
Methods Ecol Evol. 2023;14:2003–2010.    | 2003wileyonlinelibrary.com/journal/mee3

Received: 9 January 2023  | Accepted: 11 May 2023

DOI: 10.1111/2041-210X.14152  

A P P L I C A T I O N

orchaRd 2.0: An R package for visualising meta- analyses with 
orchard plots

Shinichi Nakagawa1,2  |   Malgorzata Lagisz1  |   Rose E. O'Dea3  |   Patrice Pottier1  |   
Joanna Rutkowska4  |   Alistair M. Senior5  |   Yefeng Yang1  |   Daniel W. A. Noble6

1Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 
Australia; 2Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan; 3Wissenschaftskolleg zu 
Berlin, Berlin, Germany; 4Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland; 5Charles Perkins Centre, Sydney 
Precision Data Science Centre and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia and 6Division of 
Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Correspondence
Shinichi Nakagawa
Email: s.nakagawa@unsw.edu.au

Daniel W. A. Noble
Email: daniel.noble@anu.edu.au

Funding information
Australian Research Council, Grant/
Award Number: DP210100812 and 
DP210101152; Theoretical Sciences 
Visiting Program (TSVP)

Handling Editor: Natalie Cooper

Abstract
1. Although meta- analysis has become an essential tool in ecology and evolution, 

reporting of meta- analytic results can still be much improved. To aid this, we have 
introduced the orchard plot, which presents not only overall estimates and their 
confidence intervals, but also shows corresponding heterogeneity (as prediction 
intervals) and individual effect sizes.

2. Here, we have added significant enhancements by integrating many new func-
tionalities into orchaRd 2.0. This updated version allows the visualisation of het-
eroscedasticity (different variances across levels of a categorical moderator), 
marginal estimates (e.g. marginalising out effects other than the one visualised), 
conditional estimates (i.e. estimates of different groups conditioned upon specific 
values of a continuous variable) and visualisations of all types of interactions be-
tween two categorical/continuous moderators.

3. orchaRd 2.0 has additional functions which calculate key statistics from multilevel 
meta- analytic models such as I2 and R2. Importantly, orchaRd 2.0 contributes to 
better reporting by complying with PRISMA- EcoEvo (preferred reporting items 
for systematic reviews and meta- analyses in ecology and evolution). Taken to-
gether, orchaRd 2.0 can improve the presentation of meta- analytic results and 
facilitate the exploration of previously neglected patterns.

4. In addition, as a part of a literature survey, we found that graphical packages are 
rarely cited (~3%). We plea that researchers credit developers and maintainers of 
graphical packages, for example, by citations in a figure legend, acknowledging 
the use of relevant packages.

K E Y W O R D S
caterpillar plot, credibility interval, credible interval, evidence synthesis, graphical tools,  
meta- regression, summary forest plot
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1  |  INTRODUC TION

Meta- analysis has become an essential synthesis tool across the 
medical, social and biological sciences (Cooper et al., 2019; Gurevitch 
et al., 2018; Higgins et al., 2019; Schmid et al., 2021). In fields such as 
medicine, meta- analytic results are typically shown in a forest plot 
that presents effect sizes and their 95% confidence intervals (CIs) 
from each study in the meta- analysis. However, in ecology and evo-
lution, forest plots are infrequently used because meta- analyses in 
this field often include >100 effect sizes, making a traditional forest 
plot impractical (Gurevitch et al., 2018; Senior et al., 2016). Instead, 
researchers use a ‘forest- like plot’ with the overall mean effect size 
estimate and their 95% CIs for different levels of a categorical mod-
erator (predictor variable). Such estimates are derived from a meta- 
regression model or from subset/sub- group analyses. For example, 
such a plot could show estimates from five different taxa, six differ-
ent geographical areas or three different methods. A recent survey 
found 72 out of 102 ecological and evolutionary meta- analyses pre-
sented forest- like plots (Nakagawa et al., 2021). Contributing to the 
popularity of forest- like plots is the fact that meta- analytic modera-
tors are often categorical rather than continuous variables. Despite 
their popularity, forest- like plots in ecology and evolution often lack 
important information such as individual effect sizes and estimates 
of heterogeneity among effect sizes (Nakagawa et al., 2021; Schild 
& Voracek, 2015).

Nakagawa et al. (2021) introduced an information- rich version of 
a forest- like plot, named the ‘orchard’ plot. Orchard plots provide (1) 
point estimates (i.e. meta- analytic means); (2) CIs, (3) prediction inter-
vals (PIs; which show heterogeneity among effect sizes); and (4) indi-
vidual effect sizes scaled by their precision (the inverse of the square 
root of the sampling variance). Nakagawa et al. (2021) implemented 
the orchard plot using functions that use the most popular and com-
prehensive meta- analysis R package, metafor (Viechtbauer, 2010) 
and ggplot2 graphics (Wickham, 2009). However, the original im-
plementation (orchaRd 1.0) was limited to single moderator meta- 
regression models. In addition, it was only possible to visualise a 
meta- regression model that assumed homoscedasticity across levels 
of the single categorical moderator (i.e. all levels have the same vari-
ance, which may be unrealistic, e.g. Wilson et al., 2022; Zajitschek 
et al., 2020).

In this article, we enhance the visualisation capabilities of the 
orchaRd package by integrating the functionalities of the R package 
emmeans (Lenth et al., 2018) in four ways. The first three extend or-
chard plots by allowing visualisation of (I) heteroscedasticity (differ-
ent variances across levels of a categorical moderator; Section 3.1); 
(II) marginal estimates (e.g. marginalising all other moderators 
apart from the one visualised; Section 3.2) and (III) conditional es-
timates (i.e. estimates of different groups/levels of a categorical 
variable, conditioned upon specific values of a continuous variable; 
Section 3.3). The fourth capability allows for ‘bubble’ plots to be 
created of (i) a continuous variable, (ii) interactions between a con-
tinuous and categorical variable and (iii) interactions between two 
continuous variables from multi- moderator models (Section 3.4). In 

addition, we add helper functions to calculate key statistics from 
multilevel meta- analytic models such as I2 (Cheung, 2014) and R2 
(Aloe et al., 2010; Nakagawa & Schielzeth, 2013), along with their 
CIs (Section 3.5). These new functionalities not only better visualise 
meta- analytic results in ecology and evolution, but also facilitate the 
exploration of previously neglected patterns, such as heteroscedas-
ticity in meta- analytic data. Throughout we support the motivation 
for creating these functionalities with a survey of meta- analyses in 
ecology and evolution (Section 2).

Notably, orchaRd 2.0 improves reporting transparency in a meta- 
analysis by following the ‘Preferred Reporting Items for Systematic 
reviews and Meta- Analyses in Ecology and Evolution’ (PRISMA- 
EcoEvo; O'Dea et al., 2021). Our package's vignette also provides 
detailed instructions and examples on how to use all the main func-
tions, as well as how to customise plots (https://danie l1nob le.github.
io/orcha Rd/).

2  |  SURVE Y METHODS

To gauge the potential usefulness of the orchaRd package's exten-
sions, we surveyed 102 meta- analyses in ecology and evolution. 
Notably, this dataset was initially collected to quantify reporting 
quality of ecological and evolutionary meta- analyses to assist in 
creating PRISMA- EcoEvo (O'Dea et al., 2021). Briefly, we obtained 
102 articles with meta- analyses that were published between 1 
January 2010 and 25 March 2019 and part of the ‘Ecology’ and 
‘Evolutionary Biology’ journals classified under the InCites Journal 
Citation Reports (Clarivate Analytics; see more details in O'Dea 
et al., 2021). We previously explored this dataset to survey the use 
of forest and forest- like plots in ecology and evolution (Nakagawa 
et al., 2021).

For this study's survey, we asked the following 8 questions.

Q1: How many papers have at least one categorical variable/
moderator? (Defining a moderator as a predictor in a meta- 
regression analysis).

Q2: How many papers have at least one test or model for 
heteroscedasticity?

Q3: How many papers have at least one model with more than 
one categorical moderator?

Q4: How many papers have at least one model with at least one 
categorical moderator and one continuous moderator?

Q5: How many papers that used a multi- moderator regression 
have at least one forest- like plot (figure) made from the multi- 
moderator meta- regression?

Q6: How many papers that used a multi- moderator regression 
also modelled interactions?
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Q7: How many papers, which use R, cite an R software package 
they used for meta- analysis?

Q8: How many papers, which use R, cite an R software pack-
age they used for the graphical presentation of meta- analytic 
results?

We report relevant results below, but the full results of this sur-
vey can be found in the Supporting Information.

3  |  NE W SOF T WARE C APABILITIES

The orchaRd 2.0 package has six main functions with three different 
(‘table’, ‘figure’ and ‘statistics’) functionalities: (1) mod_results (cre-
ating a table or a table function; see Figure 1), (2) orchard_plot (a 
figure function), (3) bubble_plot (a figure function), (4) caterpillars (a 
figure function), (5) i2_ml (calculating I2 statistics or a statistics func-
tion) and (6) r2_ml (a statistics function; each function's description 
is found in Table 1). Among these six functions, the core function is 
orchard_plot. This function enables users to draw orchard plots from 
a table created by mod_results, which uses emmeans functionality 
(Lenth et al., 2018) to process metafor model objects (object classes: 
rma, rma.mv and robust.rma; Viechtbauer, 2010). Below we first 
showcase three new capabilities of orchard_plot. Then, we describe 
a new function, bubble_plot, followed by the other main functions 

(caterpillars, i2_ml and r2_ml). Notably, the focus of our orchaRd 
package is to visualise multilevel meta- analytic models, which deal 
with two different types of non- independence due to (1) correlated 
effect sizes (e.g. multiple effect sizes per study) and (2) correlated 
sampling errors (e.g. shared control groups or shared measurements; 
see Noble et al., 2017). The former requires adding random effects 
(e.g. study ID), while the latter requires modelling a within- study 
variance– covariance matrix (note one can use the vcalc function in 
metafor to create such a matrix; Viechtbauer, 2010).

3.1  |  Orchard plots: Heteroscedasticity

Categorical variables (moderators) are extremely common in meta- 
analyses. In our survey, >97% of the papers had at least one cat-
egorical variable. The categorical variable was used to subset data 
for sub- group analyses, where a series of meta- analyses (intercept 
models) were run, or to fit a meta- regression model (Q1). In many 
meta- analyses, researchers assumed all levels of a categorical mod-
erator had the same variation (homoscedasticity). Our survey shows 
that only 5% of papers investigated heteroscedasticity, while others 
assumed homoscedasticity (Q2). Yet, differences in variances can be 
as biologically insightful as differences in means among groups. For 
example, Pottier et al. (2022) found that not only were aquatic ec-
totherms more thermally plastic than their terrestrial counterparts, 
but their plastic responses were much more variable than those of 

F I G U R E  1  Orchard plots (using orchard_plot function) and model result tables (using the mod_result function and extracting the table 
from the object— See Section 5 of the vignette) for terrestrial and aquatic ectotherm developmental acclimation response ratios (dARR). (a) 
Model assuming the variance in terrestrial and aquatic ectothermic species is the same (i.e. homogeneity of variance); (b) Model assuming 
the variance in terrestrial and aquatic ectothermic species is not the same (i.e. heterogeneity of variance), with the lower and upper 
confidence intervals (CIs) and prediction intervals (PIs) adjusted accordingly for each level of the habitat type moderator (data from Pottier 
et al., 2022).
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terrestrial ectotherms (even after considering the sample size dif-
ference). Our orchard_plot now allows for visualisation of modelled 
heteroscedasticity by depicting different PIs for different groups 
(Figure 1). Of importance, modelling heteroscedasticity, when 
it exists, might reduce Type 1 error (Rubio- Aparicio et al., 2017, 
2020); and orchard plots can assist meta- analysts in finding het-
eroscedasticity. Incidentally, modelling heteroscedasticity for a 
categorical moderator becomes essential if one wants to obtain ab-
solute group means (e.g. selection gradients; Kingsolver et al., 2012; 
Siepielski et al., 2017; see also Noble et al., 2018). Absolute esti-
mates can be calculated assuming a ‘folded’ normal distribution (see 
Morrissey, 2016; Nakagawa & Lagisz, 2016), with the accuracy of 
mean magnitudes being dependent on within- group variances. As 
such, it is important that heteroscedasticity is evaluated if such an 
approach is taken.

3.2  |  Orchard plots: Marginal means

Many meta- analyses include multiple variables (moderators), and 
often they are modelled together in a single meta- regression 

model. In our survey, meta- analytic studies often modelled two 
or more categorical moderators together (Q3: 41%) and modelled 
at least one categorical moderator and one continuous modera-
tor (Q4: 30%). Not all meta- analyses, which had multi- moderator 
models, reported marginal estimates (Q5: 27%). It is understanda-
ble because obtaining ‘marginal’ means becomes difficult once the 
number of moderators increases unless one relies on computa-
tional solutions, for example, via the emmeans package. Therefore, 
many meta- analysts have been using only estimates from uni- 
moderator models. We have now made it straightforward to pro-
duce marginal means from a multi- moderator meta- regression 
model using orchard_plot. It is notable that marginalisation is 
usually done by weighting in proportion to the frequencies in the 
sample (data) of different groups that are averaged over. In such 
a case, marginal means are often similar, if not identical, to means 
from a uni- moderator model. However, if ‘equal’ weighting is used 
(giving the same weights to all groups), marginalised means could 
be different from those from a uni- moderator model, especially 
when a categorical moderator is unbalanced between groups/lev-
els (Figure 2). Equal weighting is, for example, useful when your 
sample is unequal in your dataset, but in the population, it should 

TA B L E  1  Main functions in the orchard package, their general categorisation and a description of what they can be used for in 
combination with metafor meta- analytic model objects (rma.mv, rma and robust.rma).

Function Category Description

mod_results Table mod_results takes multi- level meta- analytic and meta- regression models (with multiple moderators— 
continuous or categorical) of class rma.mv/rma/robust.rma and calculates mean or marginalised mean 
meta- analytic estimates across all levels of a given moderator or overall (i.e. intercept only). The mod_
results table can then be used with orchard_plot, bubble_plot or caterpillars to plot results graphically. 
If a multivariate meta- regression model (with many moderators) is provided, users can specify the ‘by’ 
and/or ‘at’ arguments to marginalise over desired levels of other moderators

orchard_plot Figure Modified forest plot that plots the meta- analytic means, CIs, prediction intervals and raw data for each 
level of a categorical moderator. Users can use a number of arguments for modifying the look of 
plots including the legend, colour schemes, size and weight of points and lines and angle and naming 
of text on the axes. Sub- setting allows the users to plot a subset of the levels for a given moderator. 
Additional modifications can be made by adding and modifying layers of the ggplot object. Plots can 
be made using either mod_results objects directly or using the rma.mv/rma/robust.rma model object in 
combination with the raw data. If a multivariate meta- regression model (many moderators) is provided 
directly users can specify the ‘by’ and/or ‘at’ arguments to marginalise over desired levels of other 
moderators

bubble_plot Figure Creates a bubble plot(s) depicting the predicted mean effect size, confidence and prediction interval as a 
function of a continuous moderator (slope estimate) or a series of separate plots showing predictions 
across an additional moderator (i.e. interaction plots). Plots can be made using either mod_results 
objects directly or using the rma.mv/rma/robust.rma model object in combination with the raw data. 
Raw data are plotted, and point size is adjusted according to effect size precision

caterpillars Figure Creates a caterpillar plot from an intercept model or from mean effect size estimates for all levels of a 
given categorical moderator, their corresponding confidence and prediction intervals. Plots can be 
made using either mod_results objects directly or using the rma.mv/rma/robust.rma model object in 
combination with the raw data

i2_ml Statistics Calculates heterogeneity statistics using measures of I2 for a multilevel meta- analytic or meta- regression 
models. Point estimates can be calculated quickly for each level of random effect along with an 
estimate of total heterogeneity. Users also have the option of generating 95% CIs for all I2 estimates 
using the ‘boot’ argument (percentile method). This argument will conduct parametric bootstrapping

r2_ml Statistics Calculates marginal and conditional R2 for multilevel meta- analytic or meta- regression models. Point 
estimates can be calculated quickly using a couple of different methods, but users also have the option 
of generating 95% CIs for R2 using the ‘boot’ argument (percentile method). This argument will conduct 
parametric bootstrapping
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be ~50:50%; for example, males and females in many animals (cf. 
Deffner et al., 2022).

3.3  |  Orchard plots: Conditional means

As mentioned above, our survey showed that it was not uncom-
mon to have a study with a continuous moderator and a categori-
cal moderator (Q3: 30%). For such a combination, one can estimate 
group- level means (and overall means) conditioned upon specific 
values of a continuous moderator (Figure 3). For example, O'Dea 
et al. (2019) estimated how thermal environments during devel-
opment affect phenotypic mean and variance. They found that 
increasing temperature did not change phonotypic means, while 
phenotypic variance increased as developmental temperature in-
creased. Examining ‘conditional’ means is illuminating and impor-
tant for statistical inference because the statistical significance of 
conditional estimates can change along the gradient of a continu-
ous moderator. Yet, none of the 32 papers with a model containing 
at least one categorical and continuous moderator presented con-
ditional estimates, as for example are depicted in Figure 3b (see 
also Vendl et al., 2022).

3.4  |  Interactions: Orchard, bubbles and bubbleless

In our survey, ~30 (out of 102) meta- analyses modelled some 
type of interaction (Q5). Three types of interactions might 
manifest in a meta- analysis, those between (1) categorical– 
categorical variables; (2) categorical– continuous variables and 

(3) continuous– continuous variables. The first type of interaction 
(categorical– categorical) can be easily visualised using an orchard 
plot because interactions between two categorical variables can 
be conceptualised as one categorical variable (e.g. a categorical 
variable with 2 levels and another with 2 levels are equivalent to 
a categorical variable with 4 levels; Figure 4a). If we want to see 
a plot with the second type (categorical– continuous), one can use 
bubble plots via the bubble_plot function (note that metafor also 
has a function for bubble plots, called regplot, which provides a 
single- panel interaction plot, unlike our multi- panel interaction 
plots; Figure 4b). The third type (continuous– continuous) is the 
least intuitive one to visualise, but one can also use bubble_plot to 
draw ‘bubbleless’ plots, which are line plots with multiple panels 
(Figure 4c); they are bubbleless because often there are only a few 
or no corresponding data points to plot for a given point of one of 
the two continuous variables.

3.5  |  Other functions

In addition to orchard and bubble plots, the orchaRd package provides 
‘caterpillar’ plots (via the function caterpillars, which is a forest plot 
without labels for each effect size; see our vignette— https://danie 
l1nob le.github.io/orcha Rd/). We also present two new non- plot func-
tions to give meta- analysts convenient tools to quantify heterogene-
ity and variances explained by multilevel meta- analyses. The function 
i2_ml calculates I2, which is the percentage of variation among effect 
sizes not driven by sampling error (much of which is due to differ-
ences in sample sizes across studies; Higgins & Thompson, 2002). 
Our function not only calculates the original I2 (referred to as ‘total’ 

F I G U R E  2  Orchard plots of overall meta- analytic mean developmental acclimation response ratios (dARR). (a) Marginalised mean 
estimate assuming aquatic and terrestrial ectotherms are weighted proportionally to their representation in the sample of data (see 
Figure 1 for sample sizes for each group); (b) Marginalised mean estimate assuming aquatic and terrestrial ectotherms are weighted equally. 
Comparing the mean and 95% confidence intervals shows how estimates affect the mean and the inferences.
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I2) but heterogeneity explained by each additional random effect in 
the model (e.g. heterogeneity due to study ID or due to species ID; 
sensu Nakagawa & Santos, 2012). Furthermore, different sets of I2 
values can be calculated for different groups (levels) for a categorical 
moderator model with heteroscedasticity. While I2 is estimated from 

a meta- analytic (intercept- only) model, R2 is used to quantify variance 
(heterogeneity) accounted by moderators. The function r2_ml calcu-
lates marginal R2, proposed by Nakagawa and Schielzeth (2013) as a 
pseudo- R2 for linear mixed- effects models. Notably, both i2_ml and 
r2_ml can provide 95% CIs, using bootstrapping.

F I G U R E  3  Orchard plots of mean log response ratios across four major trait categories (physiology, morphology, life history and 
behaviour) in fish. (a) Overall meta- analytic mean log response ratio for each trait category (marginalised means); (b) Predicted overall 
meta- analytic mean for each trait category for three levels of temperature difference, 5, 10 and 15° (conditional means; data from O'Dea 
et al., 2019).
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F I G U R E  4  Orchard plots and bubble plots using Fishers' z- transformed correlation coefficient (Zr). (a) Example of two categorical 
moderators (captive vs. wild; offspring vs. egg) combined into a single moderator. (b) Example of a continuous moderator (publication year) 
combined with a categorical moderator (captive vs wild); (c) Two continuous moderators, sampling standard error and year, with predictions 
made for 2 years (data from Lim et al., 2014). In (b and c), dashed lines represent 95% confidence intervals while dotted lines 95% prediction 
intervals.
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4  |  IMPROVING REPORTING

4.1  |  PRISMA- EcoEvo and orchaRd

O'Dea et al. (2021) recommend information to be reported in 
systematic reviews and meta- analyses in ecology and evolution. 
Visualisations from the orchard package are completely consistent 
with reporting recommendations of PRISMA- EcoEvo. This is espe-
cially so with three (sub- )items, recommended for the Method sec-
tion: (1) presenting the numbers of studies and effect sizes for each 
estimate; (2) reporting indicators of heterogeneity; and (3) including 
estimates and CIs for moderators. The survey conducted by O'Dea 
et al. (2021) showed very poor reporting of these items: 57%, 52% 
and 59%, respectively. As one can see, our package takes care of 
these three items in a single orchard plot (Figures 1– 4). It is nota-
ble that now orchard plots even visualise different heterogeneities 
among different groups (i.e. heteroscedasticity) via PIs.

4.2  |  Plea and proposal

Graphical presentation can facilitate better reporting in meta- 
analyses. However, in our survey, only 2 papers (3.1%) out of 64 arti-
cles which used R, cited any graphical package(s) used for visualising 
meta- analytic results (e.g. orchaRd; Q8). This figure starkly contrasts 
with 85% of the papers (55 out of 64; Q7) citing the software pack-
ages used for meta- analyses (e.g. metafor). This survey result marks a 
severe under- recognition of graphical packages. The real- world risk 
here is that this lack of recognition severely disincentivises develop-
ers from maintaining and further developing graphical packages.

We argue that authors should acknowledge graphical packages 
used for presenting meta- analyses (or any research article, for that 
matter), just as they do with any statistical package. We propose that 
graphical packages that were used to make a figure should be listed 
at the end of the figure legend. This standardised reporting format 
will mean packages do not necessarily need to be listed in the meth-
ods, but they will still be given credit. We note, however, that an R 
package can have many dependencies (i.e. other required R packages 
other than ‘base’ packages). For example, orchaRd 2.0 is dependent 
on emmeans, ggplot2 and metafor. We freely admit that we do not 
have a satisfying answer on whether dependencies should also be 
credited. However, for now we think it is reasonable to suggest that 
researchers provide the reference (in a figure legend or main text) for 
the immediate R function and package they used to make their figure.

5  |  CONCLUSIONS

As the presence and influence of meta- analyses grow in the field, it 
is more important than ever to visualise meta- analytic results in an 
information- rich manner. Here, we have introduced an expanded ver-
sion of orchaRd (version 2.0), which enables researchers to readily 
visualise complex as well as simple meta- analytic results, a task that 

was previously difficult for many. New functionalities that allow for 
marginal and conditional means to be plotted will improve model com-
munication by allowing for a holistic visual interpretation of the com-
plex numerical information generated by the analysis (see Figure 1– 4). 
Also, we introduce functions for calculating I2 and R2 for multilevel 
meta- analytic models, which have become standard in ecological and 
evolutionary meta- analyses. Finally, we hope our paper also becomes 
a reminder of the importance of acknowledging graphical packages. 
Adequate attribution of credits will create a more sustainable environ-
ment for developers and maintainers of graphical packages.
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