∣ component 
along the axis connecting the charges for Tfrom 2a to 9a. Clearly it is not necessary to take 
T larger than 4α or 5a here. Fig. 9 looks at the component as one stretches the string 
between the quarks from 7? = 6a to 9a. Finally we show in Fig. 10 all the components 
for large Jl(= 8α) and T = 5α. The points surrounding the charges are off scalę and with 
very large errors.

Fig. 11 shows the values of the flux at the mid-point of the flux tubę as a function 
of quark separations up to R = 9a, in physical units, for β = 2.4. These were all done for

Fig. 10. Longitudinal profile of all components for T = 5a and R = 8α. Lattice units. Self-energy points 
are off the scalę and with large errors

Fig. 11. Flux at the center of the Wilson loop in physical units for fixed T = 5e, and for R = 1 to 9 lattice 
units. Measurements were taken for larger T but only for R < 6a. Arrows indicate the values of the flux 

for'T≈ 9a. Only the Fj' points were affected
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T = 5a. For all but the 3 largest R,s, we have data for larger T. Increasing T up to 9a 
changes only the E,∣∣ component and the chahge resulting from increasing Tto 9a is indicated 
with the arrows.

From Fig. 11 we ćan get a very crude estimate of the energy density at the center point of 
the flux tubę [13]. Evęn though the electric and magnetic contributions subtract, it is evi- 
dent that the asymptotic value for the energy density is much bigger than the typical densi
ty in the MIT bag model [14]fiMiτ = 42⅛oτ = 0.2 GeV∕fm3. In another words, confining 
tubę generated by the nonabelian interactions is much morę narrow than the MIT tubę
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Fig. 12. Transverse profiles of the flux tubę for the components at the midpoint, as a function of distance 
in fennis. Ordinate is logt0 (component of energy density in units GeV∕f3). Fig. 12a: R = 4a, T — 4aE1 

component; Fig. 12b R = 4a, T — 7a, Ez component; Fig. 12c: R = 4a, T = 4a Bt component

[15]. Therefore it is unlikely that a volume energy alone can account for the cavity states, 
and at the same time give enough pressure to squeeze the flux into such a narrow tubę. 
Since the errors are still large, we are not able to confront the discrepancy morę quantita- 
tively at the moment, however it seems unprobable that our estimates are off by a factor 
of 20. Morę carefull estimate of the asymptotic value for ε will be soon reported. Also the 
sum rules of the next section will lead us to the similar conclusion.

One of our primary goals in this work is to exρlore the shape of the flux tubę. In 
particular we look at the transverse shape of the tubę at the middle time slice, and at the 
z slice mid-way between the quarks. Figs. 12 show the typical behavior of individual 
components plotted against the transverse distance. Exceρt for a smali rounding at the 
point on the axis, they are all consistent with exponential behavior, presumably determined 
by the lowest glueball mass. Figs. 12a and 12b contrast the data increasing Tfrom 4α to la. 
Figs. 12a and 12c contrast different components.

3.3 Flux — sum rules
There is a very interesting check on our flux data provided by sum rules derived by 

Michael [8]. The energy it takes to puli quarks apart as measured by the potential must 
be accounted for by an energy density integrated over all space. The lattice version is the 
Michael energy sum rule.

⅜ α3[E2(2) + B2(2)] = F(Λ)+ . (17)
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Recall that the measured magnetic component of the energy is negative. Therefore there 
is a cancellation in Eq. (17) in calculating energy. To tęst this relation, we need to sum 
over all space. Unfortunately we have very poor data fαj p⅜⅛⅛uettes that touch the Wilson 
loop. We will assume that these contributions are approximately independent of the 
separation R and discard them. Hence we can check the R dependence of Eq. (17) up to 
a constant. The results are shown in Fig. 13. Errors preclude a definitive check but the 
behavior is correct.

Fig. 13. Test of Michael volume energy sum rule up to a constant. Self energies were discarded and the 
value normalized at A = 2a

Fig. 14. Test of the fiducial volume dependence of the Michael volume energy sum nile for a fiducial volumes 
of 1 to 4 lattice units surrounding the Wilson loop

A rather important test of the volume sum of flux is to see if our fiducial volume is 
large enough. Fig. 14 gives the sum rule as a function of fiducial volume. The value 4 is the 
maximum volume we measured, being a closed region of 4 lattice units in all directions 
surrounding the Wilson loop. Fig. 14 shows the effect of dropping back to 3, 2, and 1 lattice 
units. Hence 4 units is clearly adequate.

There is a second sum rule for the gluon condensate:

i∑ ⅛≈(J)-i≡≈(5)] = -βs^ 4 ∣-.
(18)
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We ąttemptęd to measure this quantity. However,.because there is no cancellation between 
ełectric and magnetic components. this extends over a much larger volume and we do not 
have a large enough fiducial volume to test the sum rule. Similar effect is seen by Jorysz 
and Michael for the. single adjoin source [5].

The generał picture of the flux tubę leads to another sum rule that is much simpler 
to measure. Rather than looking at the potential itself, let us look at the work required to 
puli a qq apart by one lattice spacing. The potential rises by this quantity of work. If the 
effect is merely to stretch the flux tubę, leaving the end configurations unchanged, then we 
should be able to account for this work by a volume integral of the flux over a transverse 
slice of the string one lattice spacing thick at for examρle the mid-point of the tubę. Fig. 5 
gives the result. The upper numbers at each step are the differences between the potential 
as R increases by 1 unit. The lower number is the result from the transverse sum rule. For 
smali R the flux tubę is just forming, and the agreement is poor. For a well formed flux 
tubę, R = 4, 5, the agreement is good.

Again we need to do a test of the fiducial volume. This is shown in Fig. 15. The im- 
portant result is that the sum rule is being saturated within the fiducial volume of one lattice 
unit surrounding the qq axis. For large separations, R = 5a, 6a the sum rule is saturated 
between 1 and 2 lattice units. Jn nonę of these cases do we need 3 o'r 4 units. The cancella-

Fig. 15. Fiducial volume dependence of energy and gluon condensate sum rules measured on the transverse 
slice of the flux tubę at the midpoint. The shaded areas contrast the smali size of the energy flux compared 

to the gluon condensate
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tion is rather dramatic. The gluon condensate sum rule is again quite a different matter. 
For this case there is no cancellation and the fiducial volume dependence is totally different. 
And for H ≥ 4a the measured fiducial volume is clearly inadequate. As indicated in Fig. 15 
the shaded area in each case indicates schematically the region required to saturate the 
sum rule.

Our results on the smallness of the flux tubę are consistent with Somχner,s result [6],

If we take Sommer,s value for
S ln a

10 we are consistent with the gluon conden

sate sum rule being about a factor of 10 larger than the energy.
Let us use this transverse energy sum rule to estimate independently the energy density 

at the mid-point of the flux tubę. First in lattice units, the total energy in a transverse slice, 
taken from Fig. 5 is ≈ 0.07 cr1. As a conservative estimate, take the radius of the flux 
tubę to be 2 lattice units. Then the energy is spread over a volume of π(2a)2a. Therefore 
in physical units (running lattice constant α(2.4) = 0.13fm)

4. Summary and conclusions

Figurę 16 gives our major conclusions. The presence of heavy quark sources distorts 
the gluon condensate from its vacuum value in a large region around the quarks. However 
there is a conspiracy among the electric and magnetic contributions to the energy to cancel 
everywhere except in the neighborhood of the charges where the electric part dominates, 
and within a rather narrow flux tubę connecting the quarks. The energy flux extends 
farther out in the region surrounding the charges. Our data shows this in that the fiducial 
volume dependence of the volume sum rule is saturated morę slowly than the transverse 
slice sum rule.

A second point is that it is reasonable to do this calculation with Wilson loops. Since 
one is always fighting the area law this has the advantage over Polyakov lines which must 
of course be as long as the time extent of the lattice. The dominant component, f∣∣ turns 
out to be the most difficult component to extrapolate to large times.

Energy density a; 0.0056α 4
GeV 
fmy (19)~ 4

This number roughly agrees with what can be inferred from Fig. 11. Both methods however 
introduce large uncertainties. Improving this estimate requires carefull extrapolation 
of the time dependence as well as taking into account different space location of each field 
component.

One of the consequences of the cancellation discussed above, is that we know very 
little about the shape of the flux tubę sińce it is contained in a size comparable to the lattice 
spacing. Although the individual components have a very elear exponential behavior 
as shown in Fig. 12, the underlying energy distribution need not be exponential. We are 
not yet in a position to see if the profile is gaussian [16, 17], It should be stressed however, 
that Luscher asymptotic prediction was calculated for the single f∣∣ component.
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Flux Oistribution αround q q

In this talki presented a sample of our results. Lacking here is a discussion of scating 
of our data. We are of course examining scaling and results will be presented later along 
with a morę systematic analysis including the β = 2.3 data.
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to us. We also wish to thank M. Creutz for a copy of his configuration program. The 
work was supported in part by the U.S. Department of Energy under Contract 
No. DE-ASO5-77ERO549O and by the grants of the Polish Agency of Nuclear Energy 
Nos CPBP-01.09, CPBP-01.03 and RRI-14. J. W. would like to thank the Theory Group 
in Max Planck Institute for Physics and Astrophysics in Munich for their hospitality. 
Our simulations were done on the LSU FPS AP264 array processors. We also madę use 
of the LSU Astronomy VAX for data analysis.

APPENDIX

Link integrals

Fłuctuations were greatly suppressed by doing as many link integrals analytically 
as possible. Special problems occur depending on the proximity of one link to another. 
In this appendix we describe how to do all the link integrations in a plaquette and in a rec- 
tangularn×m Wilsonloop(n, m 2). There are further problemsincorrelationmeasure- 
ments when a plaquette is close or touching a Wilson loop. We do not treat such cases 
analytically but rather we drop the analytic integrals as necessary. These techniques are 
taken in large part from notes by B. Bunk. Programming was done independently.
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Al. Character expansions

The basie technique used here is to exρand integrands using group characters as basis 
functions. The character is given by the tracę of the (2/+1) dimensional rotation matrices.

(1)

We parametrize group elements by an'axis of rotation n and an angle of rotation about 
that axis denoted here by 2y.

U = cos (y) + i sin (φ)n ∙ τ, (2)

and the group manifold is then the hypersurface of the 4-sphere and the invariant group 
integration measure is uniform on this manifold.

(3)

The orthogonality of characters follows.

(4)

A useful recursion relation for characters is

(5)

where I2j+ι(β) is the modified Bessel fun,ction. The sum is over all representations as indi- 
cated in Eq. (1).

A2. Single link integral

Consider the integral over the reρresentation matrix

≡ I [dU]D^(U)Λ'κvκtl.
(7)

We will make use of the following character exρansion

(6)
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K is the sum of six ‘staples’ coupling to U in the action. The sum of SU(2) matrices in the 
j — ⅜ representation is a multiple of an SU(2) matrix which we denote by V

K = bV-, b≡ (det K)1'2, (8)

which gives

= ∫ [dl∕]D^(t∕)e2 *rturt3. (9)

Group invariance allows us to write

L,i,m∙ = ∫μU]^∙∙(t∕)^,rttz⅛(K)

= ∫ [dl/] Zj(l∕)^,rt⅛(V) (10)

We then make use of the character expansion, Eq. (6), and orthogonality, Eq. (4) to evaluate 
the integral

L‰ = — l2i+i(βb)D^(V). (11)

Applying this result for J = 0 and ⅜ gives the desired form of the one link integral

(12)

The effect of this identity when applied to a simulation is to replace a link U occurring 
in the Wilson loop by a corresponding sum of ‘staples’ K. Since K involves 18 links, one 
can expect the fluctuations of the ensemble of ΛΓ,s to be suppressed compared to a single 
link U in each measurement.

The result is useful when a subsequent analytic integration does not involve one 
of the links in K. For examρle this will work for those links that make up the sides of 
a Wilson loop as long as one link on each comer is left in its original form. This result 
must be generalized to handle the four links in a plaquette and the the two links that form 
corners.

A3. Plaquette integral

Consider the following four-Iink integral

Z(‰ β) ≡ ∫ [dUidU2dU3dU4]e~s, (13)

where

(14)
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We have displayed explicitly the dependence of the action on the links making up 
a particular plaquette. Each Kk matrix is the sum of six staples. We apply the character 
expansion to each of the five terms in the exponential

Z(y> β) = ∫ [∏ dUl] ∑ cj(γ)χω(UlUlU2U1) ∏ ∑ cjk(βkk)χ<j'∖UlM). (15)
i J fc=l jk

Ali integrals can be done making use of the orthogonality of the group integration.

f 2π2j = — δjrδmm.δm.

Using this result we find for example

∫
2π2

ldU1}χ^(UlU↑U2Ul)χ^(U1V^ = — δjhχw(U↑UlU 2V1).

Applying this result for all four links reduces Eq. (13) to a single sum:
4

Z(y, β) = Jπj cj(7) C0b^i∖vlvlv2vl}.

j k=l

(16)

(17)

(18)

Pulling this together, we get the result

(19)

We need the expansion coeffcients cj(β), Eq. (6) and the first derivative with respect 
to β, c'j(β). These are proportional to modified Bessel functions and can be evaluated by 
recursion only in the direction of decreasing index. We employed the following relations 
which follow from standard Bessel function recursion relations:

(20)

where

(21)
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A4. Corner integral

Consider the integral over two links that form a comer

<U2C71> ≡ ~∣[dU1dU2]U2Ule~s,

Z ≡ ∫ [dU1dU2]e~s, (22)

where the relevent terms in the action are

-S ≡ y (tr (ΨtU2C∕1) + b1 tr (tf1y1t) + h2 tr (U2V})). (23)

Z can be evaluated immediately using the above methods

∑(2π2)2(2∕T⅛ ^λβbι)cj(βb2)∕jXP), (24)

J

where
p = ψ+y2r1. (25)

Appjying the character expansion to the three terms in the action we obtain

<W> = y cj(β)cjt(βb1)cjl(βb2)
JlJ2j

× ∫ [dU1dU2JU2U1χ<jXwUj2U^^ (26)

We can immediately do one integral and one sum:

1 \ 1 2π2<U2U1> = — y yΓ^Cj(β)Cjl(βb1)Cj,(βb2)

ii'

× W ∫ [dU]Uχu∖U)χu'∖UP^. (27)

The remaining integral and one morę sum can be done by expressing the U matrix 
in the integrand as a function of P and invariants. This can by done by a judicious choice 
of coodinates. Define a parametrization of U and P

U = I cos 1ψu+iu ∙ τ sin ψu,

P = I cos y>p+iβ∙τ sin ψp. (28)
We need

Tr [C7] = 2 cos ‰

Tr [U,P*]  = 2(cos γu cos φjj+sin ψu sin γpu ∙ 0). (29)
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Let us further parametrize u:

u = e3 cos θu+e2 sin θtt sin φu+ei sin θu cos φu. (30)

Now choose e3 = p. It is elear tħat the φu integration will kill the e1 and e2 contributions 
and they are henceforth dropped. Therefore the surviving terms in U can be written

U = I cos γu+ip∙τ cos Θu sin γr

Using Eqs. (29), (30) we obtain the desired form for U:

U = χw2Xσ)A+χa'2∖PtU)B,

where

4 _ I-iPχw2∖P)
2-⅜∕1'2W ’

n _ P-iIχa,2∖P) 
“ 2-⅜χ"'2>(P)2 •

We apply this result to the integral occurring in Eq. (27)

∫[dU]CZχω(U)χo'Wt) = A ∫ [dt7]∕v2,(l7)χυ,(U)zα',(l7Pt)

+B ∫ [dl∕]χσz2∖UPt)χo'∖t7P¾υ>(t7).

(31)

(32)

(33)

(34)

We can use the recursion relation for characters, Eq. (5), to obtain an integrand involving 
only two characters as factors. Once it is down to a two character integration, Eq. (17) 
can be used to evaluate the integral. We quote the finał result
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