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Application of hydrogel for energy storage and conversion 
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A B S T R A C T   

Hydrogels have increasingly become a focus of interest within academic and industrial research spheres, 
particularly for their potential application in energy storage and conversion systems. This is largely due to their 
exceptional mechanical properties, inherent multifunctionality, and noteworthy biocompatibility. The goal of 
this review is to provide an in-depth analysis of the recent advancements made in the field of multifunctional 
hydrogels as applied to energy storage and conversion. The work reviews key factors that are critical to the 
functionality of hydrogels in energy storage and conversion processes, including mechanical strength, resistance 
to swelling, and conductivity. We explore contemporary methodologies for enhancing these essential properties. 
It provides insights into the existing and prospective uses of hydrogels in the realm of energy storage and 
conversion, specifically highlighting their role in supercapacitors, batteries, and ion thermoelectric systems. The 
present work anticipates potential future research trajectories, with an emphasis on the further development and 
application of hydrogels within energy conversion and storage systems.   

1. Introduction 

Novel approaches to energy utilization are critical in mitigating 
greenhouse gas emissions and addressing global climate change [1–5]. 
Low-grade thermal energy, which refers to energy with a temperature 
below 100 ºC derived from sources such as industrial waste heat or the 
human body, represents a promising and sustainable energy source [6, 
7]. The increasing demand for self-powered energy sources driven by 
wearable electrical devices has led to the concept of harvesting energy 
from the environment or the human body [8–14]. Hydrogels, which are 
three-dimensional hydrophilic polymer networks crosslinked by poly
mer chains, exhibit excellent mechanical properties [15]. With the 
doping of different redox couples, inorganic salts, or secondary poly
mers, hydrogels not only can provide pathways for charge carriers, 
demonstrating excellent conductivity but also provide large surface 
areas for active sites and abundant pendant groups for versatile function, 
as illustrated in Fig. 1. Under the induction of a temperature gradient, 
the relative movement of charge carriers causes redox couples to react 
on the hot and cold electrode plates, forming thermoelectric couples, or 
causes the charge carriers to accumulate on the hot and cold electrode 
plates, forming thermoelectric capacitors, which provide multiple pos
sibilities for the development of hydrogel thermoelectric systems [16]. 
Furthermore, hydrogels exhibit excellent biocompatibility, making 

them ideal for energy self-supply in flexible electrical devices [17]. In 
this paper, we review the latest advances in multifunctional hydrogels 
for energy storage and conversion. The discussion commences with an 
exploration of the mechanisms, adjustment methods, and research ex
amples concerning the mechanical properties, resistance to swelling, 
and conductivity of hydrogels. Subsequently, the applications of 
hydrogels in self-powered energy sources for flexible wearable electrical 
devices are introduced. These applications encompass supercapacitors, 
batteries, and ion thermoelectric systems, as illustrated in Fig. 2. Lastly, 
an overview of the prospects and challenges associated with hydrogels 
in the realm of energy storage and conversion is provided. Hydrogels are 
expected to find extensive applications in self-powered wearable elec
trical devices as well as waste heat harvesting and storage. 

2. Properties of hydrogels 

2.1. Mechanical characteristics 

Excellent mechanical properties are of paramount importance in 
broadening the application scope of hydrogels. Hydrogel-based super
capacitors or batteries serve as self-powered energy sources for wearable 
devices. Throughout the usage of these self-powered wearable devices, 
inevitable mechanical stresses, including tension, compression, and 
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repetitive bending, come into play, thereby imposing stringent re
quirements on their mechanical characteristics [69,70]. A tough 
hydrogel is generally defined as having a tensile stress between 0.1 and 
1.0 MPa and a fracture energy between 102~103 J/m2, as reported in 
previous studies [17]. High-toughness hydrogels with favourable me
chanical properties play a critical role in diverse fields, such as flexible 
electrical devices, soft robotics, tissue engineering, and various engi
neering applications [18]. The enhancement of fracture energy in most 
traditional hydrogels is mainly due to the energy dissipation around the 
crack under external forces. However, their mechanical strength and 
extensibility are often limited by the lack of effective energy dissipation 
mechanisms [19]. To address this issue, different toughening mecha
nisms can be added while maintaining the original configuration after 
deformation to effectively design and synthesize tough hydrogels. These 
tough hydrogels can dissipate significant amounts of mechanical energy 
in the bridging zone during crack propagation, thereby enhancing their 
mechanical properties [20]. The basic principle for designing tough 
hydrogels is to dissipate mechanical energy after undergoing large 
deformation while maintaining the original configuration. Currently, 
common design methods for tough hydrogels include establishing a dual 
network, a topological network, a sliding-ring structure, physical rein
forcement, and ion addition [21,22]. 

The concept of sacrificial bonds is currently the widely accepted 

mechanism for toughening hydrogels. In this mechanism, the first layer 
of the brittle network undergoes internal fracture during deformation, 
which reduces local stress concentration and dissipates energy in the 
crack. The second network, which is plastic, then fills the fracture space, 
enhancing ductility to maintain large deformation [23,24]. Highly 
entangled hydrogels with a fabric-like topology have been proposed by 
Suo et al. [25]. Common hydrogels have a crosslinked network as the 
main structure, resulting in a mesh topology. However, highly entangled 
hydrogels possess a fabric-like topology, which allows them to transmit 
tensile stress along the length direction of the polymer chains, dissipate 
elastic potential energy, and improve their tensile strength and tough
ness [26–28]. Elastomers are typically composed of long polymer chains 
that are interconnected through chemical crosslinking and physical 
entanglements to form a three-dimensional network. However, chemical 
crosslinking can make the polymer brittle, as suggested by the theory 
proposed by Lake and Thomas in 1967 [29], where toughness is 
inversely proportional to the square of the crosslink density. Physical 
entanglement, on the other hand, can maintain the good toughness of 
elastomers. When a highly entangled polymer network is stretched, 
entanglement points act as slip tracks, tension is transmitted along the 
chains, and it is transferred to other chains via entanglements. When a 
covalent bond breaks, the stored elastic energy is dissipated by the 
longer chains surrounding it, leading to relaxation of the network and 
preventing fracture of the elastomer, as shown in Fig. 3 [30]. Gong et al. 
proposed the introduction of force-sensitive moieties into double 
network polymers to trigger force-coupled reactions when the polymer 
is stretched near its breaking point, which enhances the overall length of 
the polymer chain and therefore greatly improves the toughness of the 
hydrogel. They added bicyclo[6.2.0]decene (BCD) to the double 
network gel, which caused substantial changes in its energy dissipation 
mechanism. With the addition of BCD, the breaking of the 

Fig. 1. Hydrogel network and functional additives including redox couples, salt 
ions, and additive polymers. 

Fig. 2. A graphical illustration of application of Hydrogel for energy storage and conversion.  
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four-membered ring does not propagate to the entire polymer chain 
during the stretching of the hydrogel, but releases the "pre-stored" 
length, increasing the total chain length by about 40%. Consequently, 
the hydrogel can be stretched by 40–50% more, exhibiting twice the tear 
energy and significantly improved toughness [31]. Zhu et al. proposed 
the reversible manipulation of the mechanical properties of hydrogels 
through ion-induced regulation of polymer chain aggregation. The 
ionically regulated hydrogels manufactured in their study showed an 
increase in tensile strength from 50 ± 9 kPa to 15 ± 1 MPa and an in
crease in elongation from 300 ± 100% to 2100 ± 300% [32]. 

The widely accepted mechanical testing methods for hydrogels 
include tensile testing, compression testing, pure shear testing, peel 
testing, single-sided notched testing, and tear testing. Among these 
methods, the axial tensile-unloading cyclic test is often employed to 
assess the fatigue resistance of hydrogel materials. A notable hysteresis 
in the stress-strain curve of hydrogels can be observed, which is indic
ative of the presence of numerous non-covalent interactions in the ma
terial that can be ruptured after tensile deformation, thereby consuming 
energy [33]. Additionally, the compression-unloading cyclic test is 
frequently used to investigate the fatigue resistance of hydrogels. When 
a material is elastic, loading and unloading occur along the same 
stress-strain curve and do not dissipate energy. However, hydrogels, 
being non-elastic, follow different stress-strain curves during loading 
and unloading, and the area enclosed by these curves represents the 
amount of dissipated energy per unit volume of the material [34]. Due to 
the uneven distribution of networks and crosslinks, conventional 
hydrogels often display minor cracks and defects, leading to brittle 
failure. Nevertheless, this energy dissipation mechanism can improve 
the strength, toughness, fatigue resistance, and notch insensitivity of 
hydrogels. 

2.2. Anti-swelling properties 

Most hydrogels are synthesized through hydrophilic polymerization. 
However, under high-humidity conditions, small molecule solvents can 
permeate and diffuse between the large polymer molecules, thereby 
weakening the intermolecular forces, leading to volume expansion and 
degradation of mechanical performance [35–37]. Hydrogels, charac
terized by high water content, permeability, and adaptability, exhibit 
excellent potential in diverse areas such as drug delivery, wound 
dressings, tissue engineering, and wearable flexible electrical devices 
[38–40]. Nevertheless, traditional hydrogels often display poor me
chanical properties and anti-swelling characteristics, which impede 
their practical applications. The swelling degree of hydrogels relies on 
the competition between the force of solvent permeation and diffusion 
and the force of polymer cross-linking network [41,42]. To control the 
expansion behavior of hydrogels, researchers have employed strategies 
such as increasing cross-linking density and adjusting the interaction 
between polymers and water. The use of nanomaterials and nanoparticle 

gel agents has been explored to increase the cross-linking density and 
control the swelling of hydrogels. Additionally, introducing hydropho
bic polymer chains into hydrogel networks can help modulate the 
interaction between polymers and water [43–45]. 

Liu et al. presented a supramolecular poly(N-acryloylglycylglycine) 
(PNAGA) hydrogel, in which the hydrogen bonding between the side 
chain amide groups was reinforced and reorganized, leading to an 
increased crosslinking density of the gel’s polymer network. The su
pramolecular interactions of the hydrogen bonding reached an equi
librium, resulting in a slight increase in water content after swelling but 
negligible overall volume change, indicating excellent anti-swelling 
ability properties [46]. Cui et al. developed a highly swell-resistant 
and mechanically robust poly(acrylic acid) (PAAc)/gelatin composite 
hydrogel via a synergistic effect induced by MXene activation and zir
conium ions (Zr4+) induction. MXene, mixed with the thermal initiator 
APS, generated a large number of free radicals at room temperature, 
which quickly initiated the polymerization of acrylic acid. Meanwhile, 
the Zr4+ in the precursor solution rapidly crosslinked the polymer chains 
to achieve fast gelation. To achieve anti-swelling ability, gelatin was 
simultaneously introduced into the system, and the dynamic hydrogen 
bonding between the gelatin and PAAc raised the upper critical solution 
temperature (UCST) of the hydrogel above room temperature, thereby 
realizing its anti-swelling ability at room temperature [47]. Inspired by 
the natural extracellular matrix (ECM), Wu et al. infiltrated a flexible 
long-chain polymer network into a rigid macromolecular framework 
(chitosan) and performed in situ polymerization, resulting in a 
controllable swelling water gel. The pre-made macromolecular frame
work acted as a skeleton to "lock" the water gel and limit its expansion, 
as shown in Fig. 4 [48]. 

2.3. Electrical conductivity 

The conductivity of hydrogels has become increasingly important in 
the context of the continuous development of flexible wearable elec
trical devices. Currently, the conductivity mechanism of hydrogels can 
be categorized into two types: electrical conductivity and ionic con
ductivity. Electrical conductive materials include conductive polymers, 
conductive nanomaterials, MXenes, and metal-based materials, while 
ion conductive materials include polyelectrolytes and electrolytes [49]. 

Electrical conductive hydrogels are formed by crosslinking conduc
tive polymers or conductive nanofillers into the hydrogel matrix, as 
shown in Table 1. The conductivity of the hydrogel is relatively low 
when the electron concentration is below the percolation threshold. To 
address this, a second network can be established in the hydrogel to 
enhance the electron concentration and establish a relatively low- 
resistance electrical transport pathway [59]. 

Conductive polymers possess notable characteristics such as good 
electrical conductivity, high water content, and low modulus, and are 
extensively employed in hydrogel manufacturing due to their adjustable 
conductivity and ease of synthesis. Zheng et al. have successfully created 
a SF/TA@PPy conductive hydrogel with stretch ability, skin 

Fig. 3. A schematic diagram showing the states of a highly crosslinked 
hydrogel with abundant entanglements, including the unstrained state, the 
strained state, and the energy-releasing state due to bond fracture. 

Fig. 4. schematic diagram of the working mechanism of the anti-swelling 
Hydrogel constraint by G-CS meshwork. 
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conformability, antibacterial properties, and biocompatibility by in-situ 
polymerization of conductive polymer polypyrrole (PPy) with silk 
fibroin (SF) and tannic acid (TA) in the same gel network. SF/TA@PPy 
exhibits excellent wet adhesion to different materials and possesses a 
broad operating range, high strain sensitivity, and fast resistance 
response [60]. Li et al. have proposed a "deswelling-in-situ assembly" 
approach to devise a double-network hydrogel, with a rigid and brittle 
PEDOT:PSS network serving as the first network, and a soft and 
stretchable PVA network acting as the second network, creating a 
hydrogel with a high conductivity (10 S/cm) and high stretch ability 
(150% fracture elongation). This hydrogel exhibits remarkable flexi
bility, biocompatibility, matching with tissue, and resolves the 
long-standing challenge of the electrical conductivity and mechanical 
properties of conductive hydrogels being imbalanced. This development 
has offered novel materials and ideas for the advancement of flexible 
bioelectronics [61]. 

MXenes, a type of two-dimensional transition metal carbides or ni
trides, possess excellent electrical conductivity, unique hydrophilicity, 
and abundant surface functional groups, which render them highly 
dispersible in the aqueous phase of hydrogels and capable of forming 
robust interactions with the polymer network, thus establishing stable 
pathways for electron transport [62]. Guan et al. proposed the incor
poration of MXenes and hydrolyzed keratin (HK) into hydrogel poly
mers, leading to the development of a hydrophobic cross-linked 
hydrogel with multiple desirable features. The resulting hydrogel 
exhibited outstanding conductivity, ultra-stretch ability (>2000%), and 
good self-adhesion, opening up new possibilities for the advancement of 
soft intelligent sensors [63]. 

Ionic conductive hydrogels are a type of hydrogel where ion salts are 
typically dissolved, resulting in a high concentration of free ions within 
the polymer network. The three-dimensional framework structure of the 
hydrogel enables the movement of these ions [64]. Yao et al. developed 
a semi-interpenetrating network (ICH) platform by incorporating carbon 
nanofibers (CNFs) into a phenylboronic acid ionic liquid (PBA-IL)/a
crylamide cross-linked network. The dynamic boronic ester bonds and 
physical interactions, such as hydrogen bonds and electrostatic in
teractions, within the cross-linked network enhanced the mechanical 
and electrical properties of the hydrogel [65]. 

Conductivity serves as a fundamental attribute of hydrogels as 
advanced intelligent materials, playing a crucial role in the storage and 
conversion of energy. 

3. Energy storage and conversion applications 

3.1. Supercapacitors 

Supercapacitors, which consist of a sandwich-like structure 
composed of two electrodes and an electrolyte, have attracted signifi
cant attention as an electrochemical sensor due to their fast charging 
and discharging, long lifespan, and excellent safety features [66], 
making them a promising technology for wearable electrical devices and 

energy storage and conversion equipment [67]. A high-strength and safe 
electrolyte is a crucial component in energy storage system design, and 
solid electrolytes have been widely investigated for this purpose [68]. 
Hydrogel electrolytes, as solid electrolytes with their diverse chemical 
composition, can be tailored to achieve different functions such as 
excellent pliability, high conductivity, leak-free behavior, 
high-temperature resistance, and tunable mechanical properties, 
providing more possibilities for energy storage device design and 
development. The high-water content of hydrogels enables the network 
to maintain solid stability while providing free ions with molecular 
dynamics similar to liquids, which favors the further development of 
flexible energy storage devices [69]. 

Zeng et al. have reported on the development of a hydrogel super
capacitor with arbitrary deformability and stable energy output, based 
on a double-network structure of polyacrylamide (PAM) and sodium 
alginate (SA) [70]. Carbon nanotubes and PEDOT:PSS were incorpo
rated to enhance the electrical conductivity and electrochemical prop
erties, while Na2SO4 inorganic salt and potassium 
ferricyanide/ferrocyanide [K3Fe(CN)6/K4Fe(CN)6] redox pairs were 
introduced to improve the ion conductivity and redox activity. The 
long-chain polymer SA was included to form a three-dimensional me
chanical support network through molecular chain entanglement and 
intermolecular interactions. The charge storage mechanism of the 
hydrogel supercapacitor is illustrated in Fig. 5, where K3Fe(CN)6/K4Fe 
(CN)6 facilitates the redox transformation to create ion channels for 
charge transfer and storage. The unique 3D crosslinked double-network 
structure provides excellent mechanical flexibility, enabling arbitrary 
deformation of the supercapacitor. The issues of poor mechanical per
formance and deformation capability in traditional hydrogels, which 
hinder their support for repetitive bending and twisting, have been 
addressed. The high ion conductivity of the hydrogel electrolyte and the 
charge storage mechanism induced by the redox pairs endow the 
supercapacitor with outstanding specific capacitance (232 mF/cm2 at 
5 mV/s and 128 mF/cm2 at 1 mA/cm2), energy density (3.6 μWh/cm2), 
and long cycle life (over 5000 cycles), providing inspiration for the 
development of self-powered wearable electrical devices. Furthermore, 
Wu et al. have utilized a multiscale structural engineering technique to 
fabricate MXene hydrogel capacitors, where the unidirectional freezing 
resulted in a vertically aligned layer-by-layer structure of MXene flakes. 
In comparison to MXene aerogels obtained by direct freeze-drying and 
MXene films formed by layer stacking, the ordered MXene hydrogel 
exhibited a high capacitance (393 F/g at 5 mV/s) and excellent rate 
capability (198 F/g at 1000 mV/s). The increased layer distance be
tween the vertically arranged MXene structures and MXene films led to 
improved diffusion and transportation of conducting ions, as well as an 
enlarged accessible surface area for ions. The MXene supercapacitors 
produced using this method had a honeycomb-like compartment 

Table 1 
Comparison of conduction range of hydrogels with different dopants.  

Materials Conductivity (S/m) Ref. 

PEDOT:PSS/ionic liquid 1 × 104 

[50] 
PEDOT:PSS 4 × 104 

[51] 
PAA/BaFe12O19 12.2 [52] 
PEDOT:PSS/alginate 87 [53] 
PPy/agarose 350 [54] 
PEDOT:PSS/PVA 1 × 104 

[55] 
MXene-cellulose nanocrystals-tamarind gum-PAAm 2.93 [56] 
HSAH/PHEAA 0.194 [57] 
PAA/PANI 5.12 [58]  

Fig. 5. Diagram of charge storage mechanism for all-hydrogel super
capacitors [70]. 
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structure, with a remarkably high areal capacitance of 2.0 F/cm2 and a 
high energy density of 0.1 mWh/cm2. In contrast to the layer-by-layer 
stacking manufacturing process of traditional capacitors, the high en
ergy density advantage of the ordered MXene hydrogel supercapacitor 
will provide more possibilities for energy storage applications [71]. 

Additionally, Silki Sardana et al. successfully fabricated a three- 
dimensional ternary nanocomposite hydrogel on carbon cloth using a 
two-step synthesis approach. This hydrogel serves as a binder-free 
supercapacitor electrode, achieving a high specific capacitance of 
1124 F/g at a current density of 0.25 A/g and a maximum specific 
capacitance of 1134.28 F/g at 1 A/g. It also exhibits excellent capaci
tance retention, maintaining 82.2% at a current density of 7.5 A/g and 
76.46% at 10 A/g [72,73]. The maximum specific power and specific 
energy values for the hierarchical three-dimensional polyaniline/doped 
graphene nanocomposite hydrogel supercapacitor cell prepared by Anil 
Ohlan et al. are 0.44 kW/kg and 13.63 Wh/kg, respectively. Conse
quently, the composite hydrogel offers the advantage of being utilized 
directly as a binder-free supercapacitor electrode and is a viable choice 
for high-performance and cost-effective energy storage devices in sci
entific terms [74,75]. 

3.2. Battery 

In addition to supercapacitors, hydrogel-based batteries, which offer 
long-term, high-capacity energy storage, have also found extensive ap
plications. Batteries are common energy storage devices in daily life and 
scientific experiments, typically composed of conductive electrolytes 
and two active electrochemical electrodes. Liquid electrolytes are used 
to ensure ion conduction during battery reactions. However, organic 
liquid electrolytes often lead to safety issues, making it necessary to 
explore safe and stable solid-state electrolytes. Hydrogel electrolytes as 
solid-state electrolytes have gained considerable attention. Compared to 
conventional electrochemical batteries, flexible batteries using hydro
gels as the electrolyte matrix exhibit excellent energy storage perfor
mance and greater flexibility, which is crucial for the development of 
self-powered wearable electronic devices [76]. With the increasing de
mand for wearable electronic devices, researchers are widely interested 
in flexible energy storage devices with low cost, high safety, and high 
energy density. 

Zinc-air batteries, which offer ultra-high energy density, are 
considered to be a breakthrough in the development of new-generation 
long-lasting energy storage systems [77]. Among various hydrogel 
electrolytes, CNFs-based hydrogel electrolytes have been widely used in 
zinc-air batteries as the main conductive doping. The zinc-air batteries 
made using these hydrogel electrolytes exhibit better mechanical 
properties and energy density compared to other hydrogel electrolytes, 
making them safer and longer-lasting [78]. Wei et al. proposed a 
PAM-CNF/KOH/KI hydrogel electrolyte [79]. The micro-porous struc
ture and ion concentration of each electrolyte affect their ion conduc
tivity. Specifically, the ion conductivity of PAM-CNF hydrogel is 216 
mS/cm, that of PAM/KOH hydrogel is 195 mS/cm, and that of 
PAM-CNF/KOH/KI hydrogel is 223 mS/cm. The PAM-CNF/KOH/KI 
electrolyte shows excellent performance at both 20 ºC and − 40 ºC, 
achieving a high electrolyte retention of 86% due to its ultra-high ion 
concentration and complex 3D network [80]. The wide temperature 
range of hydrogel electrolytes is of great significance for expanding the 
application of high-performance zinc batteries. Wu et al. proposed a 
polymer acidic hydrogel electrolyte, PAGE, rich in -SO3-H+ groups, for 
high-performance Zn/PANI batteries at room temperature and − 35 ºC 
subzero temperatures [81]. PAGE guides the deposition of Zn2+ to the 
electrode surface, enabling the battery to exhibit excellent anti-freezing 
performance. Therefore, PAGE provides high ionic conductivity at both 
25 ºC and − 35 ºC. Zn/PANI batteries with PAGE can deliver a high 
specific capacity of 174.3 mAh/g at 25 ºC and 152.4 mAh/g at − 35 ºC 
under the condition of 0.5 A/g. They also exhibit high stability, 
achieving over 30,000 cycles at 25 ºC and 70,000 cycles at − 35 ºC under 

the condition of 15 A/g. Researchers have also investigated the perfor
mance of hydrogel electrolytes at ultra-low temperatures. Yan et al. 
developed a hydroxyl-functionalized poly(ionic liquid) (PIL-OH) 
hydrogel electrolyte for aqueous lithium-ion batteries (ALIBs) [82]. The 
ultra-low-temperature tolerance of the hydrogel electrolyte arises from 
the synergistic effect of ion hydration and hydrogen bonding in
teractions between PIL-OH and water molecules, which damages the 
hydrogen bonding network of water and greatly reduces its freezing 
point. The electrolyte exhibits a high ionic conductivity of 0.08 mS/cm 
at − 80 ºC and a capacity retention rate of 93% after 200 cycles. 

3.3. Ion thermoelectric system 

Given the limited energy utilization efficiency, the enormous amount 
of waste heat generated from industrial manufacturing not only leads to 
energy loss but also exacerbates climate change problems [83]. 
Hydrogel thermoelectric materials show great potential for converting 
low-grade thermal energy into electrical energy. Based on different 
charge carriers, thermoelectric materials can be classified into electrical 
thermoelectric materials and ion thermoelectric materials [84]. Elec
trical thermoelectric materials utilize the Seebeck effect to achieve good 
conductivity, and their Seebeck coefficients are usually less than 
1 mV/K, making it difficult to achieve volt-level application voltage 
levels [85–87]. Depending on the different conduction mechanisms, ion 
thermoelectric materials can be categorized as thermocouples based on 
redox reactions [88,89] and thermocapacitors based on ion thermal 
diffusion effects [90]. 

Ion thermoelectric systems based on hydrogels are increasingly 
prevalent, and the working mechanism of these systems relies mainly on 
the interactions among ions, electrodes, and solvent-rich electrolytes, 
encompassing Faraday, non-Faraday, and synergistic effects [16]. 
Depending on specific practical requirements, hydrogels exhibit strong 
tunability and exceptional adaptability, making them highly compatible 
with ion thermoelectric systems [15,91]. Firstly, leveraging the chem
istry of gels, hydrogels effectively integrate electrodes, redox couples, 
ions, and ion channels. Secondly, the solvent-rich environment with 
high water content facilitates ion dissociation and ion transport. Thirdly, 
the polymer matrix reduces convective heat transfer within the hydro
gel, thereby sustaining the temperature difference and enhancing ther
moelectric conversion efficiency. Additionally, connecting independent 
thermoelectric units in series can amplify the voltage and current 
output, bringing the system closer to volt-scale application scenarios 
[13]. 

The typical configuration of thermogalvanic cells (TGCs) comprises 
of an electrolyte that contains redox couples, placed between a hot 
electrode and a cold electrode. Under a thermal gradient, the thermo
couples undergo redox reactions on the cold and hot electrode plates, 
resulting in a loop current through an external circuit, as shown in Fig. 6 
(a). The TGCs’ performance is significantly influenced by the different 
redox couples employed [16]. Recently, Zhao et al. reported a 
super-elastic TGC based on a hydrogel. They introduced Fe3+/Fe2+ and 
Fe(CN)6

3-/Fe(CN)6
4- redox couples into a double-network hydrogel of 

Fig. 6. (a) Schematic diagram of the working mechanism of thermogalvanic 
cell, (b) schematic diagram of the working mechanism of thermal-diffusion 
capacitor [16]. 
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polyacrylamide/chitosan (PAM/CS), to enhance ion coordination and 
interchain interactions, thereby improving the hydrogel’s mechanical 
properties. The equivalent Seebeck coefficient of the P-type thermo
couple hydrogel was as high as 1.29 mV/K, much higher than that of 
microvolt-level semiconductor thermocouples [92]. However, TGCs 
based on redox couples containing toxic metals are not in line with the 
green and sustainable development concept. Therefore, it is crucial to 
develop non-toxic TGC electrolytes with excellent mechanical and 
thermoelectric properties. Tian et al. developed a stretchable and flex
ible TGC device by cross-linking a novel non-toxic redox couple of 
SO4

2-/SO3
2- with PEDOT.PSS. The introduction of redox couples signifi

cantly improved the ion conductivity and thermoelectric properties. At 
an optimal concentration of 0.1 M, the Seebeck coefficient was as high 
as 1.63 mV/K [93]. 

Currently, the Soret effect is considered as the theoretical foundation 
for ion thermoelectric systems based on hydrogels, which can enhance 
the thermoelectric efficiency by regulating the ion migration rate in 
hydrogel materials. However, in practical applications, there is no pre
cise estimation method yet established for liquid mixtures or hydrogels. 
Among them, the mechanisms of solvent transport, ion interactions, 
solute concentration, and pressure in the system still require further 
exploration [16]. 

Hydrogel thermocapacitors are devices that operate based on the 
Seebeck effect, where ions of opposite charges diffuse at different ve
locities under a temperature gradient, as shown in Fig. 6(b). The power 
of thermocapacitance can be improved by effectively controlling ion 
movement in the hydrogel electrolyte. Chen et al. proposed incorpo
rating LiCl into a polyacrylamide (PAAm) polymer network and evenly 
dispersing Li+ and Cl- in the hydrogel electrolyte. Under a temperature 
difference ΔT between two electrodes, Li+ migrates to the cold side by 
thermal diffusion, as it has a smaller volume and higher relative mobility 
than Cl-. As a result, high concentrations of Li+ accumulate on the cold 
side and Cl- accumulates on the hot side, generating a thermoelectric 
voltage. At a temperature difference of 20 K, the ion Seebeck coefficient 
was as high as 11.3 mV/K. The demonstration of lighting up a light- 
emitting diode (LED) showed the potential for self-powering in flex
ible wearable electrical devices [94]. In general, at a certain ion con
centration, the lower the polymer crystallinity, the better the ion 
conductivity, while polymers with higher crystallinity will limit ion 
movement in the polymer network. Chen et al. proposed a polyvinyl 
alcohol (PVA) hydrogel, in which H+ has different ion conductivity 
under different crystallinities. By adjusting the crystallinity of the 
hydrogel and changing the hydrogen bonding distance between PVA 
chains, followed by introducing hydrochloric acid solution to introduce 
H+, a thermoelectric hydrogel based on H+ as the charge carrier was 
obtained. The strong hydrogen bonding system enhanced the diffusion 
of H+ while limiting the movement of Cl-, ultimately resulting in a 
Seebeck coefficient as high as 38.20 mV/K. This high-performance ion 
thermoelectric hydrogel offers more possibilities for energy harvesting 
and storage in flexible materials [95]. In the context of mitigating car
bon emissions and addressing the growing global electricity demand, the 
utilization of low-grade thermal energy for direct power generation 
through ion thermoelectric systems holds great promise. 

4. Summary and outlook 

In the context of reducing carbon emissions, novel methods for en
ergy storage and conversion have garnered significant attention. This 
review article primarily focuses on the latest advancements in the 
research of hydrogels for energy storage and conversion. The mechan
ical properties, anti-swelling and conductivity mechanisms, tuning 
methods, and specific research examples of hydrogels are discussed. 
Furthermore, the applications of hydrogels in self-powered flexible 
wearable electrical devices are introduced. The three-dimensional 
network structure of hydrogels, their molecular-level customizable 
properties, and the interaction with functional additives, make them an 

ideal platform for collecting low-grade energy from both theoretical and 
practical viewpoints. However, there are still many unknown mecha
nisms that need to be further explored. As a successful application in ion 
thermoelectric systems, multifunctional hydrogels act as poly
electrolytes, transport media, ion channels, and surface functional 
layers, enabling significant progress in converting thermal energy gra
dients into electrical energy. Through the serial connection of inde
pendent ion thermoelectric systems, it becomes feasible to realize a volt- 
scale energy recovery system for everyday portable use. However, there 
are still many unknown working mechanisms that need to be further 
addressed. Overall, to better understand the thermal gradient conver
sion system of hydrogels, more advanced characterization tools and in- 
situ techniques are required to observe the microscale interactions 
among water, polymers, and ions. Furthermore, it is essential to explore 
an effective and predictive unified power density assessment model, 
especially for different operational modes or mechanisms of various 
systems, particularly for supercapacitors, batteries, and thermoelectric 
systems. In addition, hydrogel toughness, size stability, water retention, 
frost resistance, and anti-swelling performance should be considered to 
meet practical application requirements. Ion hydrogels are expected to 
play a crucial role in self-powering flexible wearable electrical devices as 
they provide excellent power output stability and are easy to manufac
ture. Moreover, exploiting the phase-change characteristics of hydrogel 
electrolytes to store and convert industrial waste heat is a promising 
future research direction. 
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