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Abstract
Global mean temperature is increasing at a rapid pace due to the rapid emission of

greenhouse gases majorly from anthropogenic practices and predicted to rise up to

1.5˚C above the pre-industrial level by the year 2050. The warming climate is affect-

ing global crop production by altering biochemical, physiological, and metabolic

processes resulting in poor growth, development, and reduced yield. Maize is sus-

ceptible to heat stress, particularly at the reproductive and early grain filling stages.

Interestingly, heat stress impact on crops is closely regulated by associated environ-

mental covariables such as humidity, vapor pressure deficit, soil moisture content,

and solar radiation. Therefore, heat stress tolerance is considered as a complex trait,

which requires multiple levels of regulations in plants. Exploring genetic diversity

from landraces and wild accessions of maize is a promising approach to identify

novel donors, traits, quantitative trait loci (QTLs), and genes, which can be intro-

gressed into the elite cultivars. Indeed, genome wide association studies (GWAS)

for mining of potential QTL(s) and dominant gene(s) is a major route of crop

improvement. Conversely, mutation breeding is being utilized for generating vari-

ation in existing populations with narrow genetic background. Besides breeding
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approaches, augmented production of heat shock factors (HSFs) and heat shock

proteins (HSPs) have been reported in transgenic maize to provide heat stress tol-

erance. Recent advancements in molecular techniques including clustered regularly

interspaced short palindromic repeats (CRISPR) would expedite the process for

developing thermotolerant maize genotypes.

1 INTRODUCTION

Adverse influences of global climate change factors on crop
yields and production are major risks to food and nutrition
security in the present century. Hence, adaptation and miti-
gation of adverse impacts of climate are crucial to sustaining
the food supply for the increasing world population (Farooq
et al., 2022; Rivero et al., 2022). The effect of climate change
and climate variability on agricultural productivity will be the
most significant in the tropics, sub-tropics, and semi-arid trop-
ics of Africa and South Asia. These regions are estimated to
be especially susceptible to various stresses and low adap-
tive capability (Aryal et al., 2020; Boko et al., 2007). Current
climate change is negatively impacting crop production glob-
ally (Cairns et al., 2013; Farooq et al., 2022), particularly in
the foremost staple food crops, such as maize (Zea mays L.),
rice (Oryza sativa L.), and wheat (Triticum aestivum L.). Sev-
eral environmental and edaphic factors such as rising mean
temperature, regional and extreme heat waves, drought spells,
expanding soil salinity, nutrient imbalance, and accumula-
tion of toxic heavy metals in soil are associated with climate
change (Dhankher & Foyer, 2018; Rivero et al., 2022). How-
ever, the rising mean temperature is a major climatic factor
(Figure 1), which is documented to reduce crop production
worldwide (Haider et al., 2022; Raza et al., 2021; Raza et al.,
2023; Sharma et al., 2022). Reports from NASA’s Goddard
Institute of Space Studies (GISTEMP, 2023) stated that global
mean temperature has increased by 1.1˚C since 1880, while
heat waves have become more prevalent in past decades. Con-
sequently, the increase in mean day/night temperature and
occurrences of heat waves at the regional scale have been
becoming a threat to crop production particularly in rainfed
agriculture systems (Chakraborty et al., 2019). A sudden or
gradual rise in temperature beyond the threshold that could
trigger irreparable damage to plant growth and development
is defined as heat stress (Bahuguna & Jagadish, 2015). Numer-
ous climate modeling studies suggested that heat stress events
will be more frequent in the future environment, which may
signify a major constraint to crop productivity and global food
security (Masson-Delmotte et al., 2021; Rivero et al., 2022;
Senguttuvel et al., 2022).

Maize is the most widely cultivated C4 plant covering
197 M ha of land, globally and the third most important
cereal crop contributing to global food security (FAOStat,

2021). The U.S. Department of Agriculture (USDA) reported
that more than 1150 million tons of maize has been pro-
duced worldwide in 2022/2023 market year. However, maize
is experiencing frequent and severe heat stress (Wang et al.,
2021a) impacting the functioning of physiological processes
including changes at morphological, physiological, biochem-
ical, and molecular levels, which ultimately impacts growth
and yield. Evidences are accumulating on the adverse impact
of heat waves on maize production across Europe (Hawkins
et al., 2013), the United States (Lobell & Asner, 2003),
sub-Saharan Africa (Lobell et al., 2011), and China (Gao
et al., 2021; Tao et al., 2016). Therefore, plant biologists,
breeders, and crop scientists are prioritizing the focus on
improving the heat tolerance in maize (Iqbal et al., 2020;
Rahman et al., 2015). In the recent past, several crop growth
models have been extensively utilized to assess the adverse
consequences of heat stress on maize production (Gabaldón-
Leal et al., 2016; Rezaei et al., 2015). Nevertheless, these
models have not been explicitly calibrated or do not have
mechanistic attributes to quantify extreme heat stress events.
Consequently, these simplified models might have under-
projected and over-projected the influences of heat stress on
maize production. For instance, heat stress during the flower-
ing phase might trigger a significant yield decline, however,
similar temperature stress at the vegetative phase may not
cause similar impact on yield (Lizaso et al., 2018; Wang
et al., 2021b). For example, heat stress did not affect maize
growth and grain yield when occurred prior to the ninth leaf
phase (Lizaso et al., 2018). Notably, recent investigations
have described the critical phases in maize that explain yield
losses due to heat stress. Both short and long duration heat
stress is known to negatively impact reproductive processes
and harvest index of cereals (Prasad et al., 2017). Tassel and
ear formation occur at the six visible leaf collar stages (V6
stage), which is one of the critical stages susceptible to severe
stress. Hence, heat stress particularly during the V6 stage may
cause the formation of underdeveloped tassels, which even-
tually die due to desiccation, known as tassel blast (TSBL).
Further, reproductive tissue injury in the form of TSBL has
been reported to reduce viable pollen numbers (McNellie
et al., 2018). Apart from pollen formation, pollen develop-
ment is also extremely susceptible to heat stress. Moreover,
damaged pollen tube formation along with impaired stigma
receptivity due to silk parchedness could directly impact the
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seed set, that eventually results in lower yield under heat stress
(Lohani et al., 2020; Zinn et al., 2010). Conversely, ear shoots
advancement is necessary for silking and grain filling, thus,
heat stress at the pre-anthesis stage could be detrimental to
yield in maize (Suwa et al., 2010). On the other hand, heat
stress during the grain filling period augments the respira-
tory carbon losses and impairs the source to sink assimilate
partitioning (Yang et al., 2018). In addition, it also shortens
the active grain filling period (Yang et al., 2017), eventually
leading to the reduction in kernel weight and deterioration
in kernel quality (Chukwudi et al., 2021; Yang et al., 2018).
Therefore, it is crucial to better understand the molecular, bio-
chemical, and physiological processes across different growth
phases, particularly during the reproductive and grain filling
stages, which eventually impair maize growth, development,
and yield in maize under heat stress conditions. This review
provides an overview of the impacts of heat stress on maize
crop. Further, it highlights the importance of stress-related
trait-based phenotyping and important molecular mechanisms
helping in identifying new sources for heat stress tolerance
and opportunities to improve heat tolerance in maize.

2 HEAT STRESS IN NATURAL
ENVIRONMENTS

Technical advances in cultivation practices and expansion of
the area for maize cultivation (doubled up from 106 M ha in
1963 to currently 197 M ha globally) have increased maize
production approximately by five fold (Erenstein et al., 2022).
Nevertheless, it has been estimated that maize yield would
reduce by 7.4% for every 1˚C increase in temperature (Zhao
et al., 2017). The optimum temperature for maize cultivation
is 28 to 32˚C, which is relatively higher than the optimum
temperatures required for the production of other cereal crops
(Arnold, 1974). However, a direct effect of heat stress on pho-
tosynthesis and vegetative growth has been documented when
the temperature exceeds 38˚C (Crafts-Brandner & Salvucci,
2002). On the other hand, a prolonged exposure to tempera-
ture above 35˚C, specifically during the reproductive stage is
detrimental to reproductive success and seed set (Shao et al.,
2021), leading to reproductive biomass and yield loss (Carter
et al., 2016). During the reproductive stage, male flowers or
tassels are the most vulnerable tissue to heat stress than female
counterparts (Dong et al., 2021). Thus, heat stress results in
inhibition of anther dehiscence and reduction in pollen via-
bility, pollen germination, and pollen tube growth. Expanded
anthesis–silking interval (ASI) due to delayed silking, parched
silk, and suppression in fertilization lead to kernel abortion
lowering kernel number per cob (Bakhtavar et al., 2015; Car-
berry et al., 1989; Hatfield & Prueger, 2015; Li & Howell,
2021). Heat stress after pollination also results in kernel abor-
tion due to reduction in carbohydrate availability and damage

Core Ideas
∙ Maize is an important food, nutrition, and climate

security crop around the world.
∙ Heat stress negatively impacts the growth, devel-

opment, and yield of maize.
∙ Genotypes respond to heat stress at physiological,

biochemical, and molecular levels.
∙ Current knowledge and advances in traits and

genotypic responses are discussed.

in carbon metabolism (Niu et al., 2021). Conversely, rise in
night temperature (heat stress at night time [HNT]) during
silking could affect the kernel setting by increased rate of
development, which inhibits photo-assimilate production and
availability to the kernel (Cantarero et al., 1999). HNT par-
ticularly during the grain filling stage has been reported to
reduce grain weight (Cantarero et al., 1999). Moreover, HNT
leads to an increase in night respiration causing rapid degra-
dation of carbohydrates. In addition, HNT interferes in source
to sink carbon dynamics by affecting non-structural carbohy-
drate metabolizing enzymes such as soluble starch synthase
and starch branching enzymes (Kettler et al., 2022; Yang et al.,
2018).

While the detrimental effect of heat stress on maize is well
documented, the impact and severity of heat stress cannot be
explained without including some covariables such as humid-
ity, vapor pressure deficit (VPD), soil moisture deficit, and
solar radiation (Carter et al., 2016; Kebede et al., 2012; Thayil
et al., 2020) that interact with ambient temperature, and the
cumulative effect of these factors affect growth, flowering,
phenophase transition, and seed set in plants (Bahuguna &
Jagadish, 2015). Carter et al. (2016) reported that tropical
maize plants grown under irrigated condition showed no yield
reduction under heat stress, whereas yield of rainfed maize
was significantly reduced due to heat stress. Authors further
demonstrated that heat stress (32–34˚C) had little impact on
maize production under irrigated condition, and soil moisture
deficit predominantly determined the severity of heat stress
(Carter et al., 2016). Besides soil moisture content, air mois-
ture and VPD are closely associated with temperature impact
on plants. VPD is a function of maximum temperature (Tm)
and relative humidity under maximum temperature (Thayil
et al., 2020). Low VPD along with high temperature stress has
been reported to cause substantial yield loss in maize due to
low transpiration from stomata limiting effective evaporative
cooling from plant surface. On the other hand, the atmosphere
becomes more moisture demanding under high VPD, which
results in higher water loss from plant surface and causes
physiological drought (Seetharam et al., 2021). Experiments
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F I G U R E 1 The average surface air temperature changes between

2011 to 2012 compared with the 1965 to 1976 average. Source: NASA

(https://data.giss.nasa.gov/gistemp/).

on spring maize grown under heat stress (>37˚C) in multi-
ple locations, with the humid and dry condition in South Asia
showed the differential impact of heat stress across the envi-
ronmental conditions showing the interaction of temperature
and air moisture. Interestingly, the crops, grown under warm–
dry condition showed higher grain yield loss as compared
to warm–humid condition plausibly due to the pronounced
effect of soil moisture deficit condition (Thayil et al., 2020;
Vinayan et al., 2019). On the other hand, frequent irrigation
under drought could maintain tissue hydration and transpi-
rational cooling resulting in lower grain yield loss (Siebert
et al., 2014). Hence, crop response to heat stress may vary sub-
stantially with changes in moisture levels in the air and soil.
Canopy temperatures (CT) is very often used as a surrogate
method to predict the level of soil moisture deficit condition
(González-Dugo et al., 2006; Reynolds et al., 2007). Interest-
ingly, maize plants could experience severe heat stress both
under high VPD and soil moisture deficit condition, as in
both cases evapotranspiration is not able to meet the moisture
demand of the atmosphere, and it increases canopy and tissue
temperatures (Kebede et al., 2012). Besides relative humidity,
soil moisture, and VPD, solar radiation reported to determine
the impact of heat stress as it may elevate the level of heat
stress severity by enhanced photoinhibition and tissue tem-
perature (Kebede et al., 2012). On the other hand, an increase
in soil temperature causes rapid weathering of mineral clays
such as kaolinite, and that results in low retention of nutri-
ents and loss of important nutrients like Ca and Mg. It also
affects plants’ water uptake as the rate of evaporation from soil
increases. These heat interacting factors vary at regional scale.
Thus, the interaction between growing genotypes and prevail-
ing environmental factors in a particular location determines
the crop phenotype (Thayil et al., 2020). Besides interaction
with other abiotic factors, heat stress has been documented

to increase plants’ susceptibility toward pathogen invasion by
interfering with plant defense mechanisms. For example, heat
stress affects the synthesis of plant defense enzymes, salicylic
acid which elicits the plant immune system (Cohen & Leach,
2020). Moreover, Duke and Doehlert demonstrated that heat
stress restricted pathogenesis-related protein and enzyme syn-
thesis in maize kernel, and inhibited kernel’s defensive ability
to defeat the pathogen invasion. For instance, high tempera-
ture accompanied by prolonged dry period has been reported
to cause Aspergillus ear rot in maize (Barošević et al., 2022).
Although it is important to study plants’ response to pathogen
attack under warming climate, no studies exist on maize under
natural environment.

3 PHYSIOLOGICAL RESPONSES AND
TRAIT-BASED PHENOTYPING

Exposure to heat stress severely affects physiological pro-
cesses such as seed germination and vigor, root growth, leaf
enlargement, reproductive development, ASI, photosynthesis,
grain filling duration, and rate of grain filling, which eventu-
ally reduce yield and grain quality (Figure 2). At the cellular
level, the rapid production of reactive oxygen species (ROS)
leads to cellular membrane damage (CMD), protein degra-
dation, and inhibition of chlorophyll synthesis (Tas, 2022).
Heat stress also interferes with gaseous exchange by altering
stomatal conductance, which leads to decrease in tissue water
potential of plants (Urban et al., 2017). Coşkun et al. (2011)
tested 10 maize inbreds for heat stress tolerance and stud-
ied several physiological traits such as leaf temperature (LT),
relative injury (RI), and chlorophyll a/b content to evaluate
their performance under heat stress. Authors described that
the exposure of maize plants to heat stress resulted in increase
in leaf temperature (from 36.6 to 39.2˚C), and a decrease
in cellular membrane integrity. Further, an increase in RI
caused inhibition of chlorophyll synthesis and rapid senes-
cence, which eventually resulted in insufficient accumulation
of photo-assimilates into the grains. Conversely, a negative
correlation was observed between CMD and leaf water poten-
tial (LWP). An increase in CMD caused decrease in LWP,
and inhibition of chlorophyll synthesis as well as degradation
of chlorophyll a/b. Moreover, total phenol content (TPC) was
also found to be decreased in susceptible genotypes under heat
stress (Tas, 2022).

Environment-specific trait-based phenotyping has been
suggested as the best way to introduce heat stress tolerance in
plants (Hall, 2011). Several traits in maize have been reported
that can be targeted for heat stress avoidance and/or toler-
ance. However, trait selection particularly at the flowering,
and grain filling stage could be the most effective as these
are the most sensitive stages of maize under heat stress (Com-
muri & Jones, 2001; Karim et al., 1999; Thayil et al., 2020).
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F I G U R E 2 An overview of the impact of heat stress at different developmental stages of maize, impairing maize growth, production, and

quality. The reproductive and grain filling period are the most susceptible stages in maize under heat stress. The red colored arrows depict the

adverse effect of heat stress and the thickness of those arrows shows the degree of impact on these stages (Chukwudi et al., 2021; Karim et al., 2000;

Lizaso et al., 2018;Mathur et al., 2014; Niu et al., 2021; Omoarelojie et al., 2020; Shao et al., 2021; Teng et al., 2022; Wang et al., 2021b; Yang et al.,

2017, 2018).

Leaf area, leaf elongation rate, and photosynthetic rate have
been suggested as the potential traits under heat stress in
maize during the early vegetative or seedling stage (Karim
et al., 1999). Nelimor et al. (2019) described 13 traits that
are directly or indirectly associated with grain yield and dis-
tributed these traits in three groups according to their order of
effectiveness under heat stress. The first order comprises of
traits such as ear aspect, plant aspect, and root lodging, where
ear aspects had the strongest effect on grain yield under heat
stress. The second-order traits included ears per plant, husk
cover, plant height, and days to 50% anthesis, which were

indirectly related to grain yield. However, both ears per plant
and husk cover had a strong effect on both the ear aspects and
plant aspects. The third-order traits were described as days
to 50% silking, ASI, ear rot, stay green characteristics, TSBL
and ear height, and it was observed that ASI and ear rot had
a strong indirect association with grain yield. Similarly, Chen
et al. (2012) conducted phenotypic analysis of 11 inbred lines
of maize under heat stress (∼36˚C). The phenotypic traits tar-
geted for the study were leaf firing, leaf blotching, and tassel
blasting. Authors observed that leaf firing and leaf blotching
were the most noticeable heat sensitive phenotypes during the
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vegetative stage. Senescence, kernel per row, tassel sterility,
pollen viability, and stigma receptivity have also been docu-
mented as potential traits that could be utilized to characterize
thermotolerance in maize (Alam et al., 2017; Noor et al.,
2019).

Traits identification using natural genetic diversity or
mutant population is promising. However, precise pheno-
typing of a diverse population has been a major bottleneck
for crop improvement programs (Feng et al., 2017). Recent
advancements in the field of phenomics, and the development
of high-throughput phenotyping platforms made it possi-
ble to screen and characterize large germplasm in a very
short period of time, which has tremendously expedited the
varietal development (Song et al., 2021). Moreover, the inclu-
sion of artificial intelligence and robotics in phenotyping has
improved precision and reliability (Irshat et al., 2018; Pound
et al., 2017). Nevertheless, heat stress tolerance is a com-
plex trait with genotype by environment interaction effect,
which requires trait plasticity and stability and must be consid-
ered while characterizing genotypic response under specific
environment.

4 EXPLORING GENETIC VARIATION
FOR HEAT STRESS TOLERANCE

Plant response to heat stress is a complex process involving
multiple components at the cellular level and polygenic traits
at the whole plant level. Indeed, a single exposure to heat
stress has been reported to induce more than 5000 genes in
maize plants (Joshi et al., 2021). Traits contributing to heat
stress tolerance such as pollen viability and ASI are governed
by multiple genes/loci (Frova & Sari-Gorla, 1994; Parrado
et al., 2021). Thus, mining of heat stress tolerance-associated
QTLs/genes is crucial to develop heat tolerant high-yielding
cultivars (Inghelandt et al., 2019; McNellie et al., 2018).
Recent advancements in genomics, marker-assisted selec-
tion, and phenomics allowed the identification of QTLs and
genes through genome wide association studies (GWAS), and
advanced mapping populations. A number of QTLs have been
reported in maize, which are related to heat stress tolerance
(Table 1), and a number of genes and transcription factors
induced under heat stress were reviewed by El-Sappah et al.
(2022) that can be used in precise genetic engineering and
breeding for heat stress tolerance.

Genetic variation in potential traits is important for breed-
ing programs and the development of mapping population
(Nawab et al., 2008). The elite maize cultivars have lim-
ited genetic variation particularly for heat stress tolerance
(Nelimor et al., 2019). Hence, exploitation of existing natural
resources in landraces and wild accessions of maize crop hold
promise to identify potential heat responsive traits (Nelimor
et al., 2019). However, the inclusion of landraces into ther-
motolerance breeding programs in maize would require some

intermediate steps, such as targeted selection of landrace(s),
adequate variation for the desired trait(s), and development
of a core collection of accessions (Würschum et al., 2022). In
addition, landrace(s) needs to be top crossed to check the com-
bining ability with the contrasting gene pool, and depending
on the number of targeted traits and variation present, single
or multiple landraces can be selected for crop improvement
programs (Würschum et al., 2022). Ultimately, homozygous
lines per landrace could be developed for association map-
ping through a significant association study between markers
and trait(s) to detect major QTLs responsible for the expres-
sion of quantitative traits, for example, heat stress tolerance
(Yuan et al., 2019). The efficiency of association mapping
depends on the size of the mapping population and its res-
olution, which totally depends on the linkage disequilibrium
(LD) structure of the QTL (Würschum et al., 2022). LD
decays faster in landraces than in elite cultivars. Interestingly,
the rate of LD decay was found to be even faster in a diverse
collection of maize genotypes as compared to the landraces,
however, their adaptability to adverse environment was poor
(Würschum et al., 2022). Thus, promising maize landrace(s)
could be used in genome wide association mapping of thermo-
tolerance targeted trait(s), and to identify potential QTLs with
large effect size and further, the dominant gene(s) responsible
for the trait(s) (Ahmed et al., 2022; Nelimor et al., 2019). Sin-
gle nucleotide polymorphism (SNP) markers are mostly used
as markers in association studies (Sivakumar et al., 2019).
Ahmed et al. (2022) sequenced 275 maize inbred lines, grown
under two different temperature regimes including 35 and
45˚C, and identified 1,70,098 SNPs. Subsequently, genome
wide association of trait such as average pollen germination
percentage with identified SNPs revealed that each line had 4–
10, 3–13, and 5–13 beneficial alleles for pollen germination
percentage at 35˚C, pollen germination percentage at 45˚C,
and pollen germination percentage ratio. These alleles can be
used for developing improved tropical maize varieties for heat
stress tolerance.

A population of 45 recombinant inbred lines (RILs) were
studied in maize for mining of QTLs, particularly for two
traits such as injury of pollen grain germinability and injury
of pollen tube growth under heat stress. Restriction fragment
length polymorphism (RFLP) markers were used for genome
wide association mapping, and a total of 11 QTLs were identi-
fied (5 for injury of pollen grain germinability and 6 for injury
of pollen tube growth). Chromosomal locations of these iden-
tified QTLs indicated that there was no correlation between
the genes governing injury of pollen grain germinability and
injury of pollen tube growth. It was also described that QTLs
of injury of pollen tube growth and membrane stability, a trait
that is important for maintaining membrane fluidity under
heat stress, share a common region on chromosome number
8. Moreover, no significant correlation was found between
injury of pollen tube growth and pollen grain germination
under non-stressed condition. These findings revealed that
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QTLs for injury of pollen grain germinability played a role
in thermotolerance whereas, QTLs for injury of pollen tube
growth were found to be less functional under high temper-
ature stress (Frova & Sari-Gorla, 1994). Similarly, two RIL
populations, B73 × NC350 (185 RILs) and B73 × CML103
(195 RILs) of maize were studied for foliar and tassel related
heat tolerance traits (McNellie et al., 2018). Authors reported
22 QTLs on different chromosomes, which were associated
with traits such as leaf firing (LF), leaf blotching (LB), TSBL,
and plant death (PD). In the B73 × NC350 population, 15
QTLs were identified on chromosome nos. 1, 5, 8, 9, and
10 under eight heat stress traits during early, mid, and late
vegetative stages. Authors also reported that QTLs for traits,
LF_NC350 and LB were co-localized on chromosome no. 10,
and the tolerant allele was donated by the parent, B73. On the
other hand, 7 QTLs were mapped on chromosome nos. 1, 2,
and 3 under five traits in the B73 × CML103 population. The
QTLs for traits, LF_CML103 and LVS_PD were mapped 1
cM (centi-Morgan) apart on chromosome no. 3, implying that
the QTLs captured the same locus for heat tolerance both in
leaf and tassel. Frey et al. (2016) studied intra- and inter-pool
dent and flint corn population under varying environmental
conditions. Authors observed that dent corn was more toler-
ant to heat stress, particularly at the reproductive stages, and
identified 11 potential QTLs related to heat stress tolerance.
Moreover, 6 heat tolerant and 112 heat responsive candidate
genes associated with the QTLs were identified in the study,
which were majorly confined to the flowering and grain filling
stages.

Another method of generating genetic variation within a
population is through mutation breeding, specifically when
existing resources have narrow genetic background (Begna,
2021; Ruswandi et al., 2014). The narrow genetic background
can be broadened artificially by inducing mutation using
physical and chemical mutagens. Many physical mutagens
(e.g., gamma ray, x-ray, and UV rays) are commonly used,
but gamma irradiation is widely preferred and used (Çelik
& Atak, 2017). On the other hand, ethyl methane sulfonate
is mostly used among chemical mutagens (Chaudhary et al.,
2019). These mutagens can be used to cause random changes
in the genetic materials (Settles, 2020). Mutant populations
developed from these seeds could show positive mutations,
which could be useful for effective selection. Other than
random mutation, specific gene targeted mutation is also
effective in developing thermotolerance in maize. For exam-
ple, point mutation in Shrunken2 (Sh2) gene improved the
level of interaction between the subunits of maize endosperm-
specific ADP-glucose phosphorylase enzyme under heat
stress. ADP-glucose phosphorylase is essential for starch syn-
thesis and its storage into maize kernel, and its activity is
affected by heat stress (Greene & Hannah, 1998).

Genes encoding heat shock factors (HSFs) are considered
important for developing genetically modified heat tolerant

crops. In maize, 31 HSFs including HSFA1, HSF3, HSF4,
HSF5, HSF6, HSF23, and HSF25 were identified, which are
documented to regulate the expression of different heat shock
proteins (HSPs), and contributing to the heat stress tolerance
(Lin et al., 2011). Indeed, transgenic maize with potential
HSFs show promising results under heat stress. For exam-
ple, over-expression of OsMYB55 recorded higher biomass
accumulation and reduced leaf damage in transgenic maize
during and after heat stress exposure as compared to wildtype
(Casaretto et al., 2016). Moreover, over-expressed OsMYB55
(OsMYB55-OE) plants also showed tolerance to drought
stress (Casaretto et al., 2016). On the other hand, it has been
reported that maize plants exposed to higher night tempera-
ture experience grain yield loss due to the reduced activity
of chloroplast localized enzyme 6-phosphogluconate dehy-
drogenase (6PGDH) also known as PGD3, resulting in the
poor accumulation of kernel starch (Cantarero et al., 1999).
Gene 6PGDH has two other isoforms localized in the cyto-
plasm, PGD1 and PGD2, but, only PGD3 is reported as heat
liable (Spielbauer et al., 2013). Subsequently, Ribeiro et al.
(2020) fused chloroplast targeting peptide sequence, Waxy
1 with pgd1 and pgd2, and found that the fusion proteins,
WPGD1 and WPGD2, were complementing PGD3 function
resulting in higher grain yield and biomass under high night
temperature.

Although, single dominant gene transformation through
transgenic approaches did not give very promising results
in developing heat stress tolerant genotypes, mainly due to
the complexity of the trait (Jha et al., 2021; Noor et al.,
2019). However, recent advances in genome editing tech-
niques such as zinc-finger nucleases (ZFN), transcription
activator-like effector nucleases (TALEN), and clustered reg-
ularly interspaced short palindromic repeats (CRISPR-Cas)
have been now deployed to develop abiotic stress tolerant
crop varieties (Ainley et al., 2013; Bhat et al., 2021; Char
et al., 2015). Development of drought tolerant maize geno-
types through targeted insertion of maize GSO2 promoter into
the 5ʹ-untranslated region (5ʹ-UTR) of ARGOS8 gene using
CRISPR-Cas9 showed enhanced tolerance to drought stress
(Shi et al., 2017). Similarly, Zhu et al. (2016) used type-II
CRISPR-Cas9 for targeted mutagenesis of maize phytoene
synthase gene (PSY1), for identifying its role under heat stress.
Authors demonstrated that PSY1 has an important role in ther-
motolerance in maize as it helps in maintaining the synthesis
of leaf carotenoids, which helps in reducing oxidative damage
under heat stress.

5 MOLECULAR MECHANISM(S)

Plants show cellular level responses to environmental stress
such as heat repair the damage occurring to cellular com-
ponents, and augment the defense response for future stress
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exposures (Li & Howell, 2021). Responses to heat stress
at the cellular level have been categorized into two major
types: (i) heat shock response, which takes place majorly in
the cytoplasm, (ii) unfolded protein response generated in
the endoplasmic reticulum (El-Sappah et al., 2022). These
are the responses that are triggered by the accumulation
of misfolded proteins to maintain and protect cellular pro-
tein molecules from the adverse effect of environmental
changes. Besides, heat shock response and unfolded pro-
tein response, heat stress specific responses primarily start at
the plasma membrane with a physical change in membrane
fluidity, which can instantly open up some voltage-gated
Ca2+ ion channels, and ROS production in the chloroplast
thylakoid membrane (Bahuguna & Jagadish, 2015; Finka
et al., 2012; Horváth et al., 1998, 2012; Yamamoto, 2016).
Indeed, an increase in membrane fluidity followed by a Ca2+

efflux into cytoplasm is considered as a primary response
under heat stress (Finka et al., 2012; Mittler et al., 2012).
Calcium signals activate mitogen activated protein kinases
(MAPKs), which further activates TFs such as HSFA6b,
ABF1, CYD5, and MutS2, specific to heat stress tolerance
in maize (Gao et al., 2012). On the other hand, heat stress
may be sensed through plasma membrane-bound receptor
proteins. The membrane-bound proteins for heat stress toler-
ance are cyclic nucleotide-gated channels, and glutamate heat
receptor-like channels (Liu et al., 2018). The Ca2+-permeable
channels reported in plants are voltage-dependent Ca2+-
permeable channel, voltage-independent Ca2+-permeable
channel, depolarization-activated Ca2+-permeable channel,
and hyperpolarization-activated Ca2+-permeable channel
(Swarbreck et al., 2013). In maize, 11 cyclic nucleotide-gated
channels are reported (Hao & Qiao, 2018), and each one
has two binding domains, that is, cyclic nucleotide bind-
ing domain and calmodulin (CaM) binding domain in the
cytoplasmic region (Zelman et al., 2012). Binding of cyclic
nucleotides to the cyclic nucleotide binding domain leads
to influx of Ca2+, which causes the binding of Ca2+ to
CaM (Kaplan et al., 2007). Eventually, the Ca2+–CaM com-
plex helps in activating some transcription factors (TFs)
such as ZmCAMTA, ZmbZIP, ZmMYB, and ZmWRKY-R,
reported in maize. However, ZmCAMTA 1, 2, and 3 are
dominantly expressed under heat stress response (El-Sappah
et al., 2022; Yue et al., 2015). Further, these TFs specifi-
cally bind to the heat shock elements (HSE) present in the
promoter region of HSP genes and elicit their expression
level (Zhang et al., 2020b). The EF-Tu protein synthesis
elongation factors are known for imparting heat stress tol-
erance in crops (Bukovnic et al., 2009; Fu et al., 2012;
Ristic et al., 2008) including maize (Momčilović & Ristic,
2007). Besides the CaM-mediated pathway, CNGCs and glu-
tamate heat receptor-like channels also transfer stress signals
through Ca2+-dependent protein kinases activation, along
with calcineurin B-like protein, and its interacting protein

kinase (CIPK) and phosphoinositide-specific phospholipase
C (Chen et al., 2011; Hashimoto & Kudla, 2011; Reddy et al.,
2004; Zhao et al., 2021). Phosphoinositide-specific phospho-
lipase C hydrolyze membrane-bound phosphatidylinositol-
4,5-bisphosphate (PIP2) into (IP3) and diacylglycerol after
being activated by G-protein coupled receptor (GPCR). This
IP3 helps in the release of Ca2+ from the endoplasmic reticu-
lum and ultimately joins the Ca2+-mediated signaling cascade
(Horváth et al., 2012; Ruelland et al., 2002). The mostly
reported PLCs having a role in heat stress tolerance are PLC3,
PLC9 (Hayes et al., 2021; Rupwate & Rajasekharan, 2012),
and ZmPLC1 (in maize) (Zhai et al., 2013). At the end of the
cascade, the activated CDPKs phosphorylate HSFs, which are
imported into the nucleus for the expression of HSPs such
as HSP40, HSP70, HSP90, and HSP100 (Qian et al., 2019)
(Figure 3).

HSFs are grouped into three classes, namely, classes A, B,
and C. Some of the class A and class B HSFs identified for
their role in heat stress tolerance are ZmHsf1, 4, 5, 6, 17 (class
A) and ZmHsf3, 11, 25 (class B) among the total 31 HSFs
reported in maize (Lin et al., 2011; Zhang et al., 2020a). How-
ever, only class A HSFs have transcription activation domain
(Kotak et al., 2004). It has been documented that HSFA1 is
the master transcription activator, and it is sequestered in the
cytoplasm by binding with chaperons (HSP70 and HSP90)
and co-chaperones during normal condition (Ohama et al.,
2017). Conversely, the chaperones are recruited away from
the HSFA1 during heat stress. Subsequently, HSFA1 trimer-
izes and transported into the nucleus for the activation of
heat stress responsive genes (Yan et al., 2020; Zhao et al.,
2021). A parallel signaling cascade initiate with the produc-
tion of ROS production under heat stress (Hasanuzzaman
et al., 2012, 2013). Membrane-bound NADPH oxidase, which
belongs to the respiratory burst oxidase homolog D family
produces superoxide radical (O2

−) from molecular oxygen
(O2). The half-life of O2

− is extremely short, and it is dis-
mutated to a more stable ROS species hydrogen peroxide
(H2O2) either spontaneously or by the apoplastic superox-
ide dismutase (SOD) enzyme (Bahuguna & Jagadish, 2015).
Eventually, H2O2 enters into the cytoplasm to activate some
HSFs either directly or indirectly. In maize, H2O2 activates
the MAPKs, specifically MAPK3 and MAPK6, which in turn
activate CDPKs. This is followed by phosphorylation of HSFs
that ultimately induce the expression of HSPs (Luna et al.,
2011; Matika & Loake, 2014). On the other hand, H2O2

also directly activates HSFA1α, HSFA4α, and HSFA8 along
with nitric oxide (NO) signaling to induce heat response gene
expression in maize (El-Sappah et al., 2022) (Figure 3).

Besides, upstream signaling initiating at the plasma mem-
brane, a specific unfolded protein responses takes place in
ER when the concentration of misfolded proteins increases
rapidly under heat stress (Neill et al., 2019; Vitale & Boston,
2008). Misfolded proteins induce the recruitment of binding
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F I G U R E 3 Schematic diagram showing heat stress response in maize at the cellular level. Cellular responses are initiated to acclimatize and

protect cells from heat stress impact. The signaling starts with physical change at plasma membrane followed by the rapid influx of Ca2+ through

voltage-gated calcium channels, CNGC, and glutamate heat receptor-like channel into the cytoplasm. The influxed Ca2+ in the cytoplasm binds to

CaM and forms Ca2+-CaM complex, which helps in activation of TFs such as ZmCAMTA, ZmbZIP, ZmMYB-R, and ZmWRKY. Eventually, these

TFs are imported into the nucleus to activate HSP gene expression. On the other hand, the activation of GPCR by the binding of GTP to the

α-subunit, helps in activation of PLC, which causes hydrolysis of membrane-bound PIP2 and produces DAG and IP3. IP3 regulates Ca2+ release from

ER. Ca2+ influx in cytosol activates CDPKs (35 in maize), CBL, and CIPK proteins, which are followed by the activation of HSFs (e.g., HSFA1,

known as master transcription activator). Besides these signaling routes, a rapid production of ROS takes place after change in plasma membrane

fluidity and Ca2+ efflux. In ER, misfolded proteins recruit BIP from monomeric IRE1, bind to IRE1, and cause its dimerization. The dimeric IRE1

splices ZmbZIP60 mRNA, which codes for UPR-specific TF in the nucleus. The other way of activating UPR response is through the cleavage of

cytoplasmic globular domain of ER membrane-bound proteins, that is, ZmbZIP17 and ZmbZIP28 in the golgi complex and these domains help in

UPR-specific gene expression. CaM, calmodulin; CaMBD, calmodulin binding domain; CBL, calcineurin B-like protein; CDPKs, Ca2+-dependent

protein kinases; CIPK, CBL-interacting protein kinase; CNBD, cyclic nucleotide binding domain; CNGC, cyclic nucleotide-gated channel; DAG,

diacylglycerol; ER, endoplasmic reticulum; GPCR, G-protein coupled receptor; GTP, guanosine triphosphate; HSFs, heat shock factors; HSP, heat

shock proteins; HSR, heat shock response; IP3, inositol 1,4,5-trisphosphate; IRE1, inositol requiring enzyme-1; MAPKs, mitogen-activated protein

kinases; NOX RBOHD, NADPH oxidase-respiratory burst oxygen homolog D; PIP2, phosphatidylinositol 4,5-bisphosphate; PLC,

phosphoinositide-specific phospholipase C; ROS, reactive oxygen species; SOD, superoxide dismutase; TF, transcription factors; UPR, unfolded

protein response; ZmCAMTA, Zea mays calmodulin binding transcription activator; ZmbZIP, Zea mays basic leucine zipper domain; ZmMYB-R,

ZmMYB-R family genes; ZmWRKY, maize WRKY transcription factor ZmWRKY for drought and heat tolerance.

immunoglobulin protein (BIP), which dissociates from a non-
competent, monomeric form of inositol requiring enzyme-1
(IRE1) (Carrara et al., 2015). BIPs help misfolded proteins
to bind with IRE1 and cause dimerization. Dimeric IRE1
acts as dual ribonuclease and kinase to splice basic leucine
zipper domain (ZmbZIP60) mRNA, so that it can code for
ZmbZIP60 TF specific to heat stress after being imported
into the nucleus (Reimold et al., 2000). Another way of acti-
vating UPR in ER is through the proteolytic cleavage of
ER-membrane protein, ZmbZIP17, and ZmbZIP28 in Golgi,
followed by transport of cleaved globular domains, which act
as TFs, into the nucleus, and activates the expression of HSPs
(Jia et al., 2009; Zhang et al., 2017). Besides ROS, Ca2+ and
other secondary messengers, phytohormones such as indole
acetic acid, cytokinin, gibberellic acid, abscisic acid, salicylic
acid, ethylene, brassinosteroids, and jasmonic acid are also

documented for their role in signal transduction pathways dur-
ing heat stress tolerance in plants (Eyidogan et al., 2012; Li
et al., 2021). Huang et al. (2016) reported that the applica-
tion of ABA along with the expression of AREB1/ABF1 TF
showed enhanced thermotolerance in maize (Figure 3).

Although the response of maize crop under heat stress
is relatively well characterized, it has been observed that
maize plants exposed to long-term heat stress may be sub-
jected to physiological drought stress particularly under
rainfed condition (Seetharam et al., 2021). Moreover, heat
and drought stress in combination is an inevitable conse-
quence under hot and dry environments, and more frequent
under changing climate (Haddad et al., 2022). However, there
are limited studies reporting gene(s) exclusively expressed
under heat and drought stress combination. Qin et al. (2007)
reported that maize plants overexpressed with ZmDREB2A
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(ZmDREBA2-OE) showed drought tolerance by activating
the expression of late embryonic abundant genes. This TF
also helped in the upregulation of detoxification and thermo-
tolerance related genes, and among those four genes including
At5G03720 were upregulated by seven folds under heat stress.
Similarly, OsERF115/AP2EREBP110 gene, which belongs to
the AP2/EREBP TF family has been identified in rice, which
has an important role in both heat and drought tolerance
(Suzuki et al., 2016). Thus, the identification of genes, which
are exclusively expressed under heat and drought combina-
tion are crucial to understand maize response to a complex
environment having stress interactions at spatial and temporal
scales.

6 FUTURE PERSPECTIVES

Besides the impact of gradually increasing global mean tem-
perature on weather patterns, crop phenology, and ecosystem
services, incidences of heat stress at regional levels can cause
severe yield losses in major cereal crops including maize.
Advancement in phenomics, and other omics technologies,
molecular markers, and genome editing tools provide new
avenues for crop improvement programs. There are poten-
tial areas to prioritize for gaining a better understanding
for heat stress tolerance in maize and develop promising
thermotolerant maize genotypes. Some of these include the
following:

∙ With limiting water resources, frequent co-occurrence of
heat and drought events are inevitable, which could be dev-
astating to maize production when they coincide at sensitive
reproductive and grain filling phase. Crop improvement
programs for climate resilience are amongst the top prior-
ity for adaptation to climate change. However, identifying
potential traits, QTLs, and genes that can be introgressed in
the elite cultivars is a major challenge to expedite the devel-
opment of climate-resilient genotypes. Most of the studies
in the past have been primarily focused on the single stress,
which achieved limited success in long-term performance
of crops in the field conditions where stress interactions in
a single crop cycle are very common. Indeed, several stress
combinations have been suggested, which are very obvious
in the field conditions (Mittler, 2006; Mittler & Blumward,
2010; Suzuki et al., 2014). Therefore, crop improvement
programs should prioritize the focus on novel traits, QTLs,
and genes, which are effective under single as well as a
combination of two or more stresses.

∙ In the United States, the highest agricultural loss of $200
billion had been reported only due to the combination of
heat waves and drought stress during 1980–2012 (http://
www.ncdc.noaa.gov/billions/events). Despite of the rele-
vance of studying plant responses under heat and drought
combination stresses, there is a lack of experimental

programs, dealing with combination stresses particularly
heat and drought stress together. Mittler (2006), and Anwar
et al. (2021) explained that a combination of stresses
induces a unique set of genes, proteins, and metabo-
lites, which are not expressed under individual stress
conditions. Identification of traits and potential donors
to develop a mapping population would help in under-
standing crop response to individual and combination of
stresses. Moreover, different traits sensitive to high day,
high night temperature and the interaction of temperature
with other environmental factors (e.g., VPD and photope-
riod) and edaphic factors (e.g., salt and nutrient stress) need
to be explored in order to understand the physiological,
biochemical, and molecular basis of heat tolerance in maize.

∙ Pollen viability and other characteristics of pollen growth
are severely affected by heat stress in many crops. While
male reproductive organs particularly are more susceptible
to heat stress as compared to the female counterparts in
some crop species such as sorghum (Djanaguiraman et al.,
2018), pearl millet pistil was reported to be relatively more
sensitive to heat stress (Djanaguiraman et al., 2018). There-
fore, a better understanding of the relative tolerance levels
of pollen and ovule in maize and associated metabolic and
biochemical changes would need further studies to deter-
mine mechanistic understanding of reproductive stage heat
stress tolerance in maize.

∙ Jiang et al. (2019) explained that secondary metabolites,
that is, flavonoids particularly flavonols have an important
role in thermotolerance by scavenging ROS in pollen and
leaves in tomatoes. Conversely, Li et al. (2021) reported
that key genes regulating flavonoid biosynthesis are highly
expressed in drought overly insensitive mutants of maize
seedlings under drought stress. Indeed, flavonoids are
found as important metabolites accumulating under heat
and salinity combination stress in rice (Jan et al., 2021).
Therefore, the role of flavonoids and other secondary
metabolites under heat stress and combination stresses may
be explored in detail to understand their role in maize under
heat stress.

∙ Under moderate heat stress conditions, it was determined
that a significant increase in respiration, rather than rel-
ative decrease in photosynthesis, impacted yield loss in
rice (Li et al., 2021). Therefore, a better understanding of
the carbon-balance dynamics that is optimizing carbon and
energy use under stress would be critical to determine the
biomass and yield. Hence, further studies are warranted to
explore the role of respiratory carbon losses particularly
during grain filling stage in maize.

7 CONCLUSIONS

Heat stress tolerance is an important trait to increase
and maintain crop yield under current and future climate
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conditions. Screening of wild accessions, landraces, and
mutant plant population to identify promising trait(s) and
donors could be critical for breeding approaches to improve
heat stress tolerance in crops. Moreover, mining and map-
ping of QTL(s) with the help of advanced molecular markers
could be utilized to identify major/minor gene(s) contribut-
ing to heat stress tolerance. However, the majority of the
molecular mechanistic studies with narrow genetic back-
ground conducted under controlled condition are not enough
to elucidate plants’ response under natural condition. In
addition, numerous challenges exist including lack of exper-
imental facilities at the field levels to conduct heat stress
studies under natural environment. Conversely, uncertainty
of the occurrence of heat stress at the particular stage
with desired intensity is also obvious, which requires pre-
cise experimental designing. Hence, low-cost phenotyping
facilities that can help in characterizing genotypes by manip-
ulating air temperature under natural condition are required.
Nevertheless, the complex interaction between high tem-
perature and other climatic factors particularly drought and
VPD need in-depth understanding. Stresses in combination
have become more prevalent under climate change. Hence,
novel trait identification should be prioritized for stress com-
binations, where plant responses under combined stresses
could be unique and different when compared to single
stress under isolated environments. Besides, traditional and
new genetic tools, robust and efficient phenotypic tools, for
the acquisition of bulk and reproducible phenotypic data
should be utilized in targeted crop improvement programs
to enhance heat stress tolerance in maize and other food
grain crops. Hence, such studies deserve enough experi-
mental fundings for the interest of climate-resilient crop
improvement.
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