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We show that for each positive integer a there exist only 
finitely many prime numbers p such that a appears an odd 
number of times in the period of continued fraction of √p
or 

√
2p. We also prove that if p is a prime number and 

D = p or 2p is such that the length of the period of 
continued fraction expansion of 

√
D is divisible by 4, then 

1 appears as a partial quotient in the continued fraction of √
D. Furthermore, we give an upper bound for the period 

length of continued fraction expansion of 
√
D, where D is a 

positive non-square, and factorize some family of polynomials 
with integral coefficients connected with continued fractions of 
square roots of positive integers. These results answer several 
questions recently posed by Miska and Ulas [MU].
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1. Introduction

Each irrational real number x can be written in the form of infinite continued fraction

x = a0 +
1

a1 +
1

a2 +
1

a3 +
1
. . .

= [a0, a1, a2, . . .],

where the partial quotients a0, a1, . . . can be recursively computed in the following way

α0 = x, a0 = �α0�, αk+1 = 1
αk − ak

, ak = �αk�.

It is clear that a0 ∈ Z and ai ∈ N+ for i ∈ N+ (we denote by Z the set of all integers, 
and by N0 and N+ the subsets of non-negative and positive integers, respectively). The 
number ai is called the i-th partial quotient (or i-th coefficient) of the continued fraction 
for x.

The continued fraction [a0, a1, a2, . . .] is eventually periodic if there exists l ∈ N+ such 
that for all sufficiently large n we have an = an+l; the smallest such l is the period of the 
continued fraction. Then we write [a0, a1, a2, . . . , an−1, an, . . . , an−1+l]. A famous result 
from the theory of continued fractions, Lagrange’s theorem, states that the irrational 
number x has eventually periodic continued fraction if and only if x is a quadratic 
irrational. In particular, for any given non-square D ∈ N+ the continued fraction of √
D is eventually periodic. Moreover, it is well known that 

√
D = [a0, a1, . . . , al], where 

a0 = �
√
D�, al = 2�

√
D� and al−j = aj for each j ∈ {1, . . . , l − 1}. Denote the length l

of the period of the continued fraction of 
√
D by TD.

There has been great interest in studying the behavior of partial quotients of continued 
fractions. Nevertheless, even in the case of x being any particular non-quadratic algebraic 
irrationality (even x = 3

√
2) we do not have information about unboundedness of the 

partial quotients, nor about infinite appearance of a given positive integer as a partial 
quotient of continued fraction of x.

Although the problem of description of partial quotients of continued fractions of 
quadratic irrationalities is well studied (see e.g. [Pe, Drittes Kapitel]), it is still far from 
completely understood, as evidenced by recent results [CS,DCS,Lo1,Lo2] on periods and 
partial quotients of square roots of prime and semi-prime numbers. Also, the papers 
[Fr,Gol,HK,RT] are devoted to continued fractions of square roots of positive integers 
with a given period length, or even all the period given without the last partial quotient 
al (which equals 2a0). Continued fractions also motivated some recent results on the 
distribution of class numbers of real quadratic fields [CF+].

A probabilistic approach shows that 1 is the most probable value of partial quotient of 
continued fraction of a uniformly randomly chosen irrational number x = [a0, a1, a2, . . .]. 
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Gauss conjectured and Kuzmin [Kuz] proved that if k → ∞ then the probability that 
ak = n tends to log2

(n+1)2
n(n+2) . Moreover, a1 = 1 with probability 1/2.

Inspired by a result of Skałba [Ska], Miska and Ulas [MU] showed by various ap-
proaches that there exist infinitely many prime numbers p with a prescribed sequence 
(a1, . . . , ak) of beginning partial quotient of continued fractions of their square roots. 
The aim of our paper is to answer some questions posed in [MU].

Define for each i ∈ N the set Li as the set of prime numbers p for which 1 appears 
exactly i times in the period of continued fraction of √p. According to numerical com-
putations the authors of [MU] asked ([MU, Question 5.4]) whether L1 = {3}, L3 = {7}
and L2i+1 = ∅ for each integer i ≥ 2. We answer this question in the affirmative as the 
special case a = 1 of the following theorem.

Theorem 1.1. Let a ∈ N+ and let p a prime number. Then the period of continued 
fraction of √p contains a as a partial quotient an odd number of times if and only if

(1) p ≡ 3 (mod 4) and a2 < p < (a + 2)2 when a is odd;
(2) a2

4 < p < (a+2)2
4 when a is even.

The period of continued fraction of 
√

2p contains a as a partial quotient an odd number 
of times if and only if a is even and p ∈

(
a2

8 , (a+2)2
8

)
or p ∈

(
a2

2 , (a+2)2
2

)
and 2 | T2p.

Numerical search in [MU] also revealed another phenomenon. Namely, there is no 
prime p in the set L0 ∩ [1, 107] with Tp divisible by 4. Accordingly, [MU, Question 5.3]
asked about the existence of a prime p with Tp divisible by 4 and without 1 as a continued 
fraction partial quotient of √p. We shall prove that such a p does not exist.

Theorem 1.2. Let p a prime number and D ∈ {p, 2p}. Assume that TD is divisible by 4. 
Then 1 appears as a partial quotient in the periodic part of continued fraction of 

√
D.

Another question [MU, Question 5.1] based on numerical experiments concerned an 
upper bound for Tp. Specifically, denoting by pm the mth prime number, it asked for 
the value of lim supm→∞

Tpm√
m logm

and if this quotient is less than 1 for any m ≥ 5. We 
partially answer this question thanks to the following theorem.

Theorem 1.3. Let D > 1 a squarefree integer, 
√
D = [a0, a1, . . . , al], and χ the corre-

sponding quadratic character. Then

TD = l <
4

log 2
√
D · L(1, χ) �

{√
D logD unconditionally,

√
D log logD assuming GRH.
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Such a theorem is not new; similar results were obtained, e.g., [Pod,Poh,Sa] (even 
with somewhat better constants than ours). However, we include the proof for the sake 
of completeness, and then discuss what this implies for [MU, Question 5.1].

Let us briefly describe the content of the paper. Section 2 contains some basic and 
auxiliary results that will be used in the sequel. Sections 3, 4, and 5 give the proofs of the 
results announced above with some additional remarks and consequences; in particular, 
at the end of Section 5 we specialize Theorem 1.3 to the case D = pm and discuss 
the answer to [MU, Question 5.1]. Section 6 is devoted to the factorization of some 
quadratic polynomials naturally connected with continued fractions of square roots of 
positive integers. Our result is complementary to those ones obtained in [Fr,MU,RT].

Some of the proof techniques and lemmas that we use are known (and appear, e.g., 
in Perron’s classical book [Pe]). Nevertheless, we often give the proofs of such results for 
convenience of the readers and for the sake of completeness of our paper.

2. Preliminaries

Let us start by recalling the following result that is a part of Theorem 1 in [Lo2].

Theorem 2.1 ([Lo2, Theorem 1]). Let p ≡ 3 (mod 4) a prime number and D ∈ {p, 2p}. 
If TD = l and 

√
D = [a0, a1, . . . , al], then TD = 2L for some L ∈ N+ and aL is an 

integer from the set {�√p� − 1, �√p�} with the same parity as D. Moreover, L is even if 
and only if p ≡ 7 (mod 8).

For the next result we need some preparation. Let D ∈ N+ not a perfect square and 
TD = l. Write ω0 =

√
D = [a0, a1, . . . , al] and ωk = [ak, . . . , al, a1, . . . , ak−1] for k ∈ N+. 

One can easily show by induction on k that ωk =
√
D+Pk

Qk
for some Pk, Qk ∈ N0 such 

that P 2
k < D and Qk | D − P 2

k . If additionally k > 0, then Pk, Qk ∈ N+. Moreover, we 
have recurrence relations

Pk+1 = akQk − Pk, (1)

Qk+1 =
D − P 2

k+1
Qk

= D − P 2
k

Qk
+ 2akPk − a2

kQk (2)

(for these and other properties, see [Pe, §23–25]).

Lemma 2.2. Let D ∈ N+ not a perfect square. With the above notation, if TD = 2L for 
some L ∈ N+, then

PL+1 = PL (3)

and

4QLQL+1 = 4D − a2
LQ

2
L. (4)
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Proof. Consider

ωL = [aL, aL−1 . . . , a1, al, a1, . . . , aL−1]

and

ωL+1 = [aL−1 . . . , a1, al, a1, . . . , aL−1, aL].

Since the period of continued fraction of ωL+1 is the reverse of the period of continued 
fraction of ωL, we know from Galois theorem that ω′

LωL+1 = −1, where ω′
L = −

√
D+PL

QL

denotes the algebraic conjugate of ωL. Thus, we have

PL −
√
D

QL

PL+1 +
√
D

QL+1
= −1,

equivalently

(D − PLPL+1) + (PL+1 − PL)
√
D = QLQL+1.

This means that PL+1 = PL. Hence, from (1) we have 2PL = aLQL. Applying this to 
(2) with k = L, we get (4). �

Let us now state the following result that is a part of the proof of [Pe, Satz 21, page 
108]. However, we include its proof for readers’ convenience.

Proposition 2.3. Let p a prime number and D ∈ {p, 2p}. With the above notation, if 
TD = 2L for some L ∈ N+, then QL = 2.

Proof. Note that T2 = 1 and 2 · 2 is a perfect square, and so we may assume that p is 
an odd prime number.

By Lemma 2.2 we have QL | 4D. Let us first observe that 4 � QL. Indeed, if 4 | QL, 
then (4) implies that 4 | D – a contradiction. Thus QL | LCM(D, 2) = 2p.

On the other hand, QL | D−P 2
L ∈ {1, . . . , D− 1}. As result, QL ∈ {1, 2, p}. However, 

QL = 1 is not possible, as in that case, ωL =
√
D + PL, so ωk+L = ωk for k ∈ N+. 

Then L would be a multiple of the length of period TD = 2L, which is a contradiction. 
If QL = p, then D = 2p, but in this case we have p | 2p − P 2

L, which means that p | PL. 
This is impossible as 0 < PL <

√
2p < p. Finally we conclude that QL = 2. �

Another consequence of Lemma 2.2 is the following.

Proposition 2.4. Let D ∈ N+ not a perfect square. If TD = 2L for some L ∈ N+, 2 | QL, 
and 4 � QL, then aL ≡ D (mod 2).
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Proof. After dividing (4) by 4 we get

QLQL+1 = D − a2
L ·

(
QL

2

)2

.

Since QL is even and QL

2 is odd, we have aL ≡ D (mod 2). �
The condition QL = 2, being the assertion of Proposition 2.3, has immediate but 

serious consequence.

Proposition 2.5. Let D ∈ N+ not a perfect square. If TD = 2L for some L ∈ N+ and 
QL = 2, then PL = aL ∈ {�

√
D� − 1, �

√
D�}.

Proof. By (1) and Lemma 2.2 we have

PL = 2aL − PL,

so PL = aL. Recall that

aL = �ωL� =
⌊√

D + PL

QL

⌋
=

⌊√
D + aL

2

⌋
.

Thus

aL ≤
√
D + aL

2 < aL + 1.

Equivalently,

2aL ≤
√
D + aL < 2aL + 2

or

√
D − 2 < aL ≤

√
D,

which was to prove. �
As a conclusion from Propositions 2.3, 2.4, and 2.5 we obtain the following general-

ization of Theorem 2.1.

Theorem 2.6. Let p a prime number and D ∈ {p, 2p}. If TD = 2L for some L ∈ N+ and √
D = [a0, a1, . . . , al], then QL = 2 and PL = aL is an integer from the set {�

√
D� −

1, �
√
D�} with the same parity as D.
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Now we can also quite quickly reprove the following well-known fact (see, e.g. [Pe, 
Satz 22, page 108]).

Corollary 2.7. If p ≡ 1 (mod 4) is a prime number, then Tp is odd.

Proof. Using the above notation, we claim that Qn ≡ 2 (mod 4) for any n ∈ N. Suppose 
for the contrary that Qn ≡ 2 (mod 4) for some n ∈ N. From (2) we have

QnQn+1 = p− P 2
n+1.

Since both sides of the above equation are even, we conclude that Pn+1 is odd. Since 
p ≡ P 2

n+1 ≡ 1 (mod 4), we obtain that both sides of the equation are divisible by 4. 
Hence Qn+1 is even as 4 � Qn. Rewriting (2) in the following way

Qk+1 = p− P 2
k

Qk
+ 2akPk − a2

kQk = Qk−1 + 2akPk − a2
kQk, k ∈ N+,

as Qk−1Qk = p − P 2
k , we see that Qk is even for each k ≥ n. This contradicts the 

periodicity of the sequence (Qk)k∈N+ and the fact that Ql = 1.
If we suppose that Tp = 2L for some L ∈ N+, then QL = 2 by Proposition 2.3. 

However we have just proved that Qk ≡ 2 (mod 4) for any k ∈ N. Thus Tp is odd. �
Corollary 2.7 can also be quite easily proved from the following interesting character-

ization from [RT, Theorem 3].

Theorem 2.8 ([RT, Theorem 3]). Let D ∈ N+ not a perfect square. Then TD is even if 
and only if D = rs, where r, s ∈ N+ satisfy one of the following conditions:

(1) x2r − y2s = ±2 for some odd x, y ∈ Z;
(2) r, s = 1 and x2r − y2s = ±1 for some x, y ∈ Z.

In our case D = p ≡ 1 (mod 4) is a prime number, so condition (2) from the above 
theorem is obviously not satisfied. Meanwhile, condition (1) is equivalent to the existence 
of a solution of the equation x2−py2 = ±2 in odd integers. However, since p ≡ 1 (mod 4), 
for all odd integers x, y the value of x2−py2 is divisible by 4. As a consequence, we again 
obtain that Tp is odd.

Theorem 2.1 and Corollary 2.7 finally imply the following equivalence.

Corollary 2.9. Let p a prime number. Then

(1) Tp is even if and only if p ≡ 3 (mod 4);
(2) Tp is divisible by 4 if and only if p ≡ 7 (mod 8).
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Note that in the case D = 2p, where p is an odd prime number, the condition p ≡ 3
(mod 4) implies 2 | TD (by Theorem 2.1) but the inverse implication does not hold as √

34 = [5, 1, 4, 1, 10].
Let us further recall the polynomials qn ∈ Z[x1, . . . , xn] that are defined recursively 

as follows:

q−1 = 0,

q0 = 1,

qn(x1, . . . , xn) = xnqn−1(x1, . . . , xn−1) + qn−2(x1, . . . , xn−2), n ≥ 1.

These polynomials are connected with continued fractions via the indentity

[x0, x1, . . . , xn] = qn+1(x0, x1, . . . , xn)
qn(x1, . . . , xn) .

Also note that the defining recurrence can be rewritten as matrix multiplication:
[

qn(x1, . . . , xn) qn−1(x1, . . . , xn−1)
qn−1(x2, . . . , xn) qn−2(x2, . . . , xn−1)

]
=

[
x1 1
1 0

]
· · ·

[
xn 1
1 0

]
(5)

As an easy consequence of (5) we get

qn(x1, . . . , xn) = qn(xn, . . . , x1) (6)

and

qn(x1, . . . , xn)qn−2(x2, . . . , xn−1) − qn−1(x1, . . . , xn−1)qn−1(x2, . . . , xn) = (−1)n. (7)

3. Proof of Theorem 1.1

Let D ∈ N+. Write 
√
D = [a0, a1, . . . , al], where TD = l and aj = al−j for j ∈

{1, . . . , l − 1}.
Assume that D = p is a prime number. The value al = 2a0 is even, so if a is odd, 

then it appears an odd number of times in the period of continued fraction of √p exactly 
when l = 2L for some L ∈ N+ and aL = a. According to Corollary 2.9 the number 
p is congruent to 3 modulo 4. Then Theorem 2.1 implies that �√p� ∈ {a, a + 1}, so 
a <

√
p < a + 2. This means that a2 < p < (a + 2)2.

Conversely, let p ≡ 3 (mod 4) a prime number and a an odd positive integer such 
that a2 < p < (a +2)2. Then a <

√
p < a +2, so �√p� ∈ {a, a +1}. Since p ≡ 3 (mod 4), 

we have Tp = 2L for some L ∈ N+ in virtue of Corollary 2.9. Theorem 2.1 states that 
aL ≡ p ≡ 1 (mod 2) and �√p� ∈ {aL, aL + 1}. Hence aL = a. Because of parity of a2L
and palidromicity of the period of continued fraction of √p we conclude that a appears 
an odd number of times in this period.
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Now we consider the case of even a. If l = 2L for some L ∈ N+, then p ≡ 3 (mod 4)
by Corollary 2.9 and aL is odd by Theorem 2.1. Thus, a appears an odd number of times 
in the period of continued fraction of √p if and only if al = a. On the other hand, we 
know that al = 2�√p�. Hence, �√p� = a

2 , equivalently a2 <
√
p < a+2

2 . Finally we get 
a2

4 < p < (a+2)2
4 .

Conversely, let p a prime number and a an even positive integer such that a
2

4 < p <
(a+2)2

4 . Put Tp = l. Then a2 <
√
p < a+2

2 , so �√p� = a
2 . Thus a = 2�√p� = al. If Tp = 2L

for some L ∈ N+, then aL ≡ p ≡ 1 (mod 2) by Theorem 2.1 and Corollary 2.9. Because 
of palidromicity of the period of continued fraction of √p we conclude that a appears an 
odd number of times in this period.

We are left with proving the theorem for D = 2p, where p is a prime number. Since 
the values of al = 2�√2p� and al/2 (if 2 | l) are even by Theorem 2.1, any odd positive 
integer appears an even number of times in the periodic part of continued fraction of √

2p. If a is an even number appearing an odd number of times in the periodic part of 
continued fraction of 

√
2p, then a ∈ {al/2, al}. If a = al/2, then �√2p� ∈ {a, a + 1}, so 

a <
√

2p < a + 2. This means that a2 < 2p < (a + 2)2, equivalently a
2

2 < p < (a+2)2
2 . If 

a = al, then a = 2�√2p�. Hence, �√2p� = a
2 , equivalently a2 <

√
2p < a+2

2 . Thus we get 
a2

4 < 2p < (a+2)2
4 and finally a

2

8 < p < (a+2)2
8 .

Now, let p a prime number and a an even positive integer such that a
2

8 < p < (a+2)2
8 . 

Write T2p = l. Then a
2

4 < 2p < (a+2)2
4 and �√2p� = a

2 . Consequently a = 2�√2p� = al. 
If 2 | l, then a l

2
∈ {�√2p�, �√2p� − 1} by Theorem 2.6. Hence, a l

2
< al = a. This fact 

combined with palindromicity of the period of continued fraction of 
√

2p implies that a
appears an odd number of times in this period.

Finally, let p a prime number and a an even positive integer such that a
2

2 < p < (a+2)2
2

and T2p = 2L for some L ∈ N+. Then a2 < 2p < (a + 2)2 and �√2p� ∈ {a, a + 1}. By 
Theorem 2.6 we get that a = aL. Since a2L = 2�√2p� > a, by palindromicity of the 
period of continued fraction of 

√
2p, we conclude that a appears an odd number of times 

in this period. �
4. Proof of Theorem 1.2

Write 
√
D = [a0, a1, . . . , al], where TD = l is divisible by 4 and L = l

2 . We split the 
proof into two cases depending on the parity of �

√
D�. We start with the simpler case 

when �
√
D� has different parity than D.

Proof of Theorem 1.2 in the case of different parity. Assume that �
√
D� has different 

parity than D. By Theorem 2.6 we have QL = 2 and PL = aL = �
√
D� − 1. Thus

ωL − aL =
√
D − �

√
D� + 1

2 >
1
2 .

As ωL+1 = 1 < 2, we have aL+1 = �ωL+1� = 1, finishing the proof. �
ωL−aL
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Note that because of palindromicity of the sequence (a1, . . . , al−1) we also conclude 
that aL−1 = 1. Actually, the fact that aL−1 = aL+1 = 1 if �

√
D� ≡ D (mod 2) also 

follows directly from [Pe, Satz 16, page 96]. In spite of this, we decided to demonstrate 
its proof for the completeness of the proof of Theorem 1.2.

The proof of the theorem for �
√
D� of the same parity as D is much longer and 

requires the use of polynomials qn. We know from Theorem 2.6 that the continued 
fraction of 

√
D is of the form [a, a1, . . . , aL−1, a, aL−1, . . . , a1, 2a], where a, a1, . . . , aL−1 ∈

N+. Here a = �
√
D�. If a = 1, then 1 appears in the period of continued fraction 

of 
√
D. If a = 2, then D ∈ [4, 9) is even. It means that D = 2p for some prime p. 

Consequently, D ∈ {4, 6}. If D = 4, then 
√
D = 2 is not irrational. If D = 6, then √

6 = [2, 2, 4], so 4 � T6. Thus, we can assume that a ≥ 3. We want to expand the 
expression [a, a1, . . . , aL−1, a, aL−1, . . . , a1, 2a]2(= D) in terms of polynomials qn.

From now on till the end of this section we assume that L, a, a1, . . . , aL−1 ∈ N+ and 
a ≥ 3.

Lemma 4.1. We have

[a, a1, . . . , aL−1, a, aL−1, . . . , a1, 2a]2

= a2 + 2aqL−2(a2, . . . , aL−1)
qL−1(a1, . . . , aL−1)

+ qL−2(a2, . . . , aL−1)2 + 2 · (−1)L−1

qL−1(a1, . . . , aL−1)2

+ 2 · (−1)L−1(qL−2(a2, . . . , aL−1) − 2qL−2(a1, . . . , aL−2))
qL−1(a1, . . . , aL−1)2(aqL−1(a1, . . . , aL−1) + 2qL−2(a1, . . . , aL−2))

.

Proof. By [MU, Theorem 3.3] we know that

[a, a1, . . . , aL−1, a, aL−1, . . . , a1, 2a]2

=
(
a + q2L−2(a1, . . . , aL−1, a, aL−1, . . . , a2)

q2L−1(a1, . . . , aL−1, a, aL−1, . . . , a1)

)2

− 1
q2L−1(a1, . . . , aL−1, a, aL−1, . . . , a1)2

.

(8)

Now we “extract” a from the polynomials q2L−2(a1, . . . , aL−1, a, aL−1, . . . , a2) and
q2L−1(a1, . . . , aL−1, a, aL−1, . . . , a1), i.e. write them as expressions of a and polynomials 
qn depending on a1, . . . , aL−1 only. The identity (5) gives us the following:

[
q2L−1(a1, . . . , aL−1, a, aL−1, . . . , a1) q2L−2(a1, . . . , aL−1, a, aL−1, . . . , a2)
q2L−2(a2, . . . , aL−1, a, aL−1, . . . , a1) q2L−3(a2, . . . , aL−1, a, aL−1, . . . , a2)

]

=
[
a1 1
1 0

]
· · ·

[
aL−1 1

1 0

]
·
[
a 1
1 0

]
·
[
aL−1 1

1 0

]
· · ·

[
a1 1
1 0

]

=
[
qL−1(a1, . . . , aL−1) qL−2(a1, . . . , aL−2)
qL−2(a2, . . . , aL−1) qL−3(a2, . . . , aL−2)

]
·
[
a 1
1 0

]
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·
[
qL−1(a1, . . . , aL−1) qL−2(a2, . . . , aL−1)
qL−2(a1, . . . , aL−2) qL−3(a2, . . . , aL−2)

]

=
[
aqL−1(a1, . . . , aL−1) + qL−2(a1, . . . , aL−2) qL−1(a1, . . . , aL−1)
aqL−2(a2, . . . , aL−1) + qL−3(a2, . . . , aL−2) qL−2(a2, . . . , aL−1)

]

·
[
qL−1(a1, . . . , aL−1) qL−2(a2, . . . , aL−1)
qL−2(a1, . . . , aL−2) qL−3(a2, . . . , aL−2)

]
,

where in the second equality we used (6). Hence,

q2L−1(a1, . . . , aL−1, a, aL−1, . . . , a1)

= aqL−1(a1, . . . , aL−1)2 + 2qL−1(a1, . . . , aL−1)qL−2(a1, . . . , aL−2)
(9)

and

q2L−2(a1, . . . , aL−1, a, aL−1, . . . , a2)

= aqL−1(a1, . . . , aL−1)qL−2(a2, . . . , aL−1) + qL−2(a1, . . . , aL−2)qL−2(a2, . . . , aL−1)

+ qL−1(a1, . . . , aL−1)qL−3(a2, . . . , aL−2).
(10)

For the convenience of notation, let us write

R = qL−1(a1, . . . , aL−1), S = qL−2(a1, . . . , aL−2)

T = qL−2(a2, . . . , aL−1), U = qL−3(a2, . . . , aL−2).

Plugging (9) and (10) into (8), we get

[a, a1, . . . , aL−1, a, aL−1, . . . , a1, 2a]2

=
(
a + aRT + ST + RU

aR2 + 2RS

)2

− 1
(aR2 + 2RS)2

=
(
a + T

R
+ RU − ST

aR2 + 2RS

)2

− 1
(aR2 + 2RS)2

=
(
a + T

R
+ (−1)L−1

aR2 + 2RS

)2

− 1
(aR2 + 2RS)2

= a2 + 2aT
R

+ 2 · (−1)L−1a

aR2 + 2RS
+ 2 · (−1)L−1T

R(aR2 + 2RS) + T 2

R2

= a2 + 2aT
R

+ T 2 + 2 · (−1)L−1

R2 + 2 · (−1)L−1(T − 2S)
R2(aR + 2S) ,

where we used (7) in the third equality. This was to prove. �
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Remember that [a, a1, . . . , aL−1, a, aL−1, . . . , a1, 2a]2 = D ∈ Z. Thus we need to have a 
necessary condition for the expression [a, a1, . . . , aL−1, a, aL−1, . . . , a1, 2a]2 to be integral.

Corollary 4.2. If

[a, a1, . . . , aL−1, a, aL−1, . . . , a1, 2a]2 ∈ Z,

then

qL−2(a2, . . . , aL−1) = 2qL−2(a1, . . . , aL−2).

Proof. Use the notation from the previous proof. By Lemma 4.1, we have

[a, a1, . . . , aL−1, a, aL−1, . . . , a1, 2a]2

= a2 + 2aT
R

+ T 2 + 2 · (−1)L−1

R2 + 2 · (−1)L−1(T − 2S)
R2(aR + 2S) .

If the above value is integral, then all the summands in the right hand side of the above 
equality can be written as quotients of integers with common denominator R2. This 
means that aR + 2S divides 2(T − 2S). However,

aR + 2S > 3T + 2S ≥ 2T − 4S

and

aR + 2S > 3S + 2S ≥ 4S − 2T.

In other words, aR + 2S > |2(T − 2S)|. This fact combined with the divisibility of 
2(T − 2S) by aR + 2S implies that T = 2S. �

Corollary 4.2 has been already stated and proved as Satz 28 in [Pe, page 112]. How-
ever, we decided to show its proof via Lemma 4.1 for the completeness of the proof of 
Theorem 1.2.

Now we recall that L = 2m, m ∈ N+ as 4 | TD = 2L. With this additional 
assumption we show a necessary condition for the equality qL−2(a2, . . . , aL−1) =
2qL−2(a1, . . . , aL−2).

Lemma 4.3. If q2m−2(a2, . . . , a2m−1) = 2q2m−2(a1, . . . , a2m−2), then aj = 1 for some 
j ∈ {1, . . . , 2m − 1}.

Proof. We prove the lemma by induction on m ∈ N+. For m = 1 the assumption of the 
implication in the statement of lemma 1 = q0 = 2q0 = 2 is not satisfied, so the implication 
is true. Let m > 1 and assume that q2m−2(a2, . . . , a2m−1) = 2q2m−2(a1, . . . , a2m−2). 
Perform the sequence of equivalent transforms of the equality being our assumption.
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q2m−2(a2, . . . , a2m−1) = 2q2m−2(a1, . . . , a2m−2)

⇔ a2m−1q2m−3(a2, . . . , a2m−2) + q2m−4(a2, . . . , a2m−3)

= 2a1q2m−3(a2, . . . , a2m−2) + 2q2m−4(a3, . . . , a2m−2)

⇔ q2m−4(a2, . . . , a2m−3) − 2q2m−4(a3, . . . , a2m−2)

= (2a1 − a2m−1)q2m−3(a2, . . . , a2m−2)

(11)

If a2 = 1, then we are done. Hence assume that a2 ≥ 2. If both sides of the 
last equality are nonzero, then the right hand side has absolute value at least equal 
to q2m−3(a2, . . . , a2m−2), which is greater than or equal to max{q2m−4(a2, . . . , a2m−3),
2q2m−4(a3, . . . , a2m−2)}. Since both values q2m−4(a2, . . . , a2m−3), 2q2m−4(a3, . . . , a2m−2)
are positive, we conclude that

q2m−3(a2, . . . , a2m−2) > |q2m−4(a2, . . . , a2m−3) − 2q2m−4(a3, . . . , a2m−2)|,

so the last equality in (11) (and thus all the equalities in (11)) does not hold. Conse-
quently, both sides of the last equality in (11) are zero. By inductive assumption for m −1, 
since q2m−4(a2, . . . , a2m−3) = 2q2m−4(a3, . . . , a2m−2), there exists j ∈ {2, . . . , 2m − 3}
such that aj = 1. �

Now we obtain the proof of Theorem 1.2 in the case of the same parity of �
√
D� and 

D by combining the preceding results.

Proof of Theorem 1.2 in the case of the same parity. Write
√
D = [�

√
D�, a1, . . . , a2m−1, �

√
D�, a2m−1, . . . , a1, 2�

√
D�].

Since D = [�
√
D�, a1, . . . , a2m−1, �

√
D�, a2m−1, . . . , a1, 2�

√
D�]2 is an integer, Corol-

lary 4.2 gives us equality q2m−2(a2, . . . , a2m−1) = 2q2m−2(a1, . . . , a2m−2). By Lemma 4.3
this equality holds only if aj = 1 for some j ∈ {1, . . . , 2m − 1}. �

A more careful analysis of the above reasoning allows us to state that if q2m−2(a2,

. . . , a2m−1) = 2q2m−2(a1, . . . , a2m−2), then aj = 1 for some

j ∈
{

2, 4, . . . , 2
⌈m

2

⌉
− 2,m, 2

⌈m
2

⌉
+ 1, . . . , 2m− 5, 2m− 3

}
.

As a result, if p is a prime number and D ∈ {p, 2p} is such that D ≡ �
√
D� = a

(mod 2), TD = 4m for some m ∈ N+ and 
√
D = [a, a1, . . . , a2m−1, a, a2m−1, . . . , a1, 2a], 

then aj = 1 for some

j ∈
{

2, 4, . . . , 2
⌈m

2

⌉
− 2,m, 2

⌈m
2

⌉
+ 1, . . . , 2m− 5, 2m− 3

}
.

In view of the proof of Theorem 1.2 in the case of �
√
D� ≡ D (mod 2) and the 

discussion above we can make the statement of Theorem 1.2 more specific:
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Theorem 4.4. Let p a prime number, D ∈ {p, 2p}, and TD = 4m for some m ∈ N+. 
Then 1 appears in the period of continued fraction of 

√
D. In particular, if

√
D = [a, a1, . . . , a2m−1, a2m, a2m−1, . . . , a1, 2a],

then

(1) a2m−1 = a2m+1 = 1 when a ≡ D (mod 2);
(2) aj = 1 for some j ∈

{
2, 4, . . . , 2

⌈
m
2
⌉
− 2,m, 2

⌈
m
2
⌉

+ 1, . . . , 2m− 5, 2m− 3
}

when 
a ≡ D (mod 2).

Note that one can also reason analogously in the cases of prime powers and to show 
the following.

Theorem 4.5. Let p a prime number. Let D an integer of the form pn or 2pn, where 
n is an odd positive integer. Assume that 2 | TD. Write TD = 2L for some L ∈ N+

and 
√
D = [�

√
D�, a1, . . . , aL−1, aL, aL−1, . . . , a1, 2�

√
D�]. If �

√
D� ≡ D (mod 2), then 

aL−1 = 1.

Proof. By the proof of [Pe, Satz 21, page 108], we again have that QL = 2. Then, 
Proposition 2.5 gives us that PL = aL ∈ {�

√
D�, �

√
D� − 1}. Since �

√
D� ≡ D (mod 2), 

we get from Proposition 2.4 that PL = aL = �
√
D� − 1. Then

ωL − aL =
√
D − �

√
D� + 1

2 >
1
2 .

As ωL+1 = 1
ωL−aL

< 2, we have aL+1 = �ωL+1� = 1. �
The above result together with Theorem 2.1 shows that if 1 does not appear as a 

partial quotient in continued fraction expansion of square root of prime number p ≡ 3
(mod 8), then �√p� is odd and the middle partial quotient in the period of continued 
fraction of √p is equal to �√p�. This fact is confirmed by the numerical data contained 
in [MU, Table 4].

Let us recall that if p is a prime number congruent to 3 modulo 8, then Tp = 2L for 
some odd L ∈ N+. In the case p ≡ 3 (mod 8) the reasoning in the proof of Theorem 1.2
is valid up to Corollary 4.2 included. Only the statement of Lemma 4.3 may be false. It is 
possible in the case of odd L that qL−2(a2, . . . , aL−1) = 2qL−2(a1, . . . , aL−2) but aj > 1
for all j ∈ {1, . . . , L− 1}. Analogous reasoning to this one from the proof of Lemma 4.3
shows that qL−2(a2, . . . , aL−1) = 2qL−2(a1, . . . , aL−2) if 3−(−1)k

2 ak = 3+(−1)k
2 aL−k for 

each k ∈
{
1, . . . , L−1

2
}
. In other words, qL−2(a2, . . . , aL−1) = 2qL−2(a1, . . . , aL−2)

if 2ak = aL−k for each odd k ∈
{
1, . . . , L−1

2
}

and ak = 2aL−k for each even 
k ∈

{
1, . . . , L−1}. This phenomenon can be also observed in [MU, Table 4].
2
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5. Proof of Theorem 1.3

In this section we estimate the period length, giving a partial answer to [MU, Ques-
tion 5.1].

Proof of Theorem 1.3. We will use the class number formula

h =
√
D

log εL(1, χ),

where h and ε > 1 are the class number and fundamental unit of the real quadratic field 
Q(

√
D), respectively. For the class number, we will just use the trivial estimate h ≥ 1.

For the fundamental unit, first let pi/qi = [a0, a1, . . . , ai] denote the convergents to √
D and define αi = pi+qi

√
D. A well-known fact then says that αl−1 is a unit in Q(

√
D)

that equals ε or ε2. Also note that, in the notation of Section 2, pi = qi+1(a0, a1, . . . , ai)
and qi = qi(a1, . . . , ai).

To estimate αl−1, we use the recurrences αi+1 = ai+1αi + αi−1 that can be extended 
to hold with the initial conditions α0 = a0 +

√
D, α−1 = 1.

Similarly as, e.g., in [DK, Lemma 8], using the recurrence twice, we get

αi+1 = ai+1αi + αi−1 = (ai+1ai + 1)αi−1 + ai+1αi−2 > (ai+1ai + 1)αi−1 ≥ 2αi−1

(it is easy to check that the estimate holds also for i = 0).

Thus αl−1 > 2αl−3 > · · · >
{

2(l−1)/2α0 if l is odd,
2l/2α−1 if l is even.

In both cases, we get αl−1 > 2l/2.
Thus log ε ≥ 1

2 logαl−1 > l log 2
4 , and so

l <
4

log 2 log ε ≤ 4
log 2

√
D · L(1, χ).

Finally, for the L-value, we have the well-known bounds L(1, χ) � logD (uncondi-
tionally) and L(1, χ) � log logD (under GRH), see, e.g., [GS]. �

As we noted in the Introduction, similar results are known, e.g., [Pod,Poh,Sa]. Nev-
ertheless, we included the proof here for completeness of the answer to Question 5.1 in 
[MU].

This question asked for estimates of the period length Tpm
, where pm is the mth prime. 

As pm ∼ m logm by the prime number theorem, we immediately get from Theorem 1.3
above that

Tpm
�

{
m1/2(logm)3/2 unconditionally,
m1/2(logm)1/2 log logm assuming GRH.
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Thus it seems that unconditionally answering part 1. of the question (that asks 
whether always Tpm

< m1/2 logm) will be very hard, as it corresponds to establish-
ing an unconditional upper bound L(1, χ) �

√
log p.

Assuming GRH, one can use an explicit form of Littlewood’s bound [LLS, Theorem 
1.5]. As χ is a primitive character modulo D or 4D, plugging in this bound to our 
Theorem 1.3 and simplifying, we get

TD < 21
√
D(log log(4D) + 0.2)

for D > 1010. If we let D = pm the mth prime, we can use the explicit upper bound 
pm < m(logm + log logm) valid for m ≥ 6 [RS, Corollary to Theorem 3]. Comparing 
the resulting bound on Tpm

with [MU, Question 5.1, part 1.], we see that if m > 1024000, 
then the conjectured bound indeed holds. Unfortunately, this bound is so large that com-
putationally checking what happens for all smaller values of m is most likely impossible.

Of course, one could try to improve the other estimates used in the proof of Theo-
rem 1.3. But αl−1 > 2l/2 is essentially sharp (when all the partial quotient a1, . . . , al−1

are small), and in such a case it can most likely also happen that D is prime (for D = D(t)
will be given by a quadratic polynomial that conjecturally attains prime values, cf. [DK, 
Proposition 6], [MU, Theorem 3.3], and Section 6), as well as that the class number is 
small (when the parameter t is small).

Part 2 of [MU, Question 5.1] asks about the value

lim sup
m→∞

Tpm

m1/2 logm
.

Here again we cannot say anything unconditionally, but we see that our estimate under 
GRH immediately implies that the lim sup equals 0.

6. Factorization of continued fraction polynomials

Let us now focus on “continued fraction families (or polynomials)”: Let l ≥ 1 and fix 
a symmetric sequence of positive integers a1, a2, . . . , al−1 = a1 (when l = 1, then the 
sequence is empty).

Friesen [Fr] and Halter-Koch [HK] determined conditions under which there exist 
(squarefree) integers D such that 

√
D = [a0, a1, . . . , al] for some a0 and al = 2a0. It 

turns out that these conditions depend only on certain parities of expressions related to 
the integers qi(a1, a2, . . . , ai).

To be precise, define the positive integers E, F, G by the matrix equation

[
E F

F G

]
=

l−1∏[
ai 1
1 0

]
. (12)
i=1
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As in identity (5), we have E = ql−1(a1, a2, . . . , al−1), F = ql−2(a1, a2, . . . , al−2) and 
G = ql−3(a2, a3, . . . , al−2).

With this notation, Friesen’s theorem says:

Theorem 6.1 ([Fr, Theorem]). Let l ≥ 1 and fix a symmetric sequence of positive integers 
a1, a2, . . . , al−1 = a1. Let E, F, G as above. There are infinitely many squarefree integers 
D > 1 such that 

√
D = [a0, a1, . . . , al] for some a0 and al = 2a0 if and only if F or G is 

even. Furthermore, all such D are of the form D = D(t) = at2 + bt + c for t ≥ t0, where

(1) a = E2, b = 2F − (−1)lEFG, c = (F 2/4 − (−1)l)G2 if F is even and E, G are odd, 
or E, F are odd and G is even;

(2) a = E2/4, b = F − (−1)lEFG/2, c = (F 2/4 − (−1)l)G2 if F is odd and E, G are 
even;

and t0 = �(−1)lFG/E� + 1. Then a0 = (Et− FG) /2.

Note that F 2−EG = (−1)l thanks to (12). Thus although Friesen stated his condition 
in terms of (F 2 − (−1)l)/E, this equals G that we use in our formulation.

Further, the equality F 2 − EG = (−1)l allows us to determine the possible parities 
above: for example, in case (1), if F is even, then E, G have to be odd as stated.

It is also worth remarking that the discriminant of D(t) as a quadratic polynomial is 
(−1)l · 4 in case (1), and (−1)l in case (2).

Note that, unfortunately, the reformulation of the previous theorem given by Dahl 
and the first author as [DK, Proposition 6] contains an error: In the statement of the 
proposition, there should not be qs−3, but G = qs−3(a2, a3, . . . , as−2) as defined above 
([DK] denotes the period length s instead of l in the present paper). This misprint has 
no impact on the rest of the paper [DK].

Inspired by the factorization of [MU, Theorem 3.3], we can similarly – and more 
explicitly – factor D(t) when the period length l is even. Also note that [RT, Lemma 
3b)] gives an equivalent factorization as our theorem (but does not consider what happens 
in these families).

Theorem 6.2. In the setting of Theorem 6.1, assume moreover that l is even. Let cases 
(1) and (2) below as in Theorem 6.1. Further let

(1) E± = (F ± 1, E), G± = (F ± 1, G), and
(2) 2E± = (F ± 1, E), 2G± = (F ± 1, G).

Then we have the following factorizations into products of integers:

(1) D = D(t) =
(
E2

+t−G2
−(F + 2)/2

) (
E2

−t−G2
+(F − 2)/2

)
,

(2) D = D(t) =
(
E2

+t−G2
−(F + 2)

) (
E2

−t−G2
+(F − 2)

)
.
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When t ≥ t0, then both parentheses in the factorization are positive integers.
Moreover, if D = D(t) is prime, then t = t0 attains the smallest possible value.

Proof. The factorizations are straightforward to verify by expanding and simplifying 
using F 2 − EG = 1: In case (1), F is even, and so F − 1 and F + 1 are coprime. Thus 
(F − 1)(F + 1) = EG implies that F ± 1 = E±G± and E = E−E+, G = G−G+. Using 
this, one just expands the factorization and checks that it equals D(t) from Theorem 6.1.

Similarly in case (2), except that we have F ± 1 = 2E±G± and E = 2E−E+, G =
2G−G+

Also the positivity of the parentheses is easily checked directly with the use of identities 
F ± 1 = E±G± and E = E−E+, G = G−G+ (F ± 1 = 2E±G± and E = 2E−E+, G =
2G−G+, respectively).

If D is prime, then one of the parentheses equals 1, and the other one > 1. But this 
can happen only for the smallest possible value t = t0, as both parentheses are strictly 
increasing functions of t. �

One can also directly compute that the possible prime value equals:

(1) E2
+−2
E2

−
or E

2
−+2
E2

+
;

(2) E2
+−1
E2

−
or E

2
−+1
E2

+
.

Since a square of an integer is congruent to 0, 1 or 4 modulo 8, it is easy to compute 

that if E
2
∓±c

E2
±

, c ∈ {1, 2}, is a prime number, then

• E2
+−2
E2

−
≡ 7 (mod 8);

• E2
−+2
E2

+
≡ 3 (mod 8);

• E2
−+1
E2

+
≡ 1 (mod 4).

Note that for a given integer D, to be of the form x
2−c
y2 , where x, y, c ∈ Z, is equivalent 

to solubility of Pell-type equation x2 −Dy2 = c in integers x, y. This corresponds with 
the facts [Pe, Sätze 22–24] that if p is a prime number, then

• x2 − py2 = 2 has a solution in integers x, y if and only if p ≡ 7 (mod 8);
• x2 − py2 = −2 has a solution in integers x, y if and only if p ≡ 3 (mod 8);
• x2 − py2 = −1 has a solution in integers x, y if and only if p ≡ 1 (mod 4).

Recall that if 
√
D = [a0, a1, . . . , al], then we write ωk = [ak, . . . , al, a1, . . . , ak−1]

for k ∈ N+. We already know that for each k ∈ N+ we have ωk =
√
D+Pk

Qk
for some 

Pk, Qk ∈ N+ such that P 2
k < p and Qk | D − P 2

k . The reasoning in [Pe, page 102] shows 
that (−1)kQk, k ∈ N, is represented as a value of binary quadratic form x2−Dy2 for some 
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integral x and y (e.g., by taking x = qk+1(a0, a1, a2, . . . , ak) and y = qk(a1, a2, . . . , ak)). 
Assuming that D = p is a prime number, by Corollary 2.9a) we know that 2 � l if 
and only if p ≡ 1 (mod 4). Hence, if p ≡ 1 (mod 4), putting k = l we obtain that the 
equation x2 − py2 = −1 has a solution in integers x, y. In the case of p ≡ 3 (mod 4)
we have l = 2L for some L ∈ N+. As we have proved in Proposition 2.3, QL = 2. This 
fact combined with Corollary 2.9b) gives us that if p ≡ 5 ±2 (mod 8), then the equation 
x2 − py2 = ±2 has a solution in integers x, y.

Since l in the assumption of Theorem 6.2 is even and a prime number of the 

form 
E2

−+1
E2

+
is congruent to 1 modulo 4, Corollary 2.9 allows us to conclude that the 

equation E2
+t0 − G2

−(F + 2) = 1 does not lead to prime value of D = D(t0) =(
E2

+t0 −G2
−(F + 2)

) (
E2

−t0 −G2
+(F − 2)

)
= E2

−+1
E2

+
. Thus, if D(t0) is a prime number 

in the case (2) of Theorem 6.2, then E2
−t0 −G2

+(F − 2) = 1 and D(t0) =
E2

+−1
E2

−
.

There is also another restriction for the value of D(t0) to be prime. According to 
Theorems 6.1 and 6.2 we get a0 = (Et0 − FG)/2 while Theorem 2.1 gives us a relation 
aL ≤ a0 ≤ aL + 1. As a result, if D(t0) is a prime number, then aL ≤ (Et0 − FG)/2 ≤
aL + 1, where E, F, G and t0 are expressions depending on a1, . . . , aL.
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