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Abstract
While large language models have revolutionised computational text
analysis methods, the field is still tilted towards English language resources.
Even as there are pre-trained models for some "smaller" languages, the
coverage is far from universal, and pre-training large language models is
an expensive and complicated task. This uneven language coverage limits
comparative social research in terms of its geographical and linguistic
scope. We propose a solution that sidesteps these issues by leveraging
transfer learning and open-source machine translation. We use English as a
bridge language between Hungarian and Polish bills and laws to solve a
classification task related to the Comparative Agendas Project (CAP) coding
scheme. Using the Hungarian corpus as training data for model fine-tuning,
we categorise the Polish laws into 20 CAP categories. In doing so, we
compare the performance of Transformer-based deep learning models
(monolinguals, such as BERT, andmultilinguals such as XLM-RoBERTa) and
machine learning algorithms (e.g., SVM). Results show that the fine-tuned
large language models outperform the traditional supervised learning
benchmarks but are themselves surpassed by the machine translation
approach. Overall, the proposed solution demonstrates a viable option for
applying a transfer learning framework for low-resource languages and
achieving state-of-the-art results without requiring expensive pre-training.
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Introduction
Recent developments in the Natural Language Processing (NLP) field have
been nothing short of revolutionary with the widespread adoption of Trans-
former large language models (LLMs). These neural network-based mod-
els took the field by storm, outperforming most of the previously applied
supervised methods in a wide range of tasks (Devlin et al., 2018). The text-
as-data approach (Grimmer & Stewart, 2013) has now permeated the main-
stream of political science, economics, sociology, and communication stud-
ies, thus proving to be a truly multidisciplinary methodology (Lind et al.,
2021; Theocharis & Jungherr, 2020; Wilkerson & Casas, 2017). Using these
tools allowed researchers to process and analyse text data on a large scale,
exploiting the deluge of text data and the rapid development of methods
and software implementation.

However, like the natural language processing community, social science
research is biased towardshigh-resource languages (e.g., English, otherWest-
ern European languages, Chinese, and Japanese). In contrast, low-resource
languages are more challenging to use in research due to the scarcity of
NLP tools available (Baden et al., 2022). Applying machine translation is a
widely used approach in the political science literature to solve this resource
problem. This approachwas demonstrated to be effective formachine learn-
ing applications as the machine translated text using Google Translate API
comes close to the gold standard of expert translation (De Vries et al., 2018).

In this article, we propose adapting this translation-basedworkflow to in-
corporate large language models. As Transformer models are pre-trained in
one ormore languages, their usage is limited to these domains and texts out-
side of these languages need to be translated to a bridge language that is part
of the pre-training data of the model. While pre-trained models are avail-
able for some low-resource languages, the extent of their pre-training may
differ, and they might not be available at all for all the languages involved in
the comparative research. There are also multilingual pre-trained models
available, but their performance (at the time of writing) may trail that of
single-language models given the research context. As models are expected
to grow in size and complexity, it may be the case that relying on translation
is only a stopgap measure until, eventually, sufficiently capable multilin-
gual models are developed with sizeable training data from low-resource
languages (Kaplan et al., 2020). However, the timing of these developments
is uncertain, and it is important to leverage ready-to-be-deployed tools
in comparative research to harness recent advances in natural language
processing.
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We compare these various types of fine-tuned large language models
on a common text classification task in comparative politics: assigning one,
and only one, public policy topic (or category, such as education or macroe-
conomics) to units based on the Comparative Agendas Project (CAP) coding
scheme covering 21 such “major topics”. The article has a dual aim. First, we
intend to assess the potential performance gains using deep learning-based
large languagemodels on this typical comparative politicsmulti-class classi-
fication task versus well-established machine learning algorithms. Second,
we showcase a possible workflow that leverages machine translation and
transfer learning to allow classification across language domains between
two low-resource languages (in our use case: Hungarian and Polish).

We assume that this setup (using machine translated input data and the
state-of-the-art English language monolingual models) yields competitive
classification results with those of small resource language monolingual
models (such as an available Polishmodel, whichwas pre-trained on limited
data) and multilingual models. An additional competitive advantage of the
machine translation setup is its relatively low cost and good scalability vis-
á-vis pre-training new monolingual or multilingual LLMs. We apply the
fine-tuned large language models to the standard CAP text classification
task into various topics or categories. While this task is relatively simple
compared to question answering or text generation, it is still widely used in
social science literature.

The transfer learning aspect of large language models happens during
the fine-tuning process, which updates the pre-trained model’s general
language understanding with the domain-specific context (in our use case:
laws and bills). The involvement of machine translation solves the cross-
language domain barrier and serves as an (at least) second-best approach
whenever monolingual models are unavailable for the given language (or
multilingual models are not providing adequate performance). Overall,
this approach allows for fine-tuning large pre-trained models, which means
lower overall costs and better performance compared to traditionalmachine
learning approaches and (certainly on the cost, but also possibly on the
performance and reliability part) human coders.

The proposed workflow demonstrates a viable solution for applying a
transfer learning framework for low-resource languages and achieving state-
of-the-art classification results with minimal start-up costs. Our results
show that the fine-tuned Transformer models outperform the supervised
learning benchmarks (Support Vector Machines, Naïve Bayes, and Random
Forest) in precision, recall, and accuracy. Moreover, we find that in the case
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of low training data sizes (often associated with low-resource languages),
the monolingual English BERTmodel combined with machine translation
outperforms the larger multilingual models (such as XLM-RoBERTa) on the
benchmark of macro F1 scores. In sum, using English as a bridge language
ameliorates the data scarcity problem in low-resource language contexts.

In what follows, we first give a brief overview of the applications of super-
vised text classification in the literature, showing thepath frombag-of-words
models to the current neural network architectures. Next, we present the
training and target data andmodel selection. The subsequent section de-
tails the results of various models on the target corpus, showing that our
workflow using machine translation and large language models is a valid
solution to this sort of resource bottleneck in comparative research. The arti-
cle concludes by assessing the relativemerits of the proposed deep learning-
andmachine translation-based approach vis-á-vis bag-of-words andmono-
lingual models.

Leveraging the Transformer revolution in compara-
tive research
Machine learning has been part of the political science toolbox for over three
decades (Schrodt, 1990, 1991). The applications of this toolkit range from
methodologically focused works (Montgomery et al., 2012), and conflict
studies (Perry, 2013) to electoral and voting studies (Peterson & Spirling,
2018). The text-as-data approach has gainedmomentum in political science
in the past decade (Cardie & Wilkerson, 2008; Grimmer & Stewart, 2013;
Monroe & Schrodt, 2008; Wilkerson & Casas, 2017). While a wide variety of
research now uses supervised learning as part of the research design, there
is a limited selection of studies which use text-as-data in a comparative
setting and even fewer using the latest development: Transformer LLMs.

One of the widely used comparative coding schemes in political science
is the codebook of the Comparative Agendas Project. In this system, one
document (e.g., a law or a newspaper article) is assigned one and only one
major policy topic code, such as macroeconomics or health care, out of a
total of 21. There have been cases where supervised techniques were used to
classify documents using the Comparative Agendas Project codebook, but
themajority of such projects still rely on expert coders (a pointmade by, e.g.,
Loftis and Mortensen (2020) and Sebők and Kacsuk (2021)). Recent research
using supervised learning and the CAPmajor topic categories use Support
Vector Machines, Random Forest, Logistic Regression or Naïve Bayes (Bar-
berá et al., 2021; Dun et al., 2021; Hillard et al., 2008; Loftis & Mortensen,
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2020; Sebők & Kacsuk, 2021). As the performance of the bag-of-words mod-
els started to plateau, social scientists started to branch out towards more
complex representations of texts, such as word embeddings (Rodriguez &
Spirling, 2021). In recent research, multilingual sentence embedding was
successfully applied to manifesto classification tasks as results surpassed
the traditional machine learning models’ performance on translated texts
(Licht, 2023).

Current state-of-the-art results are achieved using large pre-trained lan-
guage models. New architectures based onmulti-layer bidirectional Trans-
formers (Vaswani et al., 2017) were deployed in speech analysis (Latif et
al., 2018; Yang et al., 2017) and various NLP problems (McCann et al., 2018;
Pikuliak et al., 2021; Radford et al., 2018; Raffel et al., 2020). Eventually, the
flexible BERTmodel (“Bidirectional Encoder Representations from Trans-
formers”) was presented by Devlin et al. (2018), demarcating a turning point
in NLP development and opening up the era of foundational models that
are “the common basis from which many task-specific models are built via
adaptation” (Bommasani et al., 2021).

Transformer architectures leverage the attentionmechanism introduced
by Vaswani et al. (2017), which allows the model to create weights according
to the importance of a given token in its context.1 While an increasing
amount of Transformer models are released on an ongoing basis, our focus
here is on the seminal BERTmodel and its variants, as they have a proven
track record when fine-tuned for multi-class classification tasks. By using
the bidirectional self-attention mechanism, BERT can utilise each word’s
context to a greater extent. The bidirectional part means that the model
can better understand the role of the word in a given context, leading to
improved results.

The BERTmodel is also available in a multilingual version (often called
mBERT) pre-trained on 104 languages. For RoBERTa (Robustly Optimised
BERT Pre-training Approach), Liu et al. (2019) re-evaluated the BERT pre-
training, and they found that better model performance depends on longer
pre-training time, larger batch sizes of data, removing the next sentence pre-
diction phase from the pre-training process, longer sentences and dynami-
cally changing themasking pattern. As a continuation of this work, Conneau
et al. (2019) released the XLM-RoBERTa model, a multilingual model that
surpassed the mBERT performance on a wide range of benchmarks. It is
pre-trained on CommonCrawl data containing 100 languages.

While fine-tuned versions of these models held the record for state-
1For an in-depth discussion of the attention mechanism, see Vaswani et al. (2017).
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of-the-art results on various tasks at various points, in real-life research
contexts, it is not always feasible to fine-tune larger models while, at the
same time, smaller models can yield comparable results to their larger vari-
ants. The DistilBERT model uses knowledge distillation, compressing a
teacher model into a lighter-weight student model by transferring valuable
knowledge (Hinton et al., 2015; Kim & Rush, 2016). Distilling has already
been used to create smaller and faster versions of large pre-trained models
with tolerable loss of efficiency. DistilBERT (Sanh et al., 2019) is a reduced
form of BERT with 40% fewer parameters and 97% retained performance.

One major limitation of the language models mentioned above is the
limitation on the length of text they can process. With BERT-based models,
the upper limit for the input that the model can deal with is 512 tokens,
but two tokens are reserved for special tokens (representing the start of a
sequence with “[CLS]” and the end with “[SEP]”). The pre-trained BERT-
large model has 24 layers (Transformer blocks), a hidden size of 1024, 12
self-attention heads and 340 million total parameters (Devlin et al., 2018).2

A so-called Longformer model was developed to mitigate this shortcoming
and allow for longer input texts (Beltagy et al., 2020).

NLP applications of pre-trained language models also include topic la-
belling (Béchara et al., 2021). The point of departure for Béchara et al. (2021)
was to tackle the outstanding problems of traditional topic models: scalabil-
ity, human bias in labelling topics, and severely limited replicability. Their
suggested remedy implements automatic labelling using already available
and recognised codebooks as the model knowledge base to “automatically
transfer existingdomain-specific knowledge to theprocess of topic labelling”
(Béchara et al., 2021, p. 2). Similar attempts to move forward with transfer-
ring knowledge across different languages are few and far between. In one
of the existing studies, Pires et al. (2019) show a high level of performance in
cross-lingual generalisation. Moreover, what is particularly important for
our current research design, their results holds even in the case of a limited
topological similarity between given languages.

Another methodological reference point for the current project is the
usage of pre-trained language models for knowledge transfer from one cor-
pus to another via fine-tuning. This approach, known simply as transfer
learning (Glorot et al., 2011; Thrun, 1998), allows for introducing flexibility in

2There is a smaller version called BERT-base, which has 12 layers, hidden size of 768 and 12
self-attention heads, and 110 million total parameters. This model was created mainly to be
comparable to the GPTmodels. However, Devlin et al. (2018, p. 6) reports that “[...] BERT-large
significantly outperforms BERT-base across all tasks, especially those with very little training
data.”

6 VOL. 5, NO. 2, 2023



COMPUTATIONAL COMMUNICATION RESEARCH

terms of dealing with the feature space of the source and target domains.
This framework has been successfully applied in research designs since the
mid-1990s (Pan & Yang, 2010; Raffel et al., 2020). For example, Burscher et al.
(2015) coded policy issues in news articles and parliamentary questions via
supervised machine learning to generalise across contexts. However, their
study was based on highly context-dependent training data that decreased
the model’s generalizability.

Others used Wikipedia document titles as label candidates for topics
(Bhatia et al., 2016). Then, they computed word and document embeddings
to select the most relevant labels automatically. The approach they named
“NETL” (neural embedding topic labelling) outperformed state-of-the-art
topic labelling frameworks in terms of simplicity and efficiency. Sun et
al. (2019) tried to take advantage of avoiding training a new model from
scratch. They applied a three-step fine-tuning solution for BERT for text
classification tasks with satisfactory performance. Also, Wu and Dredze
(2019) proved BERT to work well when properly fine-tuning its parameters
across wide-ranging NLP tasks, from natural language inference, document
classification, named entity recognition, and part-of-speech tagging, to
dependency parsing.

In this paper, we aim to combine the transfer learning capabilities of the
Transformer architecture with neural machine translation (NMT). Machine
translation has been shown to work well with machine learning models,
and one of our aims is to extend these findings to the newer deep learning
models (De Vries et al., 2018). As a new approach, neural machine trans-
lation has already shown promising results that outperform the previous
solutions of Statistical Machine Translation (Bojar et al., 2016). From a prob-
abilistic perspective, translation is equivalent to finding a target sentence
Y that maximises the conditional probability of Y given a source sentence
X. NMT approaches fit parameterised models to maximise the conditional
probability of sentence pairs using a parallel training corpus.

Once the conditional distribution is learned by a translation model,
given a source sentence, a corresponding translation can be generated by
searching for the sentence that maximises the conditional probability. As
Sutskever et al. (2014) have found, recurrent neural network (RNN)basedma-
chine translation models using LSTM (long short-termmemory) units can
achieve similar results to phrase-based translation systems. Cho et al. (2014)
presented an encoder-decoder-based solution which further improved the
performance of neural machine translators. Bahdanau et al. (2014) used
an attention mechanism instead of RRN layers, further improving the effi-
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ciency of NMT. Building on the recent seminal contributions by Vaswani
et al. (2017), transformer-based solutions have become themost widely used
NMTmodels, using elements of both the encoder-decoder architecture and
the attention mechanism to outperform previous solutions.

As this brief overview shows, the intersection of the NLP and social sci-
ence field has been using various text-as-datamethods extensively; however,
the application of pre-trained language models has been a relative rarity
in this literature. We aim to contribute to narrowing this gap by showing a
possible way to leverage newmethodological developments and providing
a research design to apply these models in a comparative setting.

Data andmethods

Fine-tuning data

In craftingour researchdesign, our goalwas to create a classificationpipeline
that allows us to leverage the transfer learning strengths of the pre-trained
and fine-tuned large language models to cover the language barrier (via
machine translation) and solve the underlying CAP-style policy topic clas-
sification task. We evaluate four methodological approaches for this task:
traditional machine learning algorithms, input languagemonolingual LLMs
(such as a PolishBERT),multilingualmodels andour proposed setupof com-
bining machine translated input texts and state-of-the-art English language
monolingual models.

For testing purposes, we used Hungarian laws and bills (introduced but
not necessarily adopted legislative texts) as the training dataset for fine-
tuning the Transformer models (bar PolBERT, see below). Based on prior
research (Sebők et al., 2020), we assumed that each bill has the same label as
the enacted law, so the bills inherited their labels without additional need
for human coding (this means that, on average, even though the text of the
bill changed during the legislative process, its overall policy emphasis did
not). As for the training corpus for fine-tuning the language models, we
used a corpus containing a total of 7794 units (4088 laws and 3706 bills).3

The documents’ timeframe was between 1990 and 2018.
There are 20 Comparative Agendas Project major topic labels in our

dataset ranging from education to defense.4 The distribution of categories
in the hand-coded Hungarian data is highly uneven, as not every domain

3The labelling of the datawas done on the original documents by nativeHungarian speakers,
with a minimum of two coders for each item.

4The dataset available did not contain the category of “Culture” (21).
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received equal attention from lawmakers. It is well-documented in the liter-
ature that this issue persists across domains as CAP-codedmedia corpora
are naturally imbalanced (Boydstun, 2013; Sebők & Kacsuk, 2021). The distri-
bution of documents across major topics (both for the training and target
data) is shown on Figure 1.

Figure 1: Major topic distribution in hand-coded training and target data

We used this hand-coded dataset to fine-tune the Transformer models.
Pre-processing steps included cutting the boilerplate sections (using reg-
ular expressions) from the beginning of the documents. Eliminating the
boilerplate is necessary to maximise the information content of the first 512
tokens. The BERT tokenizer algorithm splits words into multiple tokens (in-
cluding punctuation).5 We applied the standard pre-processing steps for the
machine learning models competing with LLMs: lowercasing, eliminating
punctuation, special characters, numbers, and stop words (Grimmer et al.,
2022). We also used TF-IDF weighting when creating the document-feature
matrix from the corpus.

Target data

The Polish target dataset consists of all statutes in force as of September 1,
2021, except those consisting only of amendments to other laws and those

5For example, the BERT tokenizer from the Transformers library will tokenize the “GPU”
word into [“gp”, “##u”] tokens, as GPU is not part of the BERT tokenizer’s vocabulary. The “##”
indicates that the token is split from the preceding one.
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giving parliamentary consent to ratification of international agreements
(due to their boilerplate nature). While the selection criteria for the training
and target data differ (date of adoption vs date in force), that should have no
real effect on themeaningfulness of our experiment. The key is applying the
same coding system to similar texts (laws and bills) in comparable political
systems.

The statutes and their official consolidated texts have been scraped from
the ISAP database (the Internet System of Legal Acts), with texts processed
using the any2txt python package. The starting target dataset consisted of
1014 items and covered the totality of parliamentary legislation in effect in
September 2021. In line with the literature, we consider the gold standard for
such classification exercises to be double-blind expert coding. Therefore,
we selected the 705 pieces of legislation where such an agreement had been
reached between at least two independently working expert coders.

It is also notable that individual proposals’ policy coherence (as well
as their length) may vary drastically. This means that a certain level of
disagreement over the dominant policy topic (as there can only be one label
per unit) of the text is natural (as many laws cover a mixture of topics). We
mitigated this issuebyonly considering the laws forwhich at least two coders
agreed. As Figure 1 shows, the target dataset’s distribution is very similar to
the training set’s: it is highly imbalanced between categories. There are some
discrepancies between the training and target set in terms of category sizes,
but the largest category for both is Government Operations and the smallest
is Immigration. As such, the datasets pass a face validity test. Furthermore,
the descriptive statistics of the two datasets are also reasonably resembling,
with units of the Polish target data being slightly longer on average (see Table
1).

Table 1: Descriptive statistics of the training and target datasets

Sample size Median word count Std.dev. word count

Hungarian training data 7794 585 204.92

Polish target data 705 612 174.76

Model selection and functions

The article’smain goal is to evaluate four available options to solve the classi-
fication task related to a language with limited NLP resources (Polish) when
assigning a single policy topic to each law and bill in our target dataset. Tra-
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ditional machine learning algorithms, input language monolingual LLMs
(such as a Polish BERT), multilingual models and our proposed setup of
combining machine translated input texts and state-of-the-art English lan-
guage monolingual models were deployed to establish a performance rank
order amongst them.

In the first step, to limit the number of LLMs deployed, we ran experi-
ments on the bigger hand-coded Hungarian source dataset used for fine-
tuning most of the models. Table 2 provides an overview of all models
used in this article and their respective functions in the research design
(whether they serve a benchmarking or evaluation role). The benchmarking
phase (see first seven models) yielded valuable insights into which models
to keep for the later evaluation steps. The choice between various models
partly hinges on a trade-off between performance and available computing
resources. The BERTmodel is pre-trained on a large corpus of the BooksCor-
pus, with 800 million words (Zhu et al., 2015) and English Wikipedia, with
2500 million words. We accessed the pre-trained model through Hugging
Face’s Transformers library (Wolf et al., 2019).

Table 2: The large language models used and their functions

Model Size Language Fine-tune data Target

Benchmarking

BERT Base EN HU translated to EN HU translated to EN

BERT Large EN HU translated to EN HU translated to EN

HuBERT Base HU HU HU

RoBERTa Base EN HU translated to EN HU translated to EN

DistilBERT Base EN HU translated to EN HU translated to EN

XLM-RoBERTa Large Multi (100) HU, HU translated to EN HU, HU translated to EN

Evaluation: Monolingual vs. Multilingual

PolBERT Base PL PL original PL original

XLM-RoBERTa Large Multi (100) PL, HU original PL, HU original

mBERT Base Multi (104) PL, HU original PL, HU original

Evaluation: Original language vs Machine translated

BERT Base EN HU translated to EN PL translated to EN

BERT Large EN HU translated to EN PL translated to EN

HuBERT Base HU HU PL translated to HU

Using a pre-trained model means that the heavy lifting of the unsuper-
vised pre-training using a large amount of computational resources and
trainingdata is alreadydone, andwe can rely on thismodel to addour (signif-
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icantly smaller) domain specific corpus to fine-tune the model. Fine-tuning
relies on the same architecture and is considerably faster and cheaper than
pre-training–this constitutes the first added value of deep learning models
that we leverage in our research design. Table 2, therefore, also provides
information on the data used for fine-tuning the model as, on multiple
occasions, the samemodel was fine-tuned on different data sources.

In order to establish benchmarks for the evaluation phases of our re-
search design (on the Polish target data), we first compared the performance
of the large and base variants of the English-language monolingual BERT,
huBERT (a comparablemodel pre-trained onHungarian data), as well as the
RoBERTa and DistilBERTmodels strictly on the Hungarian language input
dataset. Themultilingual XLM-RoBERTa (in the large version) was also used.
These benchmarks helped evaluate model performance for the baseline
(input language monolingual, multilingual) and the machine translated
track of our research design.

Based on the results of the benchmarking phase (see below), we selected
a more limited set of models for the evaluation phases. For the first eval-
uation phase related to comparing monolingual and multilingual model
performance on the Polish target data, we used a (base-sized) Polish BERT
model (PolBERT – Kłeczek (2020)),6 as well as somewidely usedmultilingual
models, including XLM-RoBERTa (large) and mBERT (only base version ex-
ists). The Polish and Hungarian BERTmodels match the BERT-base model
in their architectures (containing 110 million parameters); however, they
use considerably smaller training data. The original BERT-base model was
pre-trained on a 3,3 billion word corpus, whereas the Polish model used 1,8
billion, and the Hungarian model around 1 billion words.7

Bridging the cross-language domain with machine transla-
tion

In the second phase of the evaluation, we also added English languagemod-
els to the competition after the supplementary step of machine translation.
Our workflow is charted in Figure 2. The key problem that this combination
of language models andmachine translation addresses is that in compar-
ative research designs for low-resource languages, there may not be a pre-

6The Polishmodel was pre-trained on the Polish subset of ParaCrawl, Open Subtitles, Polish
Wikipedia snapshot, and the Polish Parliamentary Corpus. More details can be found in its
HuggingFace repository: https://huggingface.co/dkleczek/bert-base-polish-cased-v1..

7For details on the original BERT pretraining data see Devlin et al. (2018), for HuBERT’s see
Nemeskey (2020).
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trained LLM available or available models might lack scale regarding their
pre-training. We used the English language as a common denominator be-
tween the different source languages to exploit the strengths of Transformer
models. De Vries et al. (2018) demonstrated that usingmachine translation is
a valid tool for comparative researchers as using translated text for machine
learning models yields similar results to gold standard human translation.
Based on our results, this insight also carries over to research designs based
onmodern large language models.

In Step 1, the open-source neural machine translation (NMT) model
called Opus-MT was used to translate the Hungarian and Polish documents
to English (Tiedemann & Thottingal, 2020). We decided on Opus-MT as
an NMTmodel since it is an open-source, non-commercial project that is
freely available regardless of the document length that needs to be trans-
lated. Based on our measurements, it achieves similar results to popular
translation models, such as Google Translate and DeepL, without the costs
of scaled-up projects (see Table B1 in the Appendix).

Figure 2: The classification workflow using machine translation and Transformer models

In Step 2, during the fine-tuning step, we tokenised our documents
and limited the length of each document to 512 tokens.8 Contrary to ma-
chine learning algorithms, which use document-feature matrices as inputs,
Transformer models do not require extensive pre-processing as the model
utilises all of the contextual environment of each token. Fine-tuning the
BERT model uses the same architecture as the pre-training step with the
important distinction that pre-training is unsupervised, and fine-tuning is

8The text pre-processing and tokenization was done with the transformers library (Wolf
et al., 2019).
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a supervised process. In Step 3, we saved our fine-tuned model and used
it to classify the translated Polish laws. Finally, in Step 4, we evaluated the
out-of-sample performance of our models using the test dataset set aside
from our original translated corpus of Polish laws.

Benchmark results for the source data andmodel
selection
In order to establish expectations as to how well various large language
models would perform compared to frequently used supervised learning
methods in the literature, we ran a series of tests on the comparatively
larger dataset for Hungary. This exercise allowed for the narrowing down of
the modelling options for the virgin Polish data based on empirical results
for another “small” language with relatively limited language technology
resources.

First, we carried out the classification exercise using various bag-of-
word models. Since these models do not limit the size of the inputs, we
used the full documents. These baseline models included the Naïve Bayes
classification (NB), Support VectorMachines (SVM), andRandomForests. In
all three cases, we applied the customary bag-of-word pre-processing steps:
lowercasing, removing stop words, numbers, punctuation, line breaks and
other superfluous whitespaces. In each case, we applied TF-IDF weighting
to the document-feature matrix.9 In order to focus on LLMs, we limited
the application of machine learning algorithms to the translated texts to
establish benchmarks for the relative performance of the translation-based
workflow of Figure 2 (we expect that these algorithms will have suboptimal
results vis-á-vis LLMs regardless of input language).

In order to decide which Transformer models to use on the target lan-
guage (Polish) data, we also measured their fine-tuned performance on the
source dataset (original and English-translated Hungarian bills and laws).
We fine-tuned and validated 6 models (BERT Large, BERT Base, HuBERT,
RoBERTa, XLM-RoBERTa Large and DistilBERT).10 Out of these, HuBERT
and the multilingual XLM-RoBERTa models were tested on original Hun-
garian data, while all models (except for HuBERT) were also run for the
English-translated Hungarian dataset. Adding HuBERT (Nemeskey, 2020)
to the mix allowed for directly gauging the information lost in translation

9The application of the machine learning models and the TF-IDF weighting was handled
with the scikit-learn library (Pedregosa et al., 2011).

10The BERT-based models were fine-tuned on the first 512 tokens of the documents. We also
carried out robustness checks for various input data (see below – detailed results are presented
in Appendix A). We used uncased versions for all models.
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and learning how well smaller pre-trained BERTmodels for low-resource
languages perform compared to the larger English BERTmodels.11

It is also important to note that several hyperparameters affect model
performance. We found that the most impactful parameters are batch size
(the amount of data used for a round of input to the neural network) and the
learning rate for the Adam optimiser with decoupled weight decay. The role
of the optimiser is to update the neural network’s weights during the training
process. In line with findings on fine-tuning BERTmodels, we randomised
the training data order and experimented with various random seeds as
part of the hyperparameter tuning process (Dodge et al., 2020). The final
pre-trainedmodels were initialised with a learning rate of 2e-5, batch size of
4, and a dropout rate of 0.1 for the final classifier layer to avoid overfitting.
We fine-tuned the models for 3 epochs using a Tesla V100 GPU (available
hardware resources limited the parameter-tuning experiments).

Table 3 compares the performance of machine learning models and
deep learning-based LLMs for the classification task on (original or English-
translated) Hungarian source data. It shows the dominance of the Trans-
former models compared to traditional machine learning approaches. De-
pending on evaluation metrics, there are some exceptions, such as the F1
score provided by SVM and the precision achieved by the Random Forest.
However, SVM only surpasses the multilingual XLMmodel applied to trans-
lated data, a suboptimal combination. Furthermore, in the case of high
Random Forest precision, this result is achieved in a trade-off with recall,
resulting in the second-lowest F1 score.

Overall, the machine learning models’ performance is similar to studies
using similar data and coding schemes. Recent researchusing theCAPmajor
topic categories achieved a precision between 0.65 and 0.71, using Random
Forest, Logistic Regression or Naïve Bayes (Barberá et al., 2021; Dun et al.,
2021; Loftis & Mortensen, 2020). Further evidence shows that dedicating
considerable computational resources to single language classificationusing
a voting ensemble of SVMmodels plateaus around a precision of 0.85 and a
recall of 0.60 (Sebők & Kacsuk, 2021; Sebők et al., 2021).

When it comes to the selection of LLMs, we implemented widely used
models with both original and translated data (where applicable). Regarding
F1, HuBERT performed best, with XLM-RoBERTa on the original language
data coming in a close second. RoBERTa and the two BERTs showed similar
results. The remaining deep learning andmachine learning models were

11TheHungarianmodel was pre-trained on theHungarian subset of the CommonCrawl data
(including a snapshot of the Hungarian Wikipedia). For more details, see Nemeskey (2020).
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Table 3: Benchmarking: Macro F1 performance of models on Hungarian data

Model Accuracy Precision Recall Macro F1

HuBERT-base HU→ HU 0.825 0.831 0.826 0.825

XLM-RoBERTa HU→ HU 0.840 0.830 0.820 0.819

RoBERTa hu-EN → hu-EN 0.819 0.823 0.820 0.816

BERT-large hu-EN→ hu-EN 0.818 0.811 0.825 0.814

BERT-base hu-EN→ hu-EN 0.806 0.814 0.786 0.787

DistilBERT hu-EN → hu-EN 0.799 0.782 0.780 0.778

Support Vector Machines hu-EN→ hu-EN 0.753 0.743 0.758 0.747

XLM-RoBERTa hu-EN → hu-EN 0.770 0.740 0.740 0.736

Random Forest hu-EN→ hu-EN 0.714 0.853 0.638 0.700

Naïve Bayes hu-EN→ hu-EN 0.664 0.703 0.666 0.652

Note: Themodel name indicates the transformermodel, its size, translationdirection
in the training data and translation direction in the target or test data. E.g., “BERT-
large hu-EN→ hu-EN” is a BERT transformer, large size, using English training data
translated from Hungarian (lowercase indicates the provenance of the data, and
uppercase indicates the language that it was translated into), used to predict labels
for test data translated fromHungarian to English.

relegated to the lower half of the table (DistilBERT and XLM-RoBERTa on
translated data). The models in Table 3 in bold were selected for evaluation
on the Polish target data. We retained all machine learning models to gain
additional insights into their suboptimal performance, and we also kept the
best-performing LLMs (except for RoBERTa, which showed almost identical
performance as the BERT large).

Evaluation results for the target data

Model comparison

We conducted amulti-step experiment to assess the performance of the four
competing approaches on the low-resource Polish dataset (with significantly
more limited fine-tuning data than in the Hungarian case). In the first
step, we compared six Transformer models and three machine learning
models (seeTable 4). The results show thatTransformermodels substantially
outperform the popular machine learning approaches. This is mainly a
function of the difficulty of the task at hand. A major drawback of the bag-
of-words-based models is that all contextual information is lost, and if the
target data contains a significantly different set of words than the training
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data, poor performance is likely.

Table 4: Performance on the Polish target data

Model Accuracy Precision Recall Macro F1

BERT-large hu-EN → pl-EN 0.777 0.747 0.766 0.750

BERT-base hu-EN → pl-EN 0.780 0.714 0.762 0.727

HuBERT-base HU → pl-HU 0.780 0.570 0.580 0.559

mBERT-base PL → PL 0.610 0.571 0.567 0.554

Support Vector Machines hu-EN → pl-EN 0.552 0.563 0.500 0.503

Naïve Bayes hu-EN → pl-EN 0.587 0.581 0.539 0.501

PolBERT-base PL → PL 0.704 0.489 0.486 0.475

XLM-RoBERTa-large PL → PL 0.610 0.350 0.470 0.379

Random Forest hu-EN → pl-EN 0.365 0.537 0.229 0.258

Note: Themodel name indicates the transformermodel, its size, translationdirection
in the training data and translation direction in the target or test data. E.g., “HuBERT
HU→ pl-HU” is a HuBERT transformer, base size, using original Hungarian training
data (no translation) used to predict labels for test data translated from Polish to
Hungarian (lowercase indicates the provenance of the data, and uppercase indicates
the language that it was translated into).

There are also significant differences between the Transformer results.
Using the BERT-base models, we can directly compare the performance of a
multilingual model, an English and an original (small resource) language
model (PolBERT). The results show that using the English BERT model
on the translated data yields the best results with a 0.75 macro F1 score.
Significantly, all other LLMs performed drastically worse, with HuBERT in
third place with a gap of 0.168 in macro F1.

To apply the HuBERT model, we translated the Polish data into Hun-
garian. This creates an additional choice which lowers translation costs
compared to the bridge language option (as only one set of translations
is necessary). Notably, the model’s performance is markedly lower than
the one tested with the original Hungarian data. This drop in the macro F1
score can result from the poorer machine translation quality between Polish
and Hungarian.12 While multilingual models (tested on the original Polish
data–mBERT and XLM-RoBERTa) also outperform the machine learning
alternatives, they still lag in performance versus the machine translation-
based alternative setup. Contrary to our expectations (based on the Hun-

12For translating the Polish laws to Hungarian, we used the Google Translate API, as the
Opus-MTmodel family does not have a Hungarian-Polish model trained. See also Appendix B.
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garian data results in Table 3), the XLM-RoBERTamodel underperformed
the multilingual BERTmodel.

An additional notable result is that, in contrast to the Hungarian BERT
model’s performance, the Polish BERTmodel significantly underperformed
the fine-tuned English model (despite being pre-trained on a Polish par-
liamentary corpus, among other sources). Furthermore, possibly due to
the dearth of training data for certain individual classes, the class-based
predictions behind the average F1 score contain 8 zeros with the obvious
impact of decreasing the average level (see more on this below). Using a
weighted average for the F1 score of PolBERT (which accounts for the small
test sample size) yields an F1 score of 0.67. In general, these smaller pre-
trainedmodels (vis-á-vis even the English language BERT base) are more
heavily impacted by the lack of extensive fine-tuning data (as indicated by
the difference between the size of the Hungarian and Polish training data).

Overall, a key takeaway is that the performance of various pre-trained
Transformer models varies significantly. This may be attributed to a slew of
factors. Larger models tend to outperform their smaller counterparts (as
in the case of BERT large and base). The superiority of models applied to
translated data may also be due to the higher relative quality of machine
translation to the quality of pre-training (which may be limited for small
resource languages for both monolingual and multilingual models). Fur-
thermore, the main bottleneck for all original language classification tasks
appears to be the small sample size for labelled data, for which even larger
multilingual models cannot compensate. We return to these issues in the
Discussion.

Class-level evaluation

With class-level performance analysis, additional insights into the factors
affecting model performance may be gained. Examining the results of the
state-of-the-art fine-tuned BERT Large model (fine-tuned with the first 512
tokens), Figure 3 shows that for 6 categories out of the 20, the F1 scores of
the model are better on the Polish target documents than on the Hungarian
out-of-sample test set.13 Notably, only 5 categories are below an F1 score
of 0.7, and there are 11 categories with a score above 0.8. On the one hand,
these results show that while, on average, there is some performance loss
when switching domains (from Hungarian laws and bills to Polish laws),
this is not equally distributed between the categories.

13These are: “Transportation”, “Housing”, “Foreign Trade”, “Energy”, “Defense”, and “Domes-
tic Commerce”.
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Ontheotherhand, the “Public Lands”, “InternationalAffairs”, and “Macroe-
conomics” categories have the poorest F1 scores in the target data while
having high F1 scores in the test data. The large discrepancy in these cat-
egories might result from varying policy emphases and political idiosyn-
crasies. Model performance, in this case, is undoubtedly a function of avail-
able data, as categories with the most documents have better F1 scores.14

Figure 3: Class-level performance differences for target and test data

Robustness checks for input data

We also experimented with various sampling methods and extractive sum-
mary approaches to see how data input impacts model performance. A
handy option for augmenting a small input dataset is to leverage more fea-
tures by adopting a so-called “sliding window” technique that rolls in the
text in batches. Alternatively, text summarisation algorithms can be utilised
for condensing longer texts. In order to provide robustness checks for the

14We checked this relationship with a bivariate regression and sample size had a statistically
significant effect on the F1 scores.
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above results, we experimented with these alternative input provision tech-
niques. As in most similar research, the baseline here is a truncated dataset
containing only 512 tokens from each document.

As a first alternative, based on the sampling test results, we created a five
to ten-sentence-long summary of each document in the training data and
used it as input. The extractive summaries of the original documents were
composed using the LexRank algorithm, a stochastic graph-based method
that relies on Eigen-vector centrality in a network of sentences (Erkan &
Radev, 2004). As a second alternative, to expose the whole training data to
the model, we sliced the documents into 512 token length subsets (resulting
in 229 390 observations). This implements the ’sliding window’ solution, as
the fine-tuning process allows the model to ingest the whole document in
512 token increments (Ding et al., 2020).

Table 5 shows the results for the Polish input data translated to English
and fine-tuned for the classification task with an English language BERT
large model. Results show that the baseline approach of using the first 512
tokens yields the best performance, with extractive summaries coming in
second and the sliding window method a distant third. One explanation
for the worse results for this latter may be that using the sliding window
training data may result in overfitting the model (despite using dropout
and randomised input during the fine-tuning). Additionally, it looks likely
that the starting segments of bills and laws provide a good prediction of the
main policy emphases of the entire document. These results also suggest
that creating a summary version of the laws dilutes the information content
and/or adds noise to the analysis and should be considered a secondary
choice vis-á-vis the 512 tokens approach (or, for specific use cases, even the
sliding windowmethod).

Table 5: Input data-based robustness checks for BERT large

Input data Accuracy Precision Recall F1

512 tokens 0.777 0.747 0.766 0.750

Extractive summary 0.757 0.718 0.734 0.714

Sliding window 0.677 0.675 0.630 0.622

In order to better tease out the language- and training-set size-specific
aspects of these results, we also ran additional experiments on the Hun-
garian data to evaluate the robustness of our results (see Appendix A and
B). In Appendix A, we supplemented the robustness checks regarding how
various training data forms (512 tokens, extractive summary, slidingwindow)
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affect various LLMs for the Polish dataset with an analysis of the Hungar-
ian dataset. The results in Table A1 show that for the translated Hungarian
data, the difference in F1 scores is relatively minor, with the sliding window
approach yielding the best macro F1 scores (except for RoBERTa). The 512
tokens approach comes in second for all models except for RoBERTa, which
performs best with this input. The most significant gap is for the original
Hungarian data, where the sliding window approach yields a 0.9 level per-
formance instead of the 512 token input’s 0.83. Depending on concrete input
data and research designs, settling on either the 512 tokens or the sliding
window approach should provide a safe choice.

As an additional robustness check, in Appendix B, we show results with
4 different versions of fine-tuning data that differ in category balances. The
tests show that data imbalance in the fine-tuning training set is not a severe
impediment to model performance. This also indicates that there is no
need for additional data augmentation or down-sampling in this case, as
the results are not significantly affected.

In the final robustness check for our machine translation-based work-
flow, we benchmarked the performance of theOpusMLmodel to twowidely
used alternatives, Google Translate and DeepL (see Appendix B). Using
all three services, we translated 98 Hungarian documents to English and
found that Opus’s mean similarity values (as measured in cosine similar-
ity) were close to those of the widely used commercial translation services.
We realised this similarity in output while leveraging the advantages of an
open-source project which can be deployed at no cost. These results further
buttress the viability of the proposed workflow for low-resource languages
and comparative projects with limited funding.

Discussion
The goal of this article was to demonstrate how the latest developments
in the field of natural language processing can be leveraged in compar-
ative social research. Recently developed Transformer or large language
models, with the proper fine-tuning for the specific task at hand, allow for
lower overall cost and better performance than traditionalmachine learning
approaches. To demonstrate the added value of these models in real-life re-
searchprocesses, weused several languagemodels to apply transfer learning
between translated Hungarian and Polish law texts using the Comparative
Agendas Project coding scheme. The language models were used to classify
legal documents (bills or laws) into one of the 20 CAP categories. While, this
task is not the most computationally complex or expensive (e.g., compared
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to question answering) in the NLP toolbox, it is nonetheless an important
step for comparative political research.

Our results showed that deploying such LLMs in various forms, such
as (a) multilingual models or monolingual models via (b) either a bridge
language or (c) directly (in case they are available and to the extent of their
training), served as a viable alternative to both hand-coding and traditional
machine learning algorithms. Given the similarity of these three options on
a Hungarian project used for benchmarking, we used a similar low-resource
language (Polish) for a shoot-out test to gauge their applicability in a com-
parative research design.

The results for the Polish project showed that using the English BERT
model on the translated data yielded the best results in terms of macro F1
score – and by a wide margin. This seemingly counterintuitive result points
to the current limitations of both monolingual and multilingual models
for so-called low-resource languages. Ranathunga et al. (2023) define low-
resource languages as “under resourced, low density, resource poor, low
data, or less resourced”. Joshi et al. (2020) classify languages into 6 categories,
from high-resource to low-resource. Here, the low-resource categories are
characterised by small or no labelled datasets, some unlabelled data (but
labelled data collection is challenging) and with some language support
community present. Examples of these categories include Slovene, Irish,
and Nepali. Based on this categorisation, Polish and Hungarian can be well
classified as low-resource languages.

However, the two projects in our research design show a different degree
of this resource limitation. The Hungarian benchmark project relied on a
better pre-trained model (trained onmore extensive andmore varied data
based on available descriptions), and the labelled data used for fine-tuning
was also significantly larger than in the Polish case. Based on our results,
the loss of information due to translation was more than compensated by
the gained accuracy of the leveraged (and significantly larger) Hungarian
labelled dataset. This points to machine translation as a critical resource
for comparative projects on low-resource languages with adequate labelled
data for at least a single language/country case of the sample.

Based on our experiment, the main bottleneck for solving the classifi-
cation task with original language input data is the small labelled data size,
for which even larger multilingual models (showing promising results on
the Hungarian benchmark case) cannot compensate. As the Hungarian
example shows, a relatively large amount of high-quality labelled data can
improve performance, even though Hungarian is still a low-resource lan-
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guage (in terms of, for instance, the pre-training scope of theHuBERTmodel
used and the limited variety of available models).

We can generalise some findings regarding the advantages and draw-
backs of the various modelling approaches based on the empirical results
from our experiment. As Table 6 presents, traditional machine learning al-
gorithms, still the default option for many automated classification projects,
cannot provide state-of-the-art results on most metrics of interest in the
age of LLMs. They have lower entry costs in terms of the learning curve and
computing needs,15 but for projects aimed at producing cutting-edge re-
search, they can no longer serve as the go-to solution for a variety of reasons
which contribute to worse performance than other solutions (such as their
limited capabilities to handle imbalanced input data).

Regarding the second option of monolingual Transformer models, the
critical distinction is between low- and high-resource languages. For low-
resource languages, both the pre-training scope of LLMs and the limited
availability of labelled data for any given task can prevent projects from
achieving state-of-the-art results (see the performance of PolBERT). While
they enjoy advantages vis-á-vis multilingual models (state-of-the-art per-
formance given sufficiently large, labelled datasets for fine-tuning), their
availability is not universal for all languages needed in comparative projects,
especially when it comes to their uniformity (for some languages, a pre-
trained large BERTmay be available, for others, only a base version).

As for the costs and learning curve associated with this option, the ade-
quate pre-training of monolingual Transformer models is costly and com-
plex as it requires an order of magnitude larger hardware and training data
than just the fine-tuning process alone. In contrast, the only step necessary
in workflows based on traditional machine learning algorithms is the super-
vised training of the model using the labelled dataset. Moreover, the fewer
resources a language has (in terms of the scope of pre-training and variety
of pre-trained models), the less likely it is to provide state-of-the-art results
on similar labelled datasets. Furthermore, while machine learning models
benefit from accessibility, as they are implemented in most statistical soft-
ware libraries and their training does not require specialised hardware, the
same is less true regarding LLMs.

Our results were also promising when it comes to the third option of
multilingual LLMs. For the benchmark Hungarian project, at least one such
model (XLM-RoBERTa) produced competitive results with the state-of-the-

15Having said that, at the time of writing, many options are available for utilizing free GPU
resources for fine-tuning LLMs. One of the notable such free GPU resources is Google’s Colab
service.
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Table 6: Advantages and drawbacks of classification approaches

Traditional ma-
chine learning
models

Monolingual
LLMs

Multilingual
LLMs

Machine trans-
lation + mono-
lingual English
LLM

Performance
for high
resource
lan-
guages

Lags behind the
state-of-the-art
when used with
high dimension-
ality data (such
as texts)

State-of-the-art
results

Comparable
performance
to monolingual
LLMs

State-of-the-art
performance
provided pre-
training and
fine-tuning data
is ample

Performance
for low re-
source
lan-
guages

Lags behind the
state-of-the-art
when used with
high dimension-
ality data (such
as texts)

Varying perfor-
mance due to low
resources and
limited availabil-
ity

Varying perfor-
mance due to low
resources and
limited availabil-
ity

State-of-the-art
performance

Learning
curve

More accessible
for the social
research commu-
nity

Fine-tuning re-
quires additional
training

Fine-tuning re-
quires additional
training

Fine-tuning re-
quires additional
training

Computing
cost

Cheap training
(no special hard-
ware need)

Special hard-
ware needs
(GPU for fine-
tuning), costly
pre-training, rela-
tively cheap (one
time) fine-tuning

Special hard-
ware needs
(GPU for fine-
tuning), costly
pre-training, rela-
tively cheap (one
time) fine-tuning

Special hard-
ware needs
(GPU for fine-
tuning), costly
pre-training, rela-
tively cheap (one
time) fine-tuning

Translation
cost

None None None May range from
free to large cost
(but lower cost
and better quality
is expected over
time)

Comparative
usage

Scales well:
adaptable to
any comparative
research setup

Language cover-
age is still scarce

Scales well:
adaptable to
any comparative
research setup
where languages
are covered by
the LLM

Scales well:
adaptable to
any comparative
research setup

Input
data sen-
sitivity

More sensitive to
data issues (e.g.:
unbalanced train-
ing data)

Robust to various
input data issues

Robust to various
input data issues

Robust to various
input data issues
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art. At the same time, performance dropped using the original Polish data:
all tested multilingual models performed in the 0.55 macro F1 score range,
significantly below the top performer monolingual models using translated
input (0.72-0.75 macro F1). This indicates that multilingual models can per-
form on par with monolingual models only given high quality and ample
labelled data. These findings underscore our contention that the machine
translation approachmay only be a stopgapmeasure given the pace of devel-
opment of LLMs. However, based at least on our current measurements, the
universal applicability of multilingual LLMs is still not a reality, especially
when it comes to low-resource languages.

These assessments of the three alternatives to the machine translation
track already highlight the potential of combining deep learning-based ma-
chine translation with LLMs following a similar Transformer design. This
approach yielded the best performance on our target Polish dataset for a
low-resource language with limited labelled data. One advantage of the
translation-based workflow and using English as a bridge language is that
this solution scales well for any pair of languages, given that translation
is possible. This is a significantly larger scope of languages than what is
currently available in the pre-trained LLM offering for low-resource lan-
guages.16

Moreover, there is no need for the expensive and complex pre-training
phase (as the case would be if one were to pre-train a model for a low-
resource language) as many cutting-edge English models are publicly avail-
able and ready for fine-tuning with domain specific texts. This is good news
for comparative researchers who have fairly large, labelled datasets in a
low-resource language (such as Hungarian in our example) and want to
carry out a comparative analysis using similarly low-resource languages
(Polish in our example).

The key drawback of this workflow is that machine translation can be
costly for large corpora in terms of monetary cost (if one uses a paid API
service such as Google Translate) as well as in terms of computational time.
Fine-tuning the models also requires specialised hardware that might be
hard to access (but that is no comparative disadvantage vs the other LLM-
based approaches). Moreover, given the availability of open-source so-
lutions (such as the one used in this article), this additional cost may be

16As an example, Opus-MT supports 187 languages (https://github.com/UKPLab/EasyNMT#
Opus-MT), while Google’s NMT engine supports 106 language pairs (https://cloud.google.
com/translate/docs/languages). The smallest range in our sample of services is offered
by DeepL, which supports just 29 languages (https://support.deepl.com/hc/en-us/articles/
360019925219-Languages-included-in-DeepL-Pro).
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mitigated in concrete research projects depending on a number of factors.
The translation step may also lead to a loss of context, but this concern did
not bear out in our experiments. Finally, we expect the unit cost of machine
translation to decrease over time and quality to increase. These potential
factors are reasons to keep the machine translation setup in the toolkit for
comparative projects.

In concluding our discussion, it is important to reflect on the dynamic
nature of the NLP field. Based on available research corroborated by our
findings, Transformer models are a meaningful improvement over the (cur-
rently) more widely used bag-of-words-based supervised learning methods
(especially in the light of how well they perform with a relatively small train-
ing sample). While the underlying Transformers and deep neural networks
might be more complex in theory than a regularised regression, implement-
ing these large language models is accessible to the wider research commu-
nity without the need to implement or pre-train the models from scratch.
This pre-trained nature of BERT and its peers’ most significant advantage is
that fine-tuning can be done on freely available computational resources.

The comparison of the three LLM-based research designs produces less
clear-cut judgements. Their practical performancemay depend on a variety
of factors ranging from the general state of theNLP-community for the target
languages to the availability of labelled data. Especially when it comes to
multilingual models, their pre-training is more resource intensive as it has
to include materials from several languages. However, this performance
gap is likely to disappear, and multilingual models may become the norm
over time. This would be a welcome development for comparative research.
Nevertheless, the critical bottleneck of an uneven availability of labelled
fine-tuning data for all target languages may still remain and will warrant
the continued search for alternatives.

Our proposed alternative relies on machine translation with all of its
benefits and limitations (the circumvention of which is a promising avenue
of research in and of itself). Despite these and similar potential deficiencies –
andnotwithstanding the fact that the computational social science literature
is still in the early stages of exploring Transformer basedmodels – our results
suggest major untapped potential in applying transfer learning using fine-
tuned large language models in comparative politics and beyond. This case
may be even stronger for low-resource languageswith limitedNLP resources
in general and task-specific labelled data in particular.

Finally, while our results prove the new approach of Transformermodels
to be an unmitigated success for a fairly common classification task (the
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classification of the policy topic of documents), this new approach is by no
means a silver bullet for all comparative classificationprojects. Usual caveats
about topic drift and domain shift still apply even for the Comparative
Agendas Project case, let alone for thoroughly different research endeavours.
For the case at hand, transfer learning across vastly different parliamentary
or legal systems is likely tohavepoorer results than transfer learningbetween
similar systems, such as theHungarian and Polish domains. The exploration
of these domain boundaries offers a fruitful avenue for future research.

Replicationmaterials: The results can be replicated using the following
repository: https://doi.org/10.6084/m9.figshare.24025845.v1
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Appendix A Transformer robustness checks
We supplemented the robustness checks regarding how various training
data forms (512 tokens, extractive summary, sliding window) affect LLMs for
the Polish dataset with an analysis of the Hungarian dataset. The results in
Table A1 show that for the translated Hungarian data, the difference in F1
scores is relativelyminor, with the slidingwindowapproach yielding the best
macro F1 scores (with the exception of RoBERTa). The 512 tokens approach
comes in second for all models except for RoBERTa, which performs best
with this input. The largest gap is for the original Hungarian data, where the
sliding window approach yields a 0.9 performance as opposed to the 512-
token input’s 0.83. Interestingly, the extractive summary only outperforms
the 512-token input version for the original Hungarian language data, once
again pointing towards the crucial role of the front segments of bills and
laws in predicting their policy topic.

Table A1: Robustness checks with Hungarian training data (macro F1 score)

Model 512 tokens Extractive
summary

Sliding win-
dow

BERT-Base (Translated Hungarian data) 0.79 0.69 0.83

BERT-Base-Hungarian (Original Hungarian
data)

0.83 0.88 0.90

BERT-Large (Translated Hungarian data) 0.81 0.75 0.83

DistilBERT (Translated Hungarian data) 0.78 0.71 0.83

RoBERTa (Translated Hungarian data) 0.82 0.76 0.79

As additional robustness checks for the Transformer models, in Table
A2, we focus on testing model performance with various data balancing
strategies. For this test, all of the training data is translated to English from
Hungarian. We tested the BERT-large model with completely balanced
down-sampled training data, augmented training data where we added
items to the smaller categories from the extractive summaries, and down-
sampled data where the categories larger than the mean category size were
truncated to the mean. The results show that BERT performance is robust
to fine-tuning data composition. While the best-performing model is fine-
tuned on the balanced dataset, the macro F1 score gain compared to the
imbalanced model is just 0.02.

For the category distributions for each variant, see Figure A1. As the fig-
ure shows, both the augmented and down-sampled versions show improve-
ments in terms of the more even distribution of topics over the unbalanced
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Table A2: Impact of data balancing strategies on model performance

Training data Accuracy Macro F1 score N

Augmented 0.83 0.83 12970

Balanced 0.85 0.84 3920

Down-sampled 0.81 0.81 5577

Imbalanced 0.83 0.82 7794

dataset. However, the gap between smaller and larger categories is still re-
tained due to the original data’s highly unbalanced nature. The trade-off
made for creating the perfectly balanced sample yields only 3920 documents
(as opposed to the 7794 observations in the imbalanced version).

Figure A1: Major topic distribution in different training data variants

MÁTÉ ET AL. 33



MACHINE TRANSLATION AS AN UNDERRATED INGREDIENT

Appendix B Translation robustness tests
For the translation-based workflows, we used the Opus-MT translation
model, which itself is based on the Transformer architecture. To bench-
mark the performance of the model (and provide a wider context in terms
of applicable machine translation resources), we translated 98 Hungarian
documents to English using Opus-MT and two widely used alternatives,
Google Translate and DeepL.

The average similarity values (as measured in cosine similarity) are pre-
sented in Table B1. According to the mean cosine similarity, the Opus-MT
model is slightly closer to the DeepL translations but achieves compara-
ble similarity to the Google Translate outputs as well (in both cases with a
similarly minor standard deviation). Based on this evidence, the chosen
open-source machine translation model’s performance tracks well those
of the widely used commercial translation services while offering the ad-
vantages of an open-source project which can be deployed at no cost.17

These results further buttress the viability of the proposed workflow for
low-resource languages and for comparative projects with limited funding.

Table B1: Comparing translation models

Translation engine pair Mean similarity Std.dev Minimum Maximum N

Opus-MT x DeepL 0.93 0.05 0.52 0.99 98

Opus-MT x Google 0.92 0.04 0.77 0.99 98

17For more information, the performance of the Opus-MT model on various benchmark
datasets can be checked here: https://opus.nlpl.eu/leaderboard/.
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