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ABSTRACT: We present two novel coordination polymers based
on octacyanidorhenate(V) metalloligands and Fe(II) complexes
with two different positional isomers of a benzylpyridine ligand,
namely 3-benzylpyridine (3-benzpy) that leads to a two-dimen-
sional {[FeII(3-benzpy)4]3[ReV(CN)8]2}·2H2O (1) coordination
network and 4-benzylpyridine (4-benzpy) giving a three-dimen-
sional {[FeII(4-benzpy)4]5[ReV(CN)8]3}(ClO4)·2(4-benzpy)·
6H2O·MeOH (2) coordination framework. 1 is a layered
coordination polymer of a honeycomb topology, crystallizing in
the centrosymmetric space group, which exhibits only residual
thermal spin-crossover (SCO) effect on Fe(II) complexes at low
temperatures. The lack of a significant SCO effect is probably
caused by strong supramolecular interactions which do not allow
the coordination framework to undergo the structural change required by the spin transition. On the other hand, 2 crystallizes as the
chiral, cationic three-dimensional pillared cyanido-bridged framework, consisting of coordination layers of a deformed square grid
topology, further bonded together by additional Fe(II) complexes. The structure is completed by noncoordinated 4-benzpy, water,
and methanol molecules, as well as perchlorate counterions. The chiral character of the structure of 2 was confirmed by the single-
crystal X-ray diffractions studies and the second-harmonic generation (SHG) effect detected at room temperature. 2 exhibits a
pronounced two-step, and incomplete thermal SCO effect of embedded Fe(II) complexes. The intricate course of the spin transition
in 2 is related to the presence of five crystallographically distinguishable Fe(II) centers with different supramolecular environments.
The first noticeable SCO step is realized by the two Fe(II) complexes undergoing the spin transition between 250 and 150 K, while
the second is related to the incomplete spin transition of one type of remaining Fe(II) complexes. Therefore, 2 is a rare example of a
chiral SCO material showing also the nontrivial course of the spin transition. These properties were achieved by the subtle
modification of the pyridine-based ligand indicating the advantage of iron(II)−octacyanidorhenate(V) systems in the formation of
functional spin transition materials.

■ INTRODUCTION
A broad scientific interest is devoted to dynamic molecular
materials revealing the switching of physical properties by
external stimuli.1−9 This is due to their applications in sensors,
information storage, energy conversion, and others.10−15 One
of the attractive groups of switchable materials consists of spin-
crossover-active (SCO-active) coordination compounds em-
ploying 3d metal complexes, e.g., FeII/III, CoII, and MnIII. They
exhibit externally tunable transitions between high spin (HS)
and low spin (LS) states.16−20 Many physical properties,
including magnetic signal or sample color, change upon the
spin transition, which can be induced by temperature, light,
pressure, or chemical stimuli.20−28 The various courses of the

SCO effect are observed depending on the framework and the
type of SCO-active complex. This includes cooperative spin
transition leading to the thermal hysteresis loop for the usage
in memory devices, gradual SCO applicable for sensing, or the
stepwise SCO that can appear in the systems built of two or
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more different SCO-active metal centers, opening the route to
expand data storage applications.29−38

Among numerous families of spin-crossover materials, the
diversity of spin transition characteristics was presented for
heterometallic coordination polymers based on Fe(II)
complexes combined with polycyanido complexes of transition
metals. This can be exemplified by Hofmann-type frameworks
composed of di- or tetracyanidometallates, [MI(CN)2]− (M =
Au, Ag) or [MII(CN)4]2− (M = Ni, Pd, Pt), and Fe(II)
complexes with pyridine derivatives.39−45 In these networks,
the polycyanidometallates serve as linkers between Fe(II)
nods. The proper N-donor ligands and N atoms of cyanido
ligands ensure the optimal {N6} coordination environment for
Fe2+ ions enabling the occurrence of the SCO of various
parameters depending on the used organic ligand and cyanido
complex. Moreover, the Hofmann-type networks are typically
porous, providing a strong influence of the removal/exchange
of the solvent molecules on the magnetic properties.41−45 We
and other groups modified the related strategy toward SCO
materials using octacyanido complexes of transition metals,
[MIV/V(CN)8]4−/3− (M = Nb, Mo, W, Re), instead of di/
tetracyanidometallates.35,46−58 Such an approach can preserve
a required {N6} coordination of Fe(II) complexes, allowing us
to induce the more diverse set of molecule-based architectures,
including coordination clusters,56,47 layers,49,55 and compli-
cated three-dimensional (3-D) cyanido-bridged frame-
works.52,53 Recently we focused on the octacyanidorhenate(V)
ion, [ReV(CN)8]3−, which was successfully used for the
synthesis of coordination clusters and coordination polymers
incorporating SCO-active Fe(II) sites.49,55,57,58 In this context,
we showed a 2-D Cs{[FeII(3-cyanopyridine)2][ReV(CN)8]}·
H2O framework exhibiting a hysteretic, two-step SCO effect
switchable by temperature, light, and pressure.49 Moreover, the
octacyanidometallate-based coordination networks were found
to be the source of chiral SCO materials where symmetry
breaking is achieved by the bulky organic ligand without the
usage of the enantiopure ligand.52,55 Such materials exhibit the
spectacular switching of the second-harmonic polarization
plane in the chiral Fe(II)−[NbIV(CN)8]4− framework.52 In this
regard, we decided to continue our research on
octacyanidorhenate(V)-based coordination polymers with
bulky pyridine-type ligands, exploring their potential role in
the generation of the SCO effect and the chiral structure. To
demonstrate the critical role of the detailed structure of the
used ligand, we employed two positional isomers of
benzylpyridine ligands differing only in the position of the
bulky substituent. As a result, we present two coordination
polymers, {[FeII(3-benzpy)4]3[ReV(CN)8]2}·2H2O (1) and
{[FeII(4-benzpy)4]5[ReV(CN)8]3}(ClO4)·2(4-benzpy)·6H2O·
MeOH (2) (3-benzpy = 3-benzylpyridine, 4-benzpy = 4-
benzylpyridine). The subtle change in the ligand’s structure
resulted in very different structural and magnetic properties,
the 2-D nonchiral coordination network with only residual
thermal SCO effect in 1, and the 3-D chiral framework with
the two-step, incomplete, thermal SCO effect in 2. The
differences between the compounds and the course of the spin
transition in 2 were investigated using X-ray diffraction and
various spectroscopic techniques.

■ EXPERIMENTAL SECTION
Starting Materials. Iron(II) perchlorate hydrate, Fe(ClO4)2·

6H2O (CAS: 335159-18-7, for the sake of calculations considered as
hexahydrate), NaClO4 (CAS:7601-89-0), L-ascorbic acid (CAS: 50-

81-7), and 4-benzylpyridine (CAS: 2116-65-6) were purchased from
Sigma-Aldrich, while 3-benzylpyridine (CAS: 620-95-1) was pur-
chased from Tokyo Chemical Industry. All of them were used as
received without further purification. The precursor salt of
TBA3[ReV(CN)8] (TBA = tetrabutylammonium cation) was prepared
following a previously reported, two-step synthetic procedure,57 which
employs commercial potassium hexachlororhenate(IV), K2[ReIVCl6]
(CAS: 16940-97-9) and tetrabutylammonium cyanide (CAS: 10442-
39-4) as starting materials (both purchased from Sigma-Aldrich).
Synthesis and Basic Physicochemical Characterization.

Synthesis of 1. An 11.0 mg portion of Fe(ClO4)2·6H2O (0.03
mmol) and 5.0 mg of L-ascorbic acid (0.03 mmol) were dissolved in
2.0 mL of distilled water. Then a 3 mL volume of water/methanol
solution (in the ratio 1:2, v/v) was layered onto the obtained solution.
Afterward, a 2.0 mL volume of the methanol solution of
TBA3[ReV(CN)8] (22.4 mg, 0.02 mmol) and 3-benzpy (20.3 mg,
0.12 mmol) was added as a third layer. After that, the vial was closed
and left undisturbed for 2 weeks in a dark place. Then green crystals
of 1 appeared. The composition of 1 , {[FeII(3-benz-
py)4]3[ReV(CN)8]2}·2H2O, was determined by a single-crystal X-ray
diffraction (SC-XRD) analysis, together with the thermogravimetric
(TG, Figure S2) and CHN analyses. The obtained product is stable in
the air. Yield: 4.4 mg, 15%. The IR spectrum of 1 (Figure S1)
confirms the presence of the CN− ligand (cyanido stretching
vibrations: 2167 and 2056 cm−1 are related to both bridging and
terminal cyanido ligands of [Re(CN)8]3− moieties). Elem. anal. calcd
for Fe3Re2C160N28O2H136 (1, Mw = 3022.9 ·mol−1): C, 63.6%; H,
4.5%; N, 13.0%. Found: C, 63.2%; H, 4.4%; N, 13.1%.

Synthesis of 2. A 11.0 mg portion of Fe(ClO4)2·6H2O (0.03
mmol), 42.3 mg of NaClO4 (0.35 mmol), and 5.0 mg of L-ascorbic
acid (0.03 mmol) were dissolved in 1.5 mL of distilled water. Then a
2.5 mL volume of water/methanol solution (in the ratio 1:2) was
layered onto the obtained solution. Afterward, a 1.5 mL volume of the
methanol solution of TBA3[ReV(CN)8] (22.4 mg, 0.02 mmol) and 4-
benzpy (20.3 mg, 0.12 mmol) was added as a third layer. After that,
the vial was closed and left undisturbed for 2 weeks in a dark place.
Then green crystals of 2 appeared. The composition of 2, {[FeII(4-
benzpy)4]5[ReV(CN)8]3}(ClO4)·2(4-benzpy)·6H2O·MeOH, was de-
termined by an SC-XRD analysis, together with the TG (Figure S2)
and CHN analyses. The obtained product is stable in the air. Yield:
3.7 mg, 11%. The IR spectrum of 2 (Figure S1) confirms the presence
of the CN− ligand (cyanido stretching vibrations: 2172 cm−1, 2158
cm−1, and 2147 cm−1 are related to both bridging and terminal
cyanido ligands of [Re(CN)8]3− moieties). Elem. anal. calcd for
Fe5Re3Cl1C289N46O10H254 (2, Mw = 5388.7·mol−1): C, 64.0%; H,
4.8%; N, 11.9%. Found: C, 63.8%; H, 4.5%; N, 12.1%.
X-ray Diffraction Methods. For a single-crystal X-ray diffraction

(SC-XRD) analysis, a crystal of 1 was taken directly from the mother
solution, dispersed in Apiezon N grease, mounted on the Micro
Mounts holder, and measured at T = 100(2) K, using a Bruker D8
Quest Eco Photon50 CMOS diffractometer equipped with graphite
monochromatic Mo Kα radiation. For 2, the preparation procedure
was the same but a Bruker D8 Venture diffractometer was employed,
and measurements (due to the occurrences of the spin crossover
effect) at 100(2), 150(2), and 250(2) K were performed. All
structures were solved by an intrinsic phasing method using
SHELXT-2014/5 and refined following a weighted full-matrix least-
squares method on F2 using SHELX-2018/3.59 The refinement
procedure was conducted using WinGX (ver. 2014.1) integrated
software. All non-hydrogen atoms were refined anisotropically.
Hydrogen atoms of organic ligands were modeled using a riding
model. The hydrogen atoms of solvent molecules of crystallization
were not added due to insufficient data quality. For some of the 4-
benzpy ligands of 2, especially at higher temperatures, it was not
possible to model the side chains of the ligands, which was due to the
serious structural disorder of these flexible organic groups. It was also
necessary to apply a series of ISOR, DFIX, and DELU restraints on
the part of non-hydrogen atoms to ensure the convergence of the
refinement procedure. Full details of crystal data and structure
refinement are gathered in Tables S1 and S2, and detailed structure
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parameters can be found in Tables S3 and S4, while the respective
asymmetric units are shown in Figures S3 and S4. CCDC reference
numbers are 2224670 for 1 whereas they are 2224673, 2224672, and
2224671 for 2 at 100(2), 150(2), and 250(2) K, respectively.
Structural figures were prepared with Mercury 2021.2.0 software.
Powder X-ray diffraction (P-XRD) patterns were measured using a
Bruker D8 Advance Eco powder X-ray diffractometer equipped with a
Cu Kα radiation source. A capillary spinning add-on was used.
Physical Techniques. Infrared absorption spectra were measured

on selected single crystals using a Nicolet iN10 MX FTIR microscope.
CHN elemental analyses were performed on an Elementar Vario
Micro Cube analyzer. The thermogravimetric (TG) curves were
gathered under a nitrogen atmosphere on the air-dried polycrystalline
samples using a TG209 F1 Libra TG analyzer with Al pans as holders.
Magnetic properties were investigated using an MPMS-3 Evercool
magnetometer. The magnetic measurements for 1 and 2 were carried

out for air-dried samples, covered by paraffin oil (nujol), and further
sealed in polycarbonate capsules containing cotton wool, which was
used for the stabilization of the samples. Magnetic data were corrected
for the diamagnetic contributions from the sample holder and the
samples themselves. The transmission 57Fe Mössbauer spectra were
collected using a Wissel spectrometer with a bath liquid nitrogen
cryostat at six selected temperatures. The temperature stabilization
was better than 0.1 K. The polycrystalline sample for these
spectroscopic measurements was prepared by grinding microcrystals,
which were further mixed with cellulose powder and sealed by Kapton
foils in a copper ring. Mössbauer spectra were fitted with the use of
the WinNormos-for-Igor software package, assuming a Lorentzian
shape of the resonance lines, i.e., the saturation effects were not
included. Two quadrupole doublets (or three at 150 and 100 K) were
considered in the fit, assigned to the HS FeII and LS FeII states, even
though there are five distinguishable positions of Fe atoms in the

Figure 1. Representative views of the crystal structure of 1 crystallizing in the P1̅ space group: a single coordination layer (a), the supramolecular
arrangement of coordination layers and water molecules of crystallization (b), the insight into the first coordination spheres of Fe(II) complexes
(Fe1, Fe2, Fe3, and Fe4 metal sites) with the labeling schemes for the selected atoms (c), and the more detailed view on the fragment of the
coordination layer and the interstitial water molecules, shown together with the color code for the atoms present in the whole figure (d). The
hydrogen atoms are omitted for clarity. Additional visualizations of the crystal structure of 1 are presented in Figures S3 and S5.
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studied material. The relative fractions of the HS vs LS states were
determined from the ratio of the areas of the corresponding doublets,
which means that equal recoil-free fractions of iron in both spin states
were assumed. To determine the SHG activity, 2 was characterized by
power-dependent and wavelength-dependent measurements, using a
1040 nm femtosecond laser as incident fundamental light. For the first
measurement, the incident laser intensity was tuned with a linear
increment from zero, while for the latter measurement, the detection
wavelength was adjusted by the monochromator. The SH signal was
detected in a reflection mode. A powder sample of 2 was investigated
in the SHG experiment, as single crystals large enough for the related
measurements of SH light could not be isolated. To quantify the SH

intensities generated by the investigated samples, a potassium
dihydrogen phosphate (KDP) pellet was used as a reference sample.
Calculations. Continuous shape measure (CSM) analysis for the

six-coordinated FeII complexes and eight-coordinated ReV complexes
in 1 and 2 was executed using SHAPE software ver. 2.1.60,61

■ RESULTS AND DISCUSSION
Structural Studies. Green crystals of 1 and 2 were

obtained by slow diffusion of methanol solutions containing
TBA3[Re(CN)8] and the appropriate ligand (3-benzpy for 1
and 4-benzpy for 2) to a water solution of Fe(ClO4)2 and L-

Figure 2. Representative views of the crystal structure of 2 crystallizing in the P212121 space group with a Flack parameter of 0.0287(17): the side
view on the pillared three-dimensional (3-D) coordination framework (a), a single coordination layer being the component of the 3-D coordination
network (b), the insight into the first coordination spheres of Fe(II) complexes (Fe1, Fe2, Fe3, Fe4, and Fe5 metal sites) with the related atom
labeling schemes (c), and a more detailed view on the fragment of the coordination framework, noncoordinated 4-benzpy molecules, and interstitial
solvent molecules, shown together with the color code for the atoms present in the whole figure (d). The hydrogen atoms are omitted for clarity.
The structural data gathered at 100(2) K was used to show the crystal structure here. Additional visualizations of the crystal structure of 2 are
presented in Figures 3, S4, and S6−S9.
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ascorbic acid (applied to prevent the oxidation of Fe2+ ions). In
the case of 2, an additional portion of NaClO4 was necessary to
ensure the phase purity of the sample, as without NaClO4
some small amounts of red crystals of the other product were
observed (which could not be structurally characterized due to
the low crystal quality). Both of the obtained materials were
characterized by infrared (IR) spectroscopy which revealed the
presence of bridging and terminal cyanido ligands of
[ReV(CN)8]3− moieties (Figure S1). To determine the
structures of 1 and 2, selected crystals of each compound
were investigated by the SC-XRD technique at 100(2) K
(Tables S1 and S2). Compound 1 crystallizes in the
centrosymmetric P1̅ space group of the triclinic crystal system,
while 2 crystallizes in the noncentrosymmetric P212121 space
group of the orthorhombic system. The exact formulas of both
compounds have been obtained as a result of structural studies
together with CHN and TG analysis (Figure S2), resulting in
air-stable compositions of {[FeII(3-benzpy)4]3[ReV(CN)8]2}·
2H2O (1) and {[FeII(4-benzpy)4]5[ReV(CN)8]3}(ClO4)·2(4-
benzpy)·6H2O·MeOH (2). Compound 1 is composed of
wavy, bimetallic coordination layers of {[FeII(3-benz-
py)4]3[ReV(CN)8]2} and water molecules located between
them (Figures 1, S3, and S5, Tables S1, S3, S5, and S6). These
coordination layers reveal a honeycomb topology consisting of
12-metal {Fe6Re6} hexagons of alternately arranged cyanido-
bridged FeII and ReV complexes. There are two crystallo-
graphically independent ReV complexes (Re1 and Re2) and
four such FeII complexes (Fe1, Fe2, Fe3, and Fe4) in 1;
however, two of them are placed at the special crystallographic
positions of the unit cell (Figure S3): (a) Fe1 site at the (0.5,
0, 1) position (the edge of the unit cell) and (b) Fe3 site at the
(0.5, 1, 0.5) position (the wall of the unit cell). As a result, for
the whole unit cell, the following numbers of Fe centers
appear: 1 × Fe1 (4 × Fe1 centers at the edges of the unit cell
belonging to four neighboring unit cells), 2 × Fe2, 1 × Fe3 (2
× Fe3 centers at the walls of the unit cell belonging to two
neighboring unit cells), and 2 × Fe4; this provides the metal
composition of {Fe6Re4} for the whole unit which can be
simplified to {Fe3Re2} given in the general formula of this
compound. For both ReV complexes, three of eight available
cyanido ligands are used as molecular bridges that link FeII and
ReV centers while the remaining five cyanido ligands are
terminal. The geometry of ReV centers can be described as a
triangular dodecahedron (Table S6). All four Fe(II) complexes
reveal an octahedral geometry with four N atoms of 3-benzpy
ligands in the equatorial positions and two N atoms of cyanido
ligands positioned axially in the trans-configuration (Figure 1c,
Table S5). The average Fe−N bond lengths for Fe1, Fe2, Fe3,
and Fe4 are 2.22, 2.10, 2.19, and 2.19 Å, respectively (Table
S3). For Fe1, Fe3, and Fe4, those values are typical for HS
Fe(II) complexes, while for Fe2, the values of Fe−N bond
lengths suggest the partial occurrence of the spin transition for
this complex at 100 K.1,32 Between the coordination layers,
there are water molecules of crystallization and the side chains
of 3-benzpy ligands (Figures 1b and S5). One can notice two
types of spaces between coordination layers, the first densely
filled with organic side chains of 3-benzpy ligands and the
second where the side chains of organic ligands create a cavity
in which the solvent molecules reside (Figure 1b and 1d). Such
behavior results from the highly hydrophobic character of the
organic ligand forcing the water molecules to accumulate
together to create a rather limited network of hydrogen bonds
which is concentrated only in the mentioned cavities.

The change in the position of the substituent within the
ligand from 3-benzpy to 4-benzpy leads to a dramatic change
in the structure. Compound 2 crystallizes as a chiral, cationic
three-dimensional (3-D) pillared coordination framework. It
consists of coordination layers of a deformed square grid
topology, which are linked together through additional Fe(II)
complexes (Figures 2, S4, and S6−S9, Tables S2 and S4). The
charge of the framework is compensated by ClO4

− anions
placed in the channels of the structure (Figure S8). The
coordination layer component of the structure of 2 consists of
16-metal {Fe8Re8} squares built of alternately arranged
cyanido-bridged FeII and ReV complexes (Figure 2b). One
can notice two types of layered components that are shifted
from one another (Figure S7). The crystal structure is
completed with noncoordinated ligands, ClO4

− ions, and
solvent molecules (Figures 2d and S8). Free molecules of 4-
benzpy are located tightly around layered parts of the
framework while perchlorate ions together with water and
methanol molecules are located between coordination layers in
the channels of the structure. It was impossible to locate all of
the possible solvent molecules pointed out by TG and CHN
analyses which is due to their partial delocalization and weak
noncovalent interaction with the network. The coordination
framework of 2 is chiral and enantiomorphic as it crystallizes in
the P212121 space group with the Flack parameter close to zero
(Tables S2). Therefore, we gathered the structural data for one
of the possible enantiomers. As no chiral ligand was used, the
chirality appears as the result of the spontaneous resolution
process; thus, the crystalline sample 2 is a mixture of the
crystals of two enantiomorphs. Due to the insufficient quality
of most of the crystals of 2, it was impossible to accomplish
good-quality X-ray diffraction for this second enantiomer.
Nevertheless, the chiral structure of 2 is fully confirmed by the
X-ray diffraction data presented and, further, by the nonzero
SHG activity supporting the proper determination of the
noncentrosymmetric P212121 space group (see below). We
checked that the powder sample of 2 does not exhibit a
detectable circular dichroism (CD) spectrum in the UV−vis
range corresponding to the absorption of the material; this
suggests that the bulk sample of 2 consists of an equimolar
mixture (conglomerate) of the crystals of two enantiomers. For
such a case, the CD signal vanishes, as the crystals of two
enantiomers give the opposite sign of the related optical
response but the SHG effect, related to the lack of the
inversion center in the crystal structure, appears.52,62−65

The chirality of 2 can be visualized by comparison with the
second hypothetical enantiomer (Figures 3 and S9). From this
comparison, one can notice that the chirality appears for the
coordination skeleton which is related to the connections
between Fe(II) and Re(V) complexes. For instance, four
different Fe sites (Fe1, Fe2, Fe3, and Fe4) are attached to each
Re2 site; thus, considering only bridging ligands, this Re2 site
can be described as the distorted tetrahedral entity of the
{M(ABCD)} type which is an intrinsically chiral type of metal
complex. Therefore, the bulky character of the 4-benzpy ligand
was found to affect the structure in a way that the coordination
skeleton becomes chiral, including the appearance of chirality
even at the very molecular level of selected metal complexes. It
is important to add here that further exploration of the
observed chirality, e.g., toward the investigation of chiroptical
or magnetochiral effects, will need the detection and manual
separation of two types of enantiomorphic crystals from the
obtained conglomerate.52
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From the viewpoint of the possible SCO effect, we analyzed
more precisely the metal complexes embedded in 2 (Figure 2).
There are three distinguishable Re (Re1, Re2, and Re3) and
five Fe (Fe1, Fe2, Fe3, Fe4, and Fe5) centers in 2. Complexes
Re1 and Re3 link three surrounding FeII complexes via cyanido
bridges, while five of their cyanido ligands remain terminal.
These complexes are located on the sides of the coordination
squares, using two cyanido bridges to construct the layered
component of the framework, while one remaining cyanido
bridge is used to bind the adjacent coordination layer through
the Fe(II) complex. The Re2 complex lies on the vertex of the
coordination square, employing four of its cyanido ligands to
construct the neighboring coordination squares, while the four
remaining cyanido ligands remain terminal. All ReV centers
adapt the geometry of a triangular dodecahedron (Table S6),
while the geometry of all FeII centers can be ascribed as
octahedral (Table S5). Every Fe(II) complex consists of
equatorially aligned four 4-benzpy ligands and two cyanido

ligands in trans-configuration (Figure 2c). Complexes of Fe1,
Fe2, Fe3, and Fe4 construct the coordination squares,
employed as linkers between ReV centers, while Fe5 is used
as a bridge to connect two adjacent layered fragments of the
framework. At 100 K, the average Fe−N bond lengths are 2.00,
2.19, 2.12, 2.20, and 2.01 Å for Fe1, Fe2, Fe3, Fe4, and Fe5,
respectively (Table S4). The bond length values for Fe1 and
Fe5 indicate the Fe(II) LS state, while those for Fe2 and Fe4
suggest the HS state. The Fe−N bond lengths in Fe3 suggest
the partial occurrence of the SCO effect for this complex.1,32

To study the possible SCO effect, suggested by crystal data
at 100 K and by the change of the color of crystals upon
cooling (from the green one obtained in the synthesis to the
red color at low temperatures, Table S2), a series of T-
dependent X-ray diffraction structural analyses were per-
formed. The temperatures of measurements were chosen
concerning temperature-dependent magnetic curves (see
Magnetic Properties below). Besides the original experiment
at 100(2) K (see above), the measurements were executed at
150(2) and 250(2) K. The results are presented in Tables 1,
S2, and S4−S6. For all studied temperatures, there is no
change in the crystallographic system or space group; however,
the metric parameters of the structure significantly change. The
a, b, and c lattice constants at 100 K are 27.9593(11),
28.8508(11), and 31.1577(11) Å, respectively (Table S2).
Upon heating the crystal to 150 K, one observes a slight
increase of the lattice parameters to 28.0422(10), 28.9484(10),
and 31.2294(10), which is related to the typical positive
thermal expansion effect but the partial SCO effect can also
contribute. Further heating to 250 K results in a relatively huge
increase of the lattice constants up to 28.2678(19),
29.1558(19), and 31.617(2) Å, which cannot be simply
assigned to the thermal expansion; thus, it is due to the
occurrence of the spin transition. The biggest change is
observed for the c parameter, which corresponds to the
increased interlayer distance. This suggests that the spin
transition is rather occurring for the Fe5 complex connecting
the adjacent layered fragments of the network (Figure 2). The
shape of the coordination skeleton does not change
dramatically upon heating, as depicted by the shape analysis

Figure 3. Views of the chiral, enantiomorphic character of the
structure of 2 including the view of the coordination skeleton (top) as
well as the coordination environment around Fe(II) centers
(bottom). For a better visualization of the enantiomorphic character
of 2, the structure for the crystal of the hypothetical enantiomer of 2
was shown on the right side (see the text for details).

Table 1. Summary of the Fe−N Bond Lengths for 2 at the Indicated Temperaturesa

temperature temperature

Fe−N pair (Figure 2) 100 K 150 K 250 K Fe−N pair (Figure 2) 100 K 150 K 250 K

Fe1−N8 1.933(8) 1.962(8) 2.098(9) Fe3−N34 2.148(7) 2.191(7) 2.225(8)
Fe1−N9 1.947(8) 1.976(7) 2.105(8) Fe3−N35 2.153(8) 2.195(8) 2.214(9)
Fe1−N25 2.039(9) 2.061(9) 2.187(11) Fe3−N36 2.143(8) 2.181(8) 2.222(9)
Fe1−N26 2.030(8) 2.055(8) 2.197(10) Fe4−N13 2.126(8) 2.127(8) 2.119(8)
Fe1−N27 2.045(8) 2.076(8) 2.216(10) Fe4−N17 2.156(9) 2.163(8) 2.160(9)
Fe1−N28 2.030(8) 2.043(9) 2.178(11) Fe4−N37 2.228(10) 2.227(10) 2.232(12)
Fe2−N6 2.126(7) 2.131(7) 2.136(8) Fe4−N38 2.160(12) 2.162(12) 2.166(13)
Fe2−N15 2.128(7) 2.126(7) 2.128(8) Fe4−N39 2.212(8) 2.214(8) 2.221(10)
Fe2−N29 2.208(8) 2.214(8) 2.221(10) Fe4−N40 2.293(10) 2.298(10) 2.259(12)
Fe2−N30 2.215(7) 2.217(7) 2.215(9) Fe5−N1 1.950(7) 1.969(7) 2.084(9)
Fe2−N31 2.241(8) 2.246(7) 2.243(9) Fe5−N23 1.958(8) 1.981(8) 2.119(10)
Fe2−N32 2.223(7) 2.226(7) 2.246(9) Fe5−N41 2.056(7) 2.077(7) 2.218(9)
Fe3−N16 2.052(7) 2.094(7) 2.124(8) Fe5−N42 2.039(7) 2.063(7) 2.227(9)
Fe3−N24 2.071(8) 2.104(8) 2.129(8) Fe5−N43 2.054(7) 2.074(7) 2.210(9)
Fe3−N33 2.146(7) 2.185(7) 2.226(9) Fe5−N44 2.016(8) 2.030(9) 2.181(11)

aThe values in bold represent the bond lengths of the Fe(II) centers assigned to the significant contribution of the low-spin spin state at the
indicated temperatures (see the text for details). The other centers remain almost purely at the high-spin state at the given conditions.
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of the complexes at different temperatures (Tables S5 and S6).
Both Fe(II) and Re(V) complexes remain at their original
geometry over the whole studied temperature range.

The direct studies of the individual Fe(II) complexes result
in a much more detailed view of the SCO effect (Table 1). As
mentioned above, at 100 K two Fe(II) complexes (Fe1 and
Fe5) revealed the Fe−N bond lengths characteristic for the LS
Fe(II) complexes, and two Fe(II) complexes (Fe2 and Fe4)
revealed the Fe−N bond lengths characteristic for the HS
Fe(II) complexes, while the Fe3 complex revealed the
intermediate metric parameters. At 150 K, the average Fe−N
bond lengths are 2.03, 2.19, 2.16, 2.20, and 2.03 Å for Fe1, Fe2,
Fe3, Fe4, and Fe5, respectively. The Fe−N bond lengths for
complexes Fe1 and Fe5 only slightly increased, thus mainly
due to the natural thermal expansion effect. The average Fe−N
bond lengths almost did not change for complexes Fe2 and
Fe4, which can result from the stable HS state of those
complexes. The most noticeable change is observed for Fe3;
the increase of Fe−N bond lengths in this regime suggests that,
upon heating to 150 K, the majority of Fe3 complexes turn
into an HS state. At 250 K, the average Fe−N bond lengths are
2.15, 2.20, 2.19, 2.19, and 2.17 Å for Fe1, Fe2, Fe3, Fe4, and
Fe5, respectively. Thus, there is a strong increase in the average
Fe−N bond lengths for complexes Fe1 and Fe5, which
indicates the complete spin transition from LS to HS for these
complexes between 150 and 250 K. There is also a further
increase of the Fe−N bond lengths for Fe3, which can be
explained by the finalization of the spin transition to the HS
state. The Fe−N bond lengths for Fe2 and Fe4 remain almost
the same, and the related tiny changes in metric parameters for
them (both the decrease and increase of the bond lengths) can
be related to the accommodation of the whole complexes to
the structural changes, arising from spin transitions of Fe1,
Fe3, and Fe5 complexes.

The phase purity of bulk samples of both compounds, 1 and
2, was checked with a powder X-ray diffraction (P-XRD)
experiment (Figure 4). The obtained powder patterns match
well the respective powder patterns generated from the
structural models obtained within the SC-XRD analyses.
This proves the phase purity of the bulk samples for 1 and
2, confirming that the 3-benzpy-to-4-benzpy ligand substitu-
tion leads to the above-described change of the structural
features for the whole obtained batches of compounds.
Magnetic Properties. 1 and 2 contain Fe(II) complexes

with the {N6} coordination environment, which is known to be
suitable to observe the SCO effect.1,32 Moreover, some of the
formed Fe(II) complexes exhibit the Fe−N bond lengths
characteristic of LS Fe(II) complexes when the crystal was
investigated by the SC-XRD method at 100(2) K (see above),
which suggests the occurrence of the thermally induced SCO
effect. Direct-current (dc) magnetic measurements were
carried out to investigate this possibility for both compounds.
These studies include temperature-dependent measurements
at a constant magnetic field and field-dependent measurements
at a constant very low temperature (Figures 5 and S10). For 1,
the χMT value, for the {Fe3Re2} formula unit, reaches the value
of 11.3 cm3 mol−1 K at room temperature, which fits the range
of 10.9−13.0 cm3 mol−1 K, expected for three, uncoupled,
high-spin Fe(II) centers (S = 2), with the g factor lying within
the range of 2.2−2.4.49−55 Upon cooling, the χMT value
remains stable until 150 K. Below this point, the χMT decreases
mildly to 10.5 cm3 mol−1 K at 55 K, which is the decrease of
ca. 7%. Upon further cooling, there is a sharp decrease in the

signal to 6.8 cm3 mol−1 K at 1.8 K (Figure 5a). For the heating
of the sample, the shape of the χMT curve remains the same as
for the cooling, so no hysterical effects are observed (Figure
S10a). The shape of the χMT curve suggests that above 150 K
all Fe(II) complexes of 1 are in the high-spin state. The small
decrease of the signal in the 150−55 K range suggests the
residual, incomplete spin transition for one of the Fe(II)
complexes. Such interpretation is supported by the crystallo-
graphic data collected at 100 K, as the Fe−N bond lengths for
the Fe2 complex are slightly shorter than analogous bond
lengths for the other Fe(II) complexes (Table S3). Even
though those values are still significantly longer than expected
for purely low-spin Fe(II) complex, only a very partial SCO
effect is observed. The decrease of χMT value below 55 K can
be explained by weak antiferromagnetic (AF) interactions
between Fe(II) centers linked by [ReV(CN)8]3− moieties, as
well as by a zero-field splitting (ZFS) effect on Fe(II)
complexes.49−55 The field-dependent measurements at 1.8 K
support the dominant role of AF interactions and the single ion
anisotropy at low temperatures, as the M curve (Figure 5a,
inset) exhibits a monotonous increase of a signal upon
applying the magnetic field, reaching a value of 7.6 μB at 70
kOe. This value is far below the 13.2 μB expected for three
parallel arranged magnetic moments of HS Fe(II) centers (S =
2, g = 2.2), though the saturation of magnetization is not
achieved for the applied field.

For 2, the χMT value, for the {Fe5Re3} formula unit, reaches
a value of 20.3 cm3 mol−1 K at 400 K which lies within the
range of 18.2−21.6, expected for five uncoupled high-spin
Fe(II) centers. The χMT value remains almost stable upon
cooling to ca. 250 K when a gradual decrease of the signal is

Figure 4. Experimental powder X-ray diffraction patterns of 1 and 2,
compared with the respective powder patterns calculated from the
structural models (Figures 1 and 2, and the labels of 1 calc and 2 calc,
respectively).
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observed down to 10.4 cm3 mol−1 K at 60 K (ca. 49% decrease,
Figure 5b). There are two distinguishable steps in the magnetic
curve within the 275−60 K range. The first one is more abrupt
and occurs between 250 and 150 K (13.1 cm3 mol−1 K, ca.
36% decrease), with the transition temperature, T1/2 around
200 K (Figures 5b, S10b, and S11). The second step is mild
and results in a ca. 13% decrease in the χMT value. Below 60 K,
there is an abrupt decrease of the signal down to 6.4 cm3 mol−1

K at 2.0 K (Figure 5b). Upon heating of the sample, the shape
of the χMT curve is preserved; thus, no hysteretic effects are
observed (Figure S10b). The first step in the χMT curve can be
ascribed to the spin transition occurring on two of five Fe(II)
centers of compound 2, as the decrease of a signal (ca. 36%) is
in good agreement with the decrease expected for two of five
Fe(II) complexes undergoing the SCO effect (40%). This
explanation is supported by the structural data (Tables 1 and
S4) at 150 K, as there are two Fe(II) complexes with the Fe−
N bond lengths typical for LS Fe(II) centers (see above). The

second step can be explained by the incomplete spin transition
occurring on one of the remaining HS Fe(II) centers. The Fe3
center would be a perfect candidate, as at 100 K the average
Fe−N bond lengths suggest the partial occurrence of spin
transition for this metal center. The advanced structural studies
confirm this interpretation, as at 150 K there is an increase of
the average Fe−N bond lengths up to 2.19 Å for this complex
(see above). The decrease of the χMT signal below 60 K can
be, as for 1, explained by non-negligible AF interactions and
the ZFS effect at low temperatures. The field-dependent
measurement at 2.0 K shows similar behavior as for 1 (Figure
5b). M reaches a value of 7.7 μB at 70 kOe without reaching
saturation, which underlines the significant role of AF
interactions and the single ion anisotropy at low temperatures.
It is important to add here that the heating−cooling cycle of
the magnetic measurement for 2 (Figure S10) was performed
in the 2−400 K range starting from low temperature (2 K, after
quickly cooling the sample without the measurement from
room temperature), heating the sample to 400 K, and then
cooling back to 2 K. We found that the temperature
dependences of the magnetic susceptibility−temperature
product for the heating and the subsequent cooling of the
sample are identical. Thus, there is no sign of significant
changes above 300 K that could be assigned to the thermally
induced desolvation process which one can postulate from the
course of the TG curve (Figure S2). This suggests that the
desolvation of the air-dried sample of 2 does not occur up to
400 K which is due to the protective oil covering the sample
for the magnetic measurements (in the TG experiment, the
unprotected sample placed in the flow of nitrogen is
investigated, see Experimental Section for details). The
eventual partial desolvation, which could be related to the
removal of the part of solvent molecules of crystallization even
for the sample protected by the paraffin oil, does not have a
noticeable impact on the magnetic characteristics. It means
that the crucial thermal SCO effect is repeatable for the
heating−cooling cycle in the 2−400 K range.

57Fe Mössbauer Spectroscopy Characterization for 2.
To further confirm the SCO phenomenon in 2, a series of
temperature-dependent 57Fe Mössbauer spectra were gathered.
The results are presented in Figure 6 and Table 2. The spectra
at 300 and 250 K share a similar shape and exhibit a single
doublet with isomeric shifts (δIS) of 1.03(1) and 1.16(1) mm·
s−1, respectively. The quadrupole splitting (ΔEQ) values at
these temperatures also do not change dramatically, reaching
values of 1.72(1) and 2.04(1) mm·s−1, respectively. These
spectral parameters are characteristic of HS Fe(II) cen-
ters,32,49−55 which supports the previous interpretation of
temperature-dependent dc magnetic and structural studies at
those temperatures (Figure 5 and Table 1). The presence of
only one doublet, while there are five distinguishable Fe(II)
centers in 2, can be explained by the similar chemical
environment of each center. The further cooling of the sample
to 200 K leads to the appearance of a second doublet in the
Mössbauer spectrum. The observed doublets can be
characterized with the δIS and ΔEQ values of 1.18(1) and
2.15(1) mm·s−1 for the first doublet and 0.46(1) and 0.25(1)
mm·s−1 for the second one. The parameters of the first doublet
are similar to the parameters of the doublet observed at 250 K.
Therefore, it can be ascribed to the HS Fe(II) complexes. The
newly appearing doublet exhibits much smaller values of δIS
and ΔEQ which are typical for LS Fe(II) complexes, and stands
in perfect agreement with the magnetic measurements, as in

Figure 5. Magnetic properties of 1 (a) and 2 (b), including
temperature dependences of the magnetic susceptibility−temperature
product, χMT gathered at the indicated dc magnetic fields and the
field-dependences of magnetization at the indicated temperatures (the
insets).
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the 200−250 K region the spin transition starts to occur. At
200 K, the contribution of the HS Fe(II) centers is 72%,
leaving 28% for the LS Fe(II) centers (Table 2). This agrees
with the interpretation of the spin transition occurring
gradually mainly for Fe1 or Fe5 centers in the 250−200 K

region. After further cooling to 150 K, two different HS sites
can be distinguished by the spectra. They are characterized by
the δIS and ΔEQ values of 1.11(1) and 2.26(3) mm·s−1 for the
first HS site (HS1) and 1.11(1) and 1.83(2) mm·s−1 for the
second one (HS2). The parameters of the LS component of
the spectra change a little bit, reaching 0.47(1) and 0.20(1)
mm·s−1 for δIS and ΔEQ, respectively. In this step, the fraction
of LS Fe(II) complexes increases to 40%, which agrees well
with the structural data, as, at 150 K, two out of five Fe(II)
centers are in the LS state. This also stays in good agreement
with the related decreases of the signals in magnetic data. The
Mössbauer spectrum at 100 K exhibits a similar shape as for
150 K. The δIS and ΔEQ parameters for both HS doublets
increase, reaching 1.25(1) and 2.53(4) mm·s−1 for HS1, as well
as 1.24(1) and 2.08(3) mm·s−1 for HS2, respectively. The low
spin doublet is characterized by slightly increased parameters
than for 150 K, which are 0.51(1) and 0.22(1) mm·s−1 for δIS
and ΔEQ, respectively. A slight increase of the LS Fe(II)
fraction up to 47% is detected, which can be explained by the
partial spin transition of the Fe3 center at this temperature
(Table 1). These results also agree with magnetic measure-
ments, for which we observed a 43% decrease in the initial
signal at 100 K. The further decrease of temperature to 80 K
does not change the percentage of each fraction, but at this
temperature, it was not possible to distinguish clearly two
different HS Fe(II) sites, which can be explained by the
similarity of hyperfine interactions parameters of remaining HS
sites at this temperature. This feature is confirmed by a line
width broadening, reaching 0.53(1) mm·s−1.
Second Harmonic Generation Effect for 2. In addition

to the structural, magnetic, and spectroscopic characteristics
investigated for 2 revealing the thermal SCO effect, we also
studied the possible nonlinear optical (NLO) phenomenon of
second harmonic generation (SHG). It was expected for 2, as it
crystallizes in the P212121 space group belonging to the
noncentrosymmetric SHG-active 222 point group.66−69 There-
fore, the powder sample of 2 was irradiated at room
temperature with a 1040 nm femtosecond pulse laser as
incident fundamental light using a homemade experimental
setup, as described previously.70,71 As a result, we observed the
signal around 520 nm that was subsequently studied at power-
dependent measurements (Figure 7). The observed signal was
found to be proportional to the square of the excitation light
intensity, indicating the two-photon process characteristic of
the SHG effect. To quantify the observed SH light intensity,

Figure 6. Temperature-variable 57Fe Mössbauer spectra of 2 with the
indicated names of three different Fe(II) sites (two high-spin state
sites of HS1 and HS2, and one low-spin state site of LS).
Experimental data is presented as black points, while the fitted results
as solid lines with specific indicated colors for HS and LS
contributions and the total fits.

Table 2. 57Fe Mo ̈ssbauer Spectra Parameters for 2
T/K Fe(II) spin state δIS/mm·s−1 ΔEQ/mm·s−1 fraction/%

295 HS 1.03(1) 1.72(1) 100
LS - - -

250 HS 1.16(1) 2.04(1) 100
LS - - -

200 HS 1.18(1) 2.15(1) 72(1)
LS 0.46(1) 0.25(1) 28(1)

150 HS1 1.11(1) 2.26(3) 26(1)
HS2 1.11(1) 1.83(2) 34(1)
LS 0.47(1) 0.20(1) 40(1)

100 HS1 1.25(1) 2.53(4) 28(1)
HS2 1.24(1) 2.08(3) 25(1)
LS 0.51(1) 0.22(1) 47(1)

80 HS 1.25(1) 2.35(1) 53(1)
LS 0.51(1) 0.23(1) 47(1)
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we used the potassium dihydrogen phosphate (KDP) sample
as a reference, measured at the same conditions. The observed
SH intensity of 2 reaches only 0.15% of the KDP intensity,
indicating a rather weak NLO response from the material
which can be ascribed, among others, to the significant
structural disorder existing in the framework of 2 as well as to
the effects of the powder sample which typically demonstrate
worse SHG activity than the large single crystals; however, this
SH intensity is non-negligible, reaching the level sometimes
observed for the coordination polymers crystallizing, thanks to
the spontaneous resolution process, in the P212121 space group
or other noncentrosymmetric space groups.71−77 Therefore, it
further supports the chiral character of the coordination of 2
that was depicted in the structural studies.

■ CONCLUSIONS
We report two novel coordination frameworks based on
octacyanidorhenate(V) ions connected with iron(II) com-
plexes bearing two positional isomers of bulky benzylpyridine
ligands. We found a critical role of the position of the bulky
substituent on the structural, magnetic, and optical properties
of the resulting coordination networks. The 3-benzylpyridine
induces the formation of a layered cyanido-bridged framework,
crystallizing in the centrosymmetric space group, in which the
layers are tightly stacked within the crystal lattice. As the result,
despite the proper {N6} coordination environment around
Fe(II) metal centers, there is only a residual thermal spin
crossover effect, and almost all Fe(II) sites remain in the high
spin state for the whole temperature range. On the contrary,
the 4-benzylpyridine induces the formation of a unique three-
dimensional pillared coordination framework, revealing
spontaneously generated chirality observed due to the
arrangement within the coordination skeleton. As a result,
the NLO property of second harmonic generation could be
detected for this material. Moreover, the framework becomes
more porous with the large channels filled with various
noncoordinated molecules and counterions. The porous
character of the resulting network contributes to the
observation of the pronounced thermal spin crossover effect
with the nontrivial course involving two steps and the
incomplete character, consistently observed within the
structural, magnetic, and 57Fe Mössbauer effect spectroscopic
studies. Our work demonstrates that even the subtle pyridine
ligand modification can induce the dramatic variation of
structural and magnetic features of spin crossover materials,
especially for those based on iron(II)−octacyanidorhenate(V)
bimetallic assemblies which are still rarely explored in the
research field. The next step of the exploration of these
promising heterometallic systems is directed toward their
structural and spin transition sensitivity to guest molecules
which will be the subject of our future work.
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