
QUANTIFYING SOYBEAN PHENOTYPES USING UAV IMAGERY AND MACHINE 

LEARNING, DEEP LEARNING METHODS 

 

  

A Thesis presented to  

the Faculty of the Graduate School  

at the University of Missouri-Columbia 

In Partial Fulfillment  

of the Requirements for the Degree  

Master of Science 

by 

SHAGOR SARKAR 

Dr. Jianfeng Zhou, Thesis Supervisor 

JULY 2023 



  

© Copyright by Shagor Sarkar 2023 

All rights Reserved  



The undersigned, appointed by the dean of the Graduate School, have examined the dissertation 

entitled 

QUANTIFYING SOYBEAN PHENOTYPES USING UAV IMAGERY AND MACHINE 

LEARNING, DEEP LEARNING METHODS 

presented by Shagor Sarkar, 

a candidate for the degree of Master of Science in Food and Hospitality Systems, and hereby 

certify that, in their opinion, it is worthy of acceptance.  

 

 

  Professor Jianfeng Zhou 

Professor Teng Teeh Lim 

Professor Andrew Scaboo 

Professor Noel Aloysius 



DEDICATION 

In the hopes that this study may contribute as a tool for the soybean breeders and associated 

researchers for identifying advanced genotypes, this is dedicated to all the members who supported 

and encouraged throughout my career.   



i 
 

ACKNOWLEDGEMENT 

First and foremost, I am immensely grateful to my academic advisor and committee chair 

Dr. Jianfeng Zhou, whose expertise, patience, and unwavering dedication have been instrumental 

in shaping this research. His insightful feedback, constructive criticism, and constant 

encouragement have motivated me to strive for excellence. He provided me with an exceptional 

opportunity to study and work in the Mizzou Precision and Automated Agriculture Lab (PAAL), 

enabling me to acquire extensive research experience in tackling agricultural challenges and 

enhancing agricultural productivity through engineering methods and techniques. Moreover, his 

continuous support and willingness to connect me with other research groups greatly contributed 

to the successful completion of my dissertation projects and facilitated the expansion of my 

professional network. I am grateful for his guidance and assistance, as these projects would not 

have been achievable without his supervision and support. 

I extend my heartfelt thanks to the members of my thesis committee, Dr. Teng Teeh Lim, 

Dr. Andrew Scaboo, and Dr. Noel Aloysius for their valuable insights and constructive suggestions 

that have enhanced the quality of this work. Their expertise and thoughtful inputs have broadened 

my understanding of the subject matter and have been invaluable in refining my research. 

I would like to express my cordial thanks to all of my past and present co-workers, 

especially, Dr. Jing Zhou, Dr. Chin Nee Vong, Dr. Xiteng Zu, Tian Fengkai, Sazzad Rifat, Abdul 

Ghani for their helpful and generous assistance in data collection, data analysis, and manuscript 

preparation. Throughout my master’s program, they have consistently been my unwavering pillars 

of support, mentors, and dear friends. Working alongside them has been an absolute pleasure and 

privilege. Their encouragement has played an indispensable role in helping me successfully 

navigate and complete my master’s journey. 



ii 
 

Finally, I would like to show my gratitude and immense respect to my family members for 

their unconditional love and support throughout the study period. I am incredibly grateful to my 

wife for her unwavering love, understanding, and support throughout the entire process of 

completing this thesis. Her constant encouragement, patience, and belief in my abilities have been 

a driving force behind my perseverance. Her sacrifices and willingness to lend a helping hand, 

providing emotional support, or simply offering a listening ear, have been invaluable. I am truly 

fortunate to have her by my side, and I am forever indebted to her for being my rock and my source 

of inspiration. 

To all those mentioned above and to anyone else who has directly or indirectly contributed 

to this thesis, I extend my heartfelt thanks. Your support and guidance have been instrumental in 

shaping this work, and I am truly grateful for your invaluable contributions.  



iii 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENT………………………………………………………………………... i 

LIST OF ILLUSTRATIONS……………………………………………………………………. vii 

LIST OF TABLES……………………………………………………………………………….. ix 

LIST OF ABBREVIATIONS…………………………………………………………………….. x 

ABSTRACT……………………………………………………………………………………. xiii 

CHAPTER ONE………………………………………………………………………………….. 1 

INTRODUCTION………………………………………………………………………………... 1 

1.1 Background…………………………………………………………………………... 1 

1.2 Literature Review…………………………………………………………………….. 3 

1.2.1 High-throughput Phenotyping Platforms…………………………………. 3 

1.2.2 Sensors……………………………………………………………………  4 

1.2.3 Analytical methods and models…………………………………………..  7 

1.2.4 Application of HTP in crop breeding……………………………………..  8 

1.2.5 Goal and objectives……………………………………………………...  10 

Reference………………………………………………………………………... 11 

CHAPTER TWO………………………………………………………………………………... 22 

ASSESSMENT OF SOYBEAN LODGING USING UAV IMAGERY AND MACHINE 

LEARNING…………………………………………………………………………………….. 22 

2.1 Abstract…………………………………………………………………………….. 22 

2.2 Introduction………………………………………………………………………… 23 

2.3 Materials and methods……………………………………………………………… 26 

 2.3.1 Field experiment and ground data collection………………………………  26 

 2.3.2 UAV imagery data collection……………………………………………… 28 

 2.3.3 Image processing………………………………………………………….. 29 

 2.3.4 Texture feature extraction and selection…………………………………… 30 

 2.3.5 Pre-process imbalanced data………………………………………………. 33 

 2.3.6 Machine learning models for soybean lodging classification……………... 35 



iv 
 

2.3.7 Data analysis and accuracy assessment…………………………………… 39 

2.4 Results……………………………………………………………………………… 40 

 2.4.1 Feature selection…………………………………………………………... 40 

 2.4.2 Original and balanced dataset……………………………………………... 41 

2.4.3 Classification performance of machine learning models………………….. 42 

2.4.3.1 Classification performance of four machine learning models using  

original dataset………………………………………………………….. 42 

2.4.3.2 Classification performance using five pre-processed datasets of  

XGBoost classifier using five balancing methods……………………….  44 

2.4.3.3 Classification performance using five pre-processed datasets of RF  

classifier using five balancing methods………………………………….  47 

2.4.3.4 Classification performance using five pre-processed datasets of  

KNN classifier using five balancing methods…………………………… 50 

2.4.3.5 Classification performance using five pre-processed datasets of  

ANN classifier using five balancing methods…………………………… 53 

2.5 Discussion………………………………………………………………………….. 56 

2.6 Conclusions………………………………………………………………………… 59 

References……………………………………………………………………………...  60 

CHAPTER THREE……………………………………………………………………………... 74 

ASSESSMENT OF SOYBEAN PUBESCENCE COLOR USING UAV-BASED IMAGERY AND  

DEEP LEARNING METHODS…………………………………………………………………74 

3.1 Abstract………………………………………………………………………………74 

3.2 Introduction…………………………………………………………………………..75 



v 
 

3.3 Materials and methods………………………………………………………………..78 

 3.3.1 Field experiment…………………………………………………………....78 

 3.3.2 UAV Imagery data collection……………………………………………….79 

 3.3.3 Image processing…………………………………………………………...80 

 3.3.4 Image augmentation………………………………………………………..81 

 3.3.5 Deep learning methods for soybean pubescence color classification……….81 

 3.3.6 Experimental setup…………………………………………………………84 

 3.3.7 Performance metrices………………………………………………………84 

3.4 Results………………………………………………………………………………..85 

 3.4.1 Classification performance of pre-trained ResNet50 deep learning model…85 

 3.4.2 Classification performance of pre-trained InceptionResNet-V2 deep learning 

model……………………………………………………………………………..88 

3.4.3 Classification performance of pre-trained Inception-V3 deep learning 

model……………………………………………………………………………..89 

3.4.4 Classification performance of pre-trained EfficientNet deep learning 

model……………………………………………………………………………..90 

3.4.5 Classification performance of pre-trained DenseNet169 deep learning 

model……………………………………………………………………………..92 

3.4.6 Classification performance of pre-trained DenseNet121 deep learning 

model……………………………………………………………………………..93 

3.4.7 Classification performance of pre-trained DenseNet201 deep learning 

model……………………………………………………………………………..94 

3.5 Comparison of deep learning model results and discussion…………………………..96 

3.6 Conclusions…………………………………………………………………………..99 



vi 
 

References………………………………………………………………………………100 

CHAPTER FOUR………………………………………………………………………………110 

CONCLUSIONS AND FUTURE WORK……………………………………………………...110 

 4.1 Conclusions…………………………………………………………………………110 

 4.2 Future work…………………………………………………………………………112 

VITA……………………………………………………………………………………………113 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

LIST OF ILLUSTRATIONS 

Figure 1-1. The electromagnetic spectrum (EMS) showing the regions of different sensors 

corresponding to different wavelengths. Image modified from (Kerr et al.,2011). ………………..5 

Figure 2-1. Daily average temperature and daily precipitation during the growing season in the 

experimental field. The asterisk and round marks are the day of data collection. ………………...27 

Figure 2-2. Ground-based classification scale of filed plots of soybean lodging with four classes, 

i.e., non-lodging (NL), moderate lodging (ML), high lodging (HL), and severe lodging (SL). …..28 

Figure 2-3. The flowchart of the soybean lodging classification. ………………………………..30 

Figure 2-4. Recursive feature elimination (RFE) for feature selection. …………………………41 

Figure 2-5. Overall accuracy, kappa coefficient and misclassification rate achieved using original 

imbalanced dataset and four machine learning classifiers. ……………………………………….44 

Figure 2-6. Overall accuracy, kappa coefficient and misclassification rate achieved using five 

balanced dataset and XGBoost classifier. ………………………………………………………..46 

Figure 2-7. The ROC curve using five balanced datasets and XGBoost classifier. ……………..47 

Figure 2-8. The Precision-Recall curve using five balanced datasets and XGBoost classifier. …..47 

Figure 2-9. Overall accuracy, kappa coefficient and misclassification rate achieved using different 

balanced dataset and RF classifier………………………………………………………………..49 

Figure 2-10. The ROC curve using five balanced datasets and RF classifier. …………………..50 

Figure 2-11. The Precision-Recall curve using five balanced datasets and RF classifier. ………..50 

Figure 2-12. Overall accuracy, kappa coefficient and misclassification rate achieved using 

different balanced dataset and KNN classifier. …………………………………………………..52 

Figure 2-13. The ROC curve using five balanced datasets and KNN classifier. …………………53 

Figure 2-14. The Precision-Recall curve using five balanced datasets and KNN classifier. ……..53 

Figure 2-15. Overall accuracy, kappa coefficient and misclassification rate achieved using 

different balanced dataset and ANN classifier. …………………………………………………..55 

Figure 2-16. The ROC curve using five balanced datasets and ANN classifier. …………………56 

Figure 2-17. The Precision-Recall curve using five balanced datasets and ANN classifier. ……..56 

Figure 3-1. Ground-based classification scale of filed plots of soybean pubescence color with three 

phenotypic classes which includes tawny (T), gray (G), and segregation (S). ……………………80 

Figure 3-2. Accuracy and loss curves using training and testing datasets for ResNet50 model. (a) 

best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. ………………88 



viii 
 

Figure 3-3. The ROC and precision-recall curves using testing datasets for ResNet50 model. (a) 

true positive rate versus false positive rate versus, and (b) precision versus recall. ………………88 

Figure 3-4. Accuracy and loss curves using training and testing datasets for InceptionResNet-V2 

model. (a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. …...89 

Figure 3-5. The ROC and precision-recall curves using testing datasets for InceptionResNet-V2 

model. (a) true positive rate versus false positive rate versus, and (b) precision versus recall. …...90 

Figure 3-6. Accuracy and loss curves using training and testing datasets for Inception-V3 model. 

(a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. …………...91 

Figure 3-7. The ROC and precision-recall curves using testing datasets for Inception-V3 model. 

(a) true positive rate versus false positive rate versus, and (b) precision versus recall. …………...91 

Figure 3-8. Accuracy and loss curves using training and testing datasets for EfficeintNet model. 

(a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. …………...92 

Figure 3-9. The ROC and precision-recall curves using testing datasets for EfficientNet model. (a) 

true positive rate versus false positive rate versus, and (b) precision versus recall. ………………93 

Figure 3-10. Accuracy and loss curves using training and testing datasets for DenseNet169 model. 

(a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. …………..94 

Figure 3-11. The ROC and precision-recall curves using testing datasets for DenseNet169 model. 

(a) true positive rate versus false positive rate versus, and (b) precision versus recall. …………..94 

Figure 3-12. Accuracy and loss curves using training and testing datasets for DenseNet121 model. 

(a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. …………...95 

Figure 3-13. The ROC and precision-recall curves using testing datasets for DenseNet121 model. 

(a) true positive rate versus false positive rate versus, and (b) precision versus recall. …………...96 

Figure 3-14. Accuracy and loss curves using training and testing datasets for DenseNet201 model. 

(a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. …………...97 

Figure 3-15. The ROC and precision-recall curves using testing datasets for DenseNet201 model. 

(a) true positive rate versus false positive rate versus, and (b) precision versus recall. …………..97 

Figure 3-16. The overall accuracy and number of epochs of different deep learning models. …100 

Figure 3-17. The kappa value and misclassification rate of different deep learning models. …100 

 

 

 



ix 
 

LIST OF TABLES 

Table 2-1. Texture features equation and uses by researchers. …………………………………...31 

Table 2-2. Description of the hyperparameters used for the analysis using XGBoost Classifier. ..37 

Table 2-3. XGBoost hyper-parameter best values using TPE method for the analysis of original 

dataset and treated dataset (SMOTE-Tomek Links, SMOTE-ENN, Borderline-SMOTE, SMOTE-

NC and ADASYN) for balancing. ……………………………………………………………….37 

Table 2-4. Description of the hyperparameters used for the analysis using RF Classifier. ……….38 

Table 2-5. RF hyper-parameter best values using grid search method for the analysis of original 

dataset and treated dataset (SMOTE-Tomek Links, SMOTE-ENN, Borderline-SMOTE, SMOTE-

NC and ADASYN) for balancing. ……………………………………………………………….38 

Table 2-6. Comparison of datasets before and after pre-processing for each classifier. ………….42 

Table 2-7. Confusion matrix and model performance metrices of four lodging classes of soybean 

using original dataset and four machine learning (XGBoost, RF, KNN, and ANN) classifiers. ….43 

Table 2-8. Confusion matrix and model performance metrices of four lodging classes of soybean 

using XGBoost classifier. ………………………………………………………………………..45 

Table 2-9. Confusion matrix and model performance metrices of four lodging classes of soybean 

using RF classifier. ………………………………………………………………………………48 

Table 2-10. Confusion matrix and model performance metrices of four lodging classes of soybean 

using KNN classifier. …………………………………………………………………………….51 

Table 2-11. Confusion matrix and model performance metrices of four lodging classes of soybean 

using ANN classifier. …………………………………………………………………………….54 

Table 3-1. Division of each soybean class images in training and testing set. ……………………81 

Table 3-2. Confusion matrix and model performance metrices of three pubescence classes of 

soybean using seven pre-trained deep learning model. …………………………………………..86 

 

 

 

 

 

 



x 
 

LIST OF ABBREVIATIONS 

US United States 

UAV Unmanned Aerial Vehicle 

MAV Manned Aerial Vehicle 

RGB Red-Green-Blue 

XGBoost Extreme Gradient Boosting 

RF Random Forest 

KNN K-Nearest Neighbor 

ANN Artificial Neural Network 

SMOTE Synthetic Minority Oversampling Technique 

ENN Edited Nearest Neighbor 

NC Nominal Continuous 

ADASYN Adaptive Synthetic 

OA Overall Accuracy 

DNA Deoxyribonucleic Acid 

HTP High-throughput Phenotyping 

GNSS Global Navigation System 

GCP Ground Control Point 

RADAR Radio Detection and Ranging 

LiDAR Light Detection and Ranging 

EMS Electromagnetic Spectrum 

ML Machine Learning 

DL Deep Learning 

SVM Support Vector Machine 

PLSR Partial Least Square Regression 

PCA Principle Component Analysis 

NN Neural Network 

PH Plant Height 

CSM Crop Surface Model 

CNN Convolutional Neural Network 

PPC Plant Projective Cover 



xi 
 

USDA United States Department of Agriculture 

R3 Reproductive growth Stage 3  

R5 Reproductive growth Stage 5 

R6 Reproductive growth Stage 6 

GLCM Gray-Level Co-occurrence Matrix 

NDVI Normalized Difference Vegetation Index 

NL Non-lodging 

ML Medium lodging 

HL High lodging 

SL Severe lodging 

RTK Real-Time Kinematic 

RFE Recursive Feature Elimination 

ROI Region of Interest 

TPE Tree-Structured Parzen Estimator  

CV Cross-validation 

TP True Positive 

FP False Positive 

TN True Negative 

FN False Negative 

ROC Receiver Operating Characteristics 

AUC Area Under the Curve 

PR Precision-Recall 

AP Average Precision 

MLC Maximum Likelihood Classification 

NASS National Agricultural Statistics Survey 

PT Progeny Trial 

PYT Preliminary Yield Trial 

AYT Advanced Yield Trial 

LBP Local Binary Pattern 

HOG Histogram of Oriented Gradients 

SIFT Scale Invariant Feature Transform 



xii 
 

T Tawny 

G Gray 

S Segregating 

ResNet Residual Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xiii 
 

QUANTIFYING SOYBEAN PHENOTYPES USING UAV IMAGERY AND MACHINE 

LEARNING, DEEP LEARNING METHODS  

Shagor Sarkar 

Dr. Jianfeng Zhou, Thesis Supervisor 

ABSTRACT 

Crop breeding programs aim to introduce new cultivars to the world with improved traits 

to solve the food crisis. Food production should need to be twice of current growth rate to feed the 

increasing number of people by 2050. Soybean is one the major grain in the world and only US 

contributes around 35% of world soybean production. To increase soybean production, breeders 

still rely on conventional breeding strategy, which is mainly a ‘trial and error’ process. These 

constraints limit the expected progress of the crop breeding program. The goal was to quantify the 

soybean phenotypes of plant lodging and pubescence color using UAV-based imagery and 

advanced machine learning. Plant lodging and soybean pubescence color are two of the most 

important phenotypes for soybean breeding programs. Soybean lodging and pubescence color is 

conventionally evaluated visually by breeders, which is time-consuming and subjective to human 

errors. The goal of this study was to investigate the potential of unmanned aerial vehicle (UAV)-

based imagery and machine learning in the assessment of lodging conditions and deep learning in 

the assessment pubescence color of soybean breeding lines. A UAV imaging system equipped with 

an RGB (red-green-blue) camera was used to collect the imagery data of 1,266 four-row plots in a 

soybean breeding field at the reproductive stage. Soybean lodging scores and pubescence scores 

were visually assessed by experienced breeders. Lodging scores were grouped into four classes, 

i.e., non-lodging, moderate lodging, high lodging, and severe lodging. In contrast, pubescence 

color scores were grouped into three classes, i.e., gray, tawny, and segregation.  



xiv 
 

UAV images were stitched to build orthomosaics, and soybean plots were segmented using 

a grid method. Twelve image features were extracted from the collected images to assess the 

lodging scores of each breeding line. Four models, i.e., extreme gradient boosting (XGBoost), 

random forest (RF), K-nearest neighbor (KNN), and artificial neural network (ANN), were 

evaluated to classify soybean lodging classes. Five data pre-processing methods were used to treat 

the imbalanced dataset to improve the classification accuracy. Results indicate that the pre-

processing method SMOTE-ENN consistently performs well for all four (XGBoost, RF, KNN, 

and ANN) classifiers, achieving the highest overall accuracy (OA), lowest misclassification, 

higher F1-score, and higher Kappa coefficient. This suggests that Synthetic Minority Over-

sampling-Edited Nearest Neighbor (SMOTE-ENN) may be an excellent pre-processing method 

for using unbalanced datasets and classification tasks. 

Furthermore, an overall accuracy of 96% was obtained using the SMOTE-ENN dataset and 

ANN classifier. On the other hand, to classify the soybean pubescence color, seven pre-trained 

deep learning models, i.e., DenseNet121, DenseNet169, DenseNet201, ResNet50, 

InceptionResNet-V2, Inception-V3, and EfficientNet were used, and images of each plot were fed 

into the model. Data was enhanced using two rotational and two scaling factors to increase the 

datasets. Among the seven pre-trained deep learning models, ResNet50 and DenseNet121 

classifiers showed a higher overall accuracy of 88%, along with higher precision, recall, and F1-

score for all three classes of pubescence color.  In conclusion, the developed UAV-based high-

throughput phenotyping system can gather image features to estimate soybean crucial phenotypes 

and classify the phenotypes, which will help the breeders in phenotypic variations in breeding 

trials. Also, the RGB imagery-based classification could be a cost-effective choice for breeders 

and associated researchers for plant breeding programs in identifying superior genotypes.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The most pressing challenge in the 21st century is to increase food production for the growing 

population and increasing demand for fuel and clothing. Developing highly productive cultivars 

through the breeding program and providing them to the farmers is the most sustainable solution 

to address these demands (Hickey et al., 2019). By definition, crop breeding is both the art and 

science which modifies the traits of crops to achieve the desired characteristics (BATS Center, 

1995). The traits include the improvement of yield and other agronomic aspects such as height, 

biotic and abiotic tolerance. The conventional breeding program relies on the trial-and-error 

process, which involves multiple phases of crossing, selection, and testing, encompasses a long 

process to develop new plant varieties, and can take one or two decades to produce a new cultivar 

(Ahmar et al., 2020). The soybean breeding program takes approximately seven to eight years to 

develop a new soybean variety (Kruger, 2019). Once a key problem is identified in a program, 

breeders choose parent lines from the existing populations that possess the necessary traits to solve 

the problem. These chosen parent lines are then crossed to produce new progeny that may 

concurrently inherit the desired features from both parents. The future generations of each cross 

are progressed to produce a suitable number of seeds for planting progeny lines, and each cross is 

planted and harvested individually. A combination of desired traits consider while evaluating and 

choosing the progeny lines, and those who inherit undesirable traits from their parents are 

eliminated. The chosen progeny lines are kept in order to undergo multi-location yield experiments 

for additional evaluation. Breeders evaluate the performance of the lines in these trials across 

diverse geographic contexts to ensure adaptability and appropriateness. Furthermore, breeders 
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continue choosing lines that show broad adaptability across diverse locations or that are 

specifically adapted to selected regions, depending on the precise aims of the breeding program. 

Until superior lines with the desired combination of traits are found and designated as new crop 

types for commercial production or additional breeding efforts, this iterative process of selection, 

evaluation, and progress continues. 

Crop's genetic improvement process has become significantly faster with the revolution of biotech, 

which helps researchers to analyze the large population of genetical variations and markers 

targeting the genome sequence of large number of crops in the breeding program (Thomson et al., 

2014; Mir et al., 2019). Genetic analysis has its highest value with the association of phenotypic 

traits from the target crops, enabling the need for high-throughput accurate acquisition and 

multidimensional phenotypes on a comprehensive scale throughout the crop development (Yang 

et al., 2020). Despite the exponential growth of analyzing DNA and genome sequences, the 

advancement in phenotypic study has not reached in a benchmark due to the phenotypic data 

acquisition issues in crop breeding and functional genomic studies (Furbank and Tester, 2011; Hu 

et al., 2020) and validating the high-throughput phenotyping (HTP) is still a bottleneck (Reynolds 

et al., 2020; Yang et al., 2020). Conventional phenotypic method is very laborious, time 

consuming, subjected to human error, and frequently plant destructive (Chen et al., 2014; Langre 

et al., 2019). In the breeding program, modern-day breeders still rely on each plot's visual 

evaluations and ratings to estimate the crucial agronomic traits. Breeders evaluate tens of 

thousands of plots by visually assessing, which is very challenging, and the actual data notes and 

subjective criterium by human ratings might generate the inaccuracies on the phenotypic data 

collection (Haghighattalab et al., 2016; Zhao et al., 2019). However, in recent years the 

advancement of technologies with the widespread adaption opens a new window for the 



3 
 

researchers by using different sensors, machine vision, telemetry, robotics, and automation in the 

agro-food industry and precision agriculture to enhance the efficiency. The integration of these 

technologies and applications helps scientists to identify the phenotypic traits, to develop 

bioinformatic tools, and crop quality assessment (Zhao et al., 2019).  

The application of HTP approaches enables significant advancements in phenotyping standards 

for agronomic traits, which enhance the understanding of genetic basis and diversity of the traits, 

as well as the environmental influences throughout the crop development period (Reynolds et al., 

2020). Thus, the high dimensional marker information and high dimensional phenotyping 

information can be used to characterize the genotypes comprehensively (Jarquin et al., 2018). In 

recent days, HTP became the emerging technology and considered as a key component in the crop 

breeding program, adopting the non-destructive and non-invasive sensors to efficiently screen a 

large amount of crop lines with reduced time and effort (Araus, Kefauver, Zaman-Allah, Olsen, & 

Cairns, 2018). Despite the advancement in the HTP which is capable of estimating various 

phenotypic traits with the advancement of different sensors and hardware platforms, the wide 

adoption of HTP into routine breeding procedures faces several limitations and challenges (Araus 

et al., 2018).  Thus, it’s very important to address these hurdles to ensure the actual application of 

the HTP in the breeding program to achieve the increased genetic gain.    

1.2 Literature Review 

1.2.1 High-throughput phenotyping platforms 

Several remote sensing-based platforms have recently been designed for HTP and data collection. 

Among those, ground base platforms and aerial base platforms are most common. Ground base 

platforms includes pole/tower-based equipment’s, gantry-based, ground mobile, and cable 

suspended systems (Andrade-Sanchez et al., 2014; Ge, Bai, Stoerger, & Schnable, 2016; White et 
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al., 2012). These systems offer higher spatial and temporal resolution than the aerial platforms and 

can be used with multiple devices. However, one noticeable drawback is ground-based platform 

have lower efficiency in terms of field coverage (Li et al., 2021). Aerial based HTP platforms 

(Chapman et al., 2014; Eitel, Long, Gessler, & Hunt, 2008; Geipel, Link, Wirwahn, & Claupein, 

2016; Kefauver et al., 2017a)) are mainly three types based on the imaging distance: unmanned 

aerial vehicles (UAVs), manned aerial vehicles (MAVs), and satellite platforms. With the 

increasing of imaging distance, these platforms exhibit decreased image pixel resolutions. 

However, aerial based HTP platforms possess the advantage of covering large-scale fields, ranging 

from a few to hundred acres of lands within a short period of time. The data collection using UAVs 

and MAVs require two individuals and devices to provide the information from the global 

navigation system (GNSS) and ground control points (GCPs). On the other hand, satellite 

platforms such as Landsat series and WorldView series (C. Zhang et al., 2020) provides meter-

level resolution data with several spectral bands and radio detection and ranging (RADAR) data 

(Jin et al., 2021).      

1.2.2 Sensors 

Sensors attached to the above-described platforms include but are not limited to red-green-blue 

(RGB), multispectral, hyperspectral, thermal, spectrometer, stereo cameras, and light detection and 

ranging (LiDAR) devices. Figure 1 shows the different wavelengths corresponding correspondent 

to different sensors. There are overlaps in the wavelengths, but these sensors differ in bandwidth, 

image resolution, quality, and price.  
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Figure 1-1. The electromagnetic spectrum (EMS) showing the regions of different sensors 

corresponding to different wavelengths. Image modified from (Kerr et al.,2011).   

These sensors can contribute to estimate different phenotypic traits such as height, temperature, 

maturity which help researchers to explain genetic traits and justify the potentiality to facilitate the 

crop breeding process.  Furthermore, because of their similarity of the electromagnetic spectrum 

over which the human eye operates, RGB-bases imagery technology has been used by numerous 

researchers for the automation of phenotyping that are traditionally human performed. Different 

morphological traits have been quantified by different researchers. Such as, UAV-based RGB 

imagery technology was used to quantify the Sorghum plant height and its application to genomic 

prediction (Watanabe et al., 2017; Wang et al., 2018). Poppy crop height and capsule volume were 

estimated by Iqbal et al., (2017). Canopy area, tree height, and crown volume, which provide 

important information about plant status and crop production, were monitored using RGB imagery 
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and UAV technology by Sanchez et al., (2015). Other research such as, digital maize count, wheat 

biomass estimation, wheat emergence and plant density, plant height, tomato detection, grassland 

monitoring, assessing olive tree crown, weed classification, leaf angle estimation, and so on using 

RGB based imagery (Gnädinger and Schmidhalter, 2017; Schirrmann et al., 2016; Jin et al., 2017; 

Madec et al., 2017; Senthilnath et al., 2016; Chang et al., 2017; Lussem et al., 2017; Han et al., 

2018; Hu et al., 2018; Holamn et al., 2016; Diaz-Varela et al., 2015; Lottes et al., 2017; Ribera et 

al., 2018; McNeil et al., 2016; Iersel et al., 2018).   

Images at small numbers, usually between 3 to 10 of wavebands of the electromagnetic spectrum 

are known as multispectral cameras (Guo et al., 2021). In crop science mainly, red, green, blue, 

red-edge, and near-infrared bands are mostly used. It’s because the reflectance of chloroplast has 

a peak in the near-infrared band and changes rapidly at the red-edge band (Guo et al., 2021). Using 

these two bands, various vegetation indices can be measured (Jones et al., 2010; Seager et al., 

2005) and can use to quantify crop traits. Researchers have used multispectral sensor in quantifying 

different traits and qualities of crop such as crop yield, biomass, leaf area index (LAI), nitrogen, 

water status, soybean variety selection, and so on (Vega et al., 2015; Swain et al., 2010; Potgieter 

et al., 2017; Hunt et al., 2010; Ballester et al., 2017, Baluja et al., 2012; Kumar et al., 2012; Zhou 

et al., 2022; Fukano et al.,2021).  

Imaging across a variety of electromagnetic spectrum wavebands is possible using hyperspectral 

cameras. The two scales at which these cameras have usually been employed are (a) over entire 

fields and (b) at the level of individual plants. Hyperspectral cameras have a variety of benefits 

over other imaging modalities since they can cover a greater range of the electromagnetic 

spectrum. Hyperspectral cameras can now offer useful information on the biophysical and 

biochemical characteristics of several crop species due to their expanded spectral coverage. 
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Additionally, they are efficient at identifying biotic and abiotic stresses, providing information on 

the physiological characteristics of crops and their reactions to environmental factors 

(Nagasubramanian et al., 2019; Krause et al., 2019).  

Thermal imagery is a system to capture infrared portion of the electromagnetic spectrum emitted 

by an object. For crops, thermal imaging physiologically significant because healthy plant emit 

radiation in the infrared range. This infrared emission of the plant canopy can provide the valuable 

insights into various biotic and abiotic stresses (Guo et al., 2021). Therefore, researchers used 

thermal imagery as a high-throughput approach to evaluate the plant physiological state. Crop 

water status to improve the understanding of crop growth, health, vigour, and yield was monitored 

by (Deery et al., 2016; Ludovisi et al., 2017; Sagan et al., 2019; Lacerda et al., 2022).  

1.2.3 Analytical methods and models 

Different HTP platforms and sensor produces a wealth of multi-dimensional data which encompass 

hundreds or thousands of breeding lines for the characterization of crop phenotypic traits at spatial 

and temporal scales. However, to efficiently use these data for different research purposes, it is 

essential to apply dedicated methods that can eliminate irrelevant features from the data to obtain 

the expected outcomes. From past few years, machine learning (ML) and deep learning (DL) 

methods have become more popular than the conventional regression-based models to analyze 

different sensor-based data in crop breeding program and related research. Different supervised 

and unsupervised ML models, such as random forest (RF), support vector machine (SVM), partial 

least square regression (PLSR), naïve bayes, K-means clustering, K-nearest neighbor (KNN), 

decision tree, principal component analysis (PCA) have been used by scientist and researchers for 

the crop trait quantification and detection. Such as, maize yield was predicted using random forest 

ML method, Bayesian optimizer and SVM method was used for the crop drought mapping using 
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UAV remote sensing RGB imagery, wheat nitrogen status estimation using PLSR, vegetation patch 

identification from a sugar beet field with a high diffusion of weeds using logistic regression, 

KNN, RF, decision tree, neural network (NN), and SVM  (Ramos et al., 2020; Su et al., 2019; Fu 

et al., 2020; Fargassa et al., 2023). DL is one of the most important branches of ML which allows 

hierarchical data learning. Numerous research is spotted on from last few years using UAV imagery 

and deep learning methods such as cotton and rice yield estimation (Ashapure et al., 2020; Yang 

et al., 2019), water stress monitoring (Gao et al., 2020), crop monitoring (Theau et al., 2020; Wu 

et al., 2021), pesticide and fertilizer spraying (Hasan et al., 2019), and wheat lodging (Zhang et al., 

2020).   

1.2.4 Application of HTP in crop breeding 

In crop breeding program, HTP platform equipped with different sensors have been used by many 

researchers due to the efficiency, flexibility, shorter time required, and easy operation compared to 

other methods. This section of literature review consists of UAV-based HTP used in obtaining the 

crop traits and phenotypes for breeding purposes.  

Plant height (PH) is an important trait in the crop breeding program. Volpato et al., (2021) used 

UAV based HTP system to estimate the PH from wheat breeding lines. The study involves using 

temporal and high-spatial resolution images collected from a fixed-wing multi-rotor UAV platform 

from two wheat populations. The crop surface models (CSMs) were generated from the dense 

point clouds to estimate the PH. The CSMs shows a high correlation range from 0.35-0.88 and 

root mean square error varying from 0.39 to 4.02 cm while comparing with the ground-based PH. 

The study reflects the feasibility of using UAV based RGB imagery for the estimation of wheat 

plant height for a breeding program, which enables the efficient and scalable applications in wheat 

breeding lines.   
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Yield is one of the primary traits to select the superior genotypes and evaluate the breeding 

efficiency of a breeding program. Soybean yield was estimated using UAV based HTP system by 

Zhou et al., (2021) using convolutional neural network CNN). The study focused on evaluating 

972 soybean breeding lines from three maturity groups under the rainfed conditions for testing the 

drought tolerance. Image features were derived from the images related to the plant height, canopy 

color, canopy texture to estimate the yield. A mixed CNN model was developed and tested which 

achieved 78% explanation of the measured yield, with root mean square error of 391.0 kgha-1, 

equivalent to 33.8% of the average yield. From this result, it justifies the potentiality of using UAV 

based HTP system for the measurement of yield and selecting superior genotypes.  

Salinity stress resistive genotype selection is another important task for the breeders. Johansen et 

al., (2019) used UAV-based radiometric data for assessment of salt tolerance in tomato plants for 

the breeding program. The study involves 600 control plants and 600 salt treatment plants of 199 

accessions of the wild tomato species. Image was used to extract the relevant information of plant 

area, growth rates, condition, and Plant Projective Cover (PPC). These traits were used for the 

identification of best accession based on the yield and salt tolerance. An object-based image 

analysis was done, and the result showed 99% accuracy in automatically detecting tomato plants 

during most campaigns. The study encompasses the most yielding accession using muti-temporal 

UAV based phenotyping system.  

Flooding stress can have detrimental effect on soybean which resulted in poor seed quality and 

significant yield reduction, hence the flooding stress genotypes selection is another challenge for 

the soybean breeders.  Zhou et al., (2021) used UAV-based HTP system to estimate flood-induced 

soybean injuries. A total of 724 soybean breeding lines were visually assessed by the breeders 

where there is a clear flood induced injury occurs. Multispectral and thermal imagery was obtained 
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from three different height of 20m, 50m, and 80m using UAV platform. Image features were 

extracted related to the canopy temperature, vegetation index, canopy area, width, and length. DL 

method was employed to classify the five classes of flooding injury scores and find out that 

accuracy of 90% can be achieved using 20m height UAV data. This study demonstrates the promise 

of using HTP system to estimate flood-induced soybean injuries in a soybean breeding program.  

A few research has been discussed here in this section using UAV-based HTP system for the 

breeding program, but the method are not limited here only. Though there are advancement in 

breeding program using these HTP system, still there is limitations which bottlenecking the crop 

breeding from genotyping to phenotyping. Data acquisition, integration, processing, management, 

analyzing, interpreting, and modeling are the core of HTP to obtain the accurate measurements of 

plant traits (D. Li et al., 2021), which requires manual input and interactions from the skilled 

personnel. Such as, UAVs operating skill, programming, and statistical knowledge are required to 

work with these setups. Though there is several software have been developed recently to work 

with HTP system and data analyzing, still it’s very challenging for the breeders to use those 

software’s and tune them properly (Zhou et al., 2021). So, there is a gap between breeders and 

phenotyping researchers that need to be considered and come up with a more-breeders friendly 

solution to use these HTP systems.  

1.2.5 Goal and objectives  

In the soybean breeding program, UAV-based HTP systems have been used previously to quantify 

the primary and secondary traits mostly, such as, yield, maturity date, biotic and abiotic stress, 

plant height. Rather than these primary and secondary traits there are still some crucial traits 

phenotypes such as lodging and pubescence color that the breeders look from every breeding 
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population. Insufficient attention has been paid to these soybean phenotypes to quantify using 

UAV-based HTP systems and advanced machine learning methods.  

This study's goal was to quantify the soybean phenotypes of plant lodging and pubescence color 

using UAV-based imagery and advanced machine learning methods. To achieve this goal, this 

study includes following objectives: (1) to develop a lodging classification model using machine 

learning and the imbalanced dataset to fast assess plant lodging, (2) to classify the soybean 

pubescence color using UAV imagery and deep learning methods. 
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CHAPTER TWO 

ASSESSMENT OF SOYBEAN LODGING USING UAV IMAGERY AND MACHINE 

LEARNING 

2.1 Abstract  

Plant lodging is one of the most important phenotypes for soybean breeding programs. Soybean 

lodging is conventionally evaluated visually by breeders, which is time-consuming and subjective 

to human errors. The goal of this study was to investigate the potential of unmanned aerial vehicle 

(UAV)-based imagery and machine learning in assessment of lodging conditions of soybean 

breeding lines. An UAV imaging system equipped with an RGB (red-green-blue) camera was used 

to collect the imagery data of 1,266 four-row plots in a soybean breeding field at the reproductive 

stage. Soybean lodging scores were visually assessed by experienced breeders, and the scores were 

grouped into four classes, i.e., non-lodging, moderate lodging, high lodging, and severe lodging. 

UAV images were stitched to build orthomosaics, and soybean plots were segmented using a grid 

method. Twelve image features were extracted from the collected images to assess the lodging 

scores of each breeding line. Four models, i.e., extreme gradient boosting (XGBoost), random 

forest (RF), K-nearest neighbor (KNN), and artificial neural network (ANN), were evaluated to 

classify soybean lodging classes. Five data pre-processing methods were used to treat the 

imbalanced dataset to improve the classification accuracy. Results indicate that the pre-processing 

method SMOTE-ENN consistently performs well for all four (XGBoost, RF, KNN, and ANN) 

classifiers, achieving the highest overall accuracy (OA), lowest misclassification, higher F1-score, 

and higher Kappa coefficient. This suggests that Synthetic Minority Oversampling-Edited Nearest 

Neighbor (SMOTE-ENN) may be a good pre-processing method for using unbalanced datasets 

and classificationon tasks. Furthermore, the overall accuracy of 96% was obtained using the 

SMOTE-ENN dataset and ANN classifier. The study indicated that an imagery-based classification 
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model could be implemented in a breeding program to effectively differentiate phenotyping of 

soybean lodging and classify soybean lodging.  

2.2 Introduction 

Soybean is one of the major grain productions in the USA, and a total of 87.6 million acres of land 

were planted in 2021 with the average soybean yield of 3.45 metric tons per hectare, according to 

the report the of United States Department of Agriculture (USDA), National Agriculture Statistics 

Service (Barrett, 2021). However, soybean yield may be significantly affected by environmental 

conditions (Veas et al., 2021). Breeding programs aim to develop new crop varieties with improved 

traits, such as improved yield, resistance to biotic and abiotic stresses, desired maturity stage and 

no lodging.  Lodging occurs when the plant stems break or bend over, and the plants completely 

displaced from its original position. Lodging is a morphological trait and lodged soybean plants 

can significantly reduce yield. Lodging in different growing stages, such as at R5 stage (Fehr et 

al., 1971) yield can be reduced by 18-32%, at stages of R3 and in R6 (Fehr et al., 1971) yield can 

be reduced by 12-18% and 13-15%, respectively (Woods and Swearingin, 1977). Furthermore, 

complete lodging at the stage of full maturity can cause more than 30% yield reduction (Saito et 

al., 2012). Therefore, developing soybean cultivars with lodging tolerance is important to enhance 

the productivity and improve yield stability (Kitabatake et al., 2019).  

Improvement of lodging resistance cultivars not only improve yield by increased solar radiation 

interception but also improve mechanical harvesting efficiency (Kato et al., 2020). Lodging 

tolerant soybean cultivars selection is one of soybean breeders’ efforts in developing high yielding 

soybean cultivars. Soybean lodging can be caused by environmental factors, such as moist and 

fertile soil, densely populated lines, soybean stem borer (Lodging of soybean, 2021), and 

meteorological conditions (Vann et al., 2018). Lodging can also be caused by external forces, wind, 



24 
 

rain, hail (Wu and Ma, 2016) and morphological parameters of the cultivars. Numerous studies 

have been conducted on rice, maize, oats, barley, and canola lodging to determine the impact on 

crop yield and development (Tian et al., 2021; Sun et al., 2019; Zhang et al., 2014; Vlachopoulos 

et al., 2021). It is very important to develop lodging resistant cultivars. Conventional breeding 

programs quantify lodging tolerance traits based on visual observation and score them into the 

ranges from 1 to 5. Visual observation and scoring are subjected to human errors and biases that 

may hinder the breeding efficiency and to identify the right genotypes (Zhou et al., 2020; 

Bagherzadi, 2017). Meanwhile, manual measurement and visual observation are also very time 

consuming, laborious, and costly (Berry et al., 2002). Therefore, it’s a prime concern to develop a 

high throughput selection approach for quantifying soybean lodging score using remote sensing 

technologies. For example, unmanned aerial vehicle (UAV)-based imagery sensors such as digital 

and multispectral cameras have been used previously to select breeding lines using image derived 

features of breeding rows within abbreviated time (Yang et al., 2017). UAV image derived features 

have been used by numerous researchers to quantify crop responses to biotic and abiotic stress 

(Al-Tamimi et al., 2022), such as, drought stress (Duan et al., 2018), salt (Zhou et al., 2018), 

flooding stress (Cao et al., 2019). Furthermore, image features show active correlation with 

soybean traits such as maturity, plant height, yield, flowering time, wilting and canopy size (Zhou 

et al., 2020; Teodoro et al., 2021; Díaz-Varela et al., 2015; Zhou et al., 2019; Duan et al., 2017; Bai 

and Purcell, 2018), which are particularly important in breeding program.  

Studies have been conducted to identify lodging resistant genotypes of different crops in general 

and breeding purpose such as rice, maize, oats, barley and canola (Tian et al., 2021; Bagherzadi, 

2017; Zhang et al., 2014; Vlachopoulos et al., 2021) using remote sensing technologies. Image 

features have been used for lodging detection, such as textural features and Gray-Level Co-
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occurrence Matrix (GLCM) were used for wheat and canola lodging detection (Rajapaksa et al., 

2018; Mardanisamani et al., 2019). In addition, Gabor filtering was used by Mausda (Mausda et 

al., 2012) to detect the degree and direction of rice lodging. (Liu et al., 2005; Chauhan et al., 2019) 

investigated and found that canopy spectral reflectance increased and Normalized Difference 

Vegetation Index (NDVI) decreased with the high severity of lodging. (Liu et al., 2014) also used 

textural features adopting an airborne for the improvement of wheat lodging classification 

accuracy. (Yang et al., 2017) combines spectral features with textural features for the rice lodging 

classification.  

Many machine learning and deep learning models have been used to identify the crop lodging, 

such as decision tree (Yang et al., 2017), logistic regression (Han et al., 2018), support vector 

machine (Chauhan et al., 2020), deep learning (Zhang et al., 2020) were used for rice, maize and 

canola lodging detection. However, within a breeding field, the number of lodged plots is much 

lower than the number of non-lodged plots under natural conditions, which makes the dataset 

imbalanced in the analysis process. Imbalanced data may cause increased errors and decreased 

robustness of developed models. To improve the accuracy, imbalanced datasets are usually pre-

processed using Synthetic Minority Oversampling Technique (SMOTE) and Edited Nearest 

Neighbors under-sampling algorithm (SMOTE-ENN) (Batista et al., 2004).  

Though several research has been conducted using machine learning and deep learning methods 

to detect crop lodging, to the best of our knowledge there is no re-search conducted on crop lodging 

detection for soybean breeding using UAV imagery technique. Hence, the goal of this study was 

to investigate the potential of quantifying lodging scores of soybean breeding lines using UAV-

based imagery and machine learning methods. The textural image features provide supplementary 

information about the object properties which can help the heterogenous crop fields assessment 
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(Zhou et al., 2022). The specific objectives were: (1) to develop an RGB image texture feature-

based lodging classification models using machine learning algorithms, (2) to assess the 

classification accuracies among different classification models. The current research makes the 

following contributions: 

i. Imbalanced dataset processing: This study has contributed by outlining the methods 

used for texture feature extraction, preprocessing of imbalanced datasets, including 

image feature extraction, feature selection, and applying various resampling techniques 

such as SMOTE-Tomek Link, SMOTE-ENN, Borderline-SMOTE, SMOTE-NC, and 

ADASYN to address the class imbalance issue in the lodging dataset. 

ii. Efficient lodging assessment for soybean breeding: For the first time we evaluated the 

potential and methods to assess lodging score of soybean breeding lines in field 

conditions using UAV-based imagery and machine learning.    

2.3 Materials and methods 

2.3.1 Field experiment and ground data collection 

The field experiment was conducted in 2019 at the Bay Farm Research Facility (38°54'08.3"N, 

92°12'29.8"W), Columbia, Missouri, United States. The field is in a humid subtropical climate 

region (Köppen climate classification code: Cfa) (Rubel et al., 2017). A thousand and seven 

hundred seventy-three (1,773) soybean genotypes were planted in four-row plots with a row length 

of 3.6 m and row spacing of 0.8 m on June 3, 2019 (without replicates).   Weather conditions during 

all over the growing season showed in Figure 1 which includes daily average temperature and 

cumulative precipitation. The weather data was acquired from the nearby weather station which is 

a part of Missouri Mesonet – Weather Station Network. 
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Figure 2-1. Daily average temperature and daily precipitation during the growing season in the 

experimental field. The asterisk and round marks are the day of data collection. 

Lodging was rated on a 1 to 5 scale with 0.5 increments by the experienced breeders at the maturity 

stage R8. A rating of 1 showed that all plants and branches were erect, 2 showed that all plants 

leaning slightly or a few plants down, 3 showed that plants leaning moderately (45 degree), or 25% 

to 50% of the plants down, 4 showed that all plants leaning considerably, or 50% to 80% of the 

plants down and 5 showed that all plants are down. All plots were then assigned into four classes 

based on their scores, namely no lodging (NL, score 1.0, 1.5), medium lodging (ML, score 2.0, 

2.5), high lodging (HL, score 3.0, 3.5) and severe lodging (SL, scores 4.0, 4.5 & 5.0). Some 

examples of plots with different lodging scores are shown in Figure 2. A total of 1,773 plots were 

processed, among which 1,266 plots were used for the image feature calculation and rest of the 
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plots were filler and were discarded. In this study, the number of plots of each lodging class NL, 

ML, HL, and SL are non-lodging, medium lodging, high lodging, and severe lodging, respectively. 

 

Figure 2-2. Ground-based classification scale of filed plots of soybean lodging with four classes, 

i.e., non-lodging (NL), moderate lodging (ML), high lodging (HL), and severe lodging (SL). 

2.3.2 UAV imagery data collection 

The aerial images were collected at the full seed development stage of R6 on 29th August 2019 

using an UAV platform (DJI Matrice 600 Pro, DJI, Shenzhen, China) equipped with a Sony A6300 

(Sony Corporation, Tokyo, Japan) camera. Images were taken at 0.5 frames per second (fps) with 

the resolution (number of pixels) of 6000×4000 pixels at a flight height of 30 m above the ground 

level with an overlap of 80% for both sides of the image. During the image acquisition, the camera 

was set to shutter 1/1000 s, ISO 100-200, F-stop auto and daylight mode. A Real-Time Kinematic 

(RTK) GNSS positioning system (Reach RS+, Emlid, St. Petersburg, Russia) was used to obtain 

the GNSS coordinates of the GCPs. To ensure sufficient satellite reception, the base station was 

mounted on a tribrach that was fixed in an open area in the fields. The base position was obtained 

in the initial setting by accumulating its GNSS coordinates for 30 minutes. The base station was 
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placed at the same location of each data collection. The rover receiver was placed vertically in the 

holes on a monopod after the GCPs were pulled out, and the GNSS coordinate of each GCP was 

recorded after accumulating for 10 seconds using ReachView (Emlid, St. Petersburg, Russia). The 

geo-referencing in-formation of each image was recorded in a separate .csv file. Images were 

stitched using Agisoft PhotoScan Pro (v1.3.4, St. Petersburg, Russia) for further processing.  

2.3.3 Image processing 

Figure 3 illustrates image processing and data analysis pipelines used in this study. First, texture 

feature was extracted from RGB orthomosaic after a few pre-processing steps. Then optimal 

features were selected using Random Forest-Recursive Feature Elimination (RF-RFE) method. 

Five resampling methods, namely Synthetic Minority Oversampling (SMOTE)-Tomek Links, 

SMOTE-Edited Nearest Neighbor (ENN), Adaptive Synthetic Oversampling (ADASYN), 

Borderline-SMOTE and SMOTE-Nominal Continuous (NC) method was compared for treating 

the data imbalance. At last, the performance of four machine learning models in the lodging 

classification were compared. 

 

Figure 2-3. The flowchart of the soybean lodging classification. 
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An orthomosaic image was generated using Agisoft PhotoScan Pro. following the procedures 

described by (Zhou et al., 2018). The orthomosaic image was exported as .tif image and were 

processed using the Matlab Image Processing Toolbox and Computer Vision System Toolbox (ver. 

2021b, The MathWorks, Natick, MA, USA). Individual soybean plots were separated from 

orthomosaic image by manually cropping a rectangle region of interest (ROI) around each plot. 

Size of each plot varied due to the planting error, hence the size of ROI also varied to cover each 

soybean plot according to its width and length. The background of each image (e.g., soil, leaf 

shadow and plant residue) was removed by detecting the projected canopy contours using the 

“activecontour” function (Whitaker, 1998) with the “Chan-Vese” method (Chan and Vese, 2001). 

The foreground, which is soybean plants are the pixels within a full contour and the outside of the 

contours are the background. Contours with extremely small regions were detected as noises using 

the “regionprops” function and then removed from the foreground. 

2.3.4 Texture feature extraction and selection 

A variety of image features could be used in machine learning for the accurate classification of 

lodging and non-lodging plots. Color image features which show variation in leaves or stem color 

of the plant and doesn’t represent the lodging or non-lodging condition of the plots. On the other 

hand, lodging plots most likely have non-uniform and heterogenous patterns and non-lodging plots 

have uniform and homogenous patterns (Zhang et al., 2020). Considering these factors, textural 

features were extracted from the selected plots. Texture is one of the most important features for 

digital image processing and has been vastly used by numerous researchers for processing remote 

sensing data such as, object detection, image classification, crop trait classification, image 

evaluations, lodging detection (Hall-Beyer, 2017; Gao et al., 2010; Kwak et al., 2019; 

Mardanisamani et al., 2019). Furthermore, to reduce the noise in isolated pixels in classification, 
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texture information is one of the prime features for classification (Kwak et al., 2019). Gray Level 

Co-occurrence Matrix (GLCM) was first developed by (Haralick, 1973) and the GLCM considers 

pairs of pixels that are separated by a certain distance and orient-ed at a specific angle within the 

image. It calculates the frequency of occurrence of these pixel pairs with different combinations 

of grey levels (Singh et al., 2017). To calculate the texture feature, the original image is first 

converted to gray-scale image. Then the features of the gray-scale images are extracted using the 

relationship of brightness values be-tween the center pixel and its neighborhood pixel within the 

predefined kernel. The GLCM can produce different texture information according to its gray scale 

level, kernel size and direction by using the relationship. The selected texture features used in this 

study is listed in Table 1. Those features were angular second moment, contrast, correlation, 

variance, inverse difference moment, sum average, sum variance, sum entropy, entropy, difference 

variance, difference entropy, information measures of correlation I, information measures of 

correlation II, and maximum correlation coefficient. 

Table 2-1. Texture features equation and uses by researchers. 

Texture features Equation Reference 

Angular second 

moment 

∑ ∑ 𝑝(𝑖, 𝑗)2

𝑗𝑖

 
Wheat, soybean, rice and maize 

classification (Iqbal et al., 2021) 

Contrast   

∑ 𝑘2

𝑁𝑔−1

𝑘=0

𝑝𝑥−𝑦(𝑘) 

Crop disease and different crop 

classification (Pinto et al., 2016; Iqbal 

et al., 2021) 

Correlation 

 
∑ ∑ (𝑖𝑗)𝑝(𝑖𝑗) −  𝜇𝑥𝜇𝑦

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝜎𝑥𝜎𝑦
 

Weed classification, crop disease and 

different crop classification (Mekhalfa 
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and Yacef, 2021; Pinto et al., 2016; 

Iqbal et al., 2021) 

Variance 

∑ ∑(𝑖 − 𝑢)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Olive, potato, wheat and sugar beet 

classification, weed classification, crop 

disease and different crop 

classification, crop type mapping 

(Akhtar et al., 2012; Mekhalfa and 

Yacef, 2021; Pinto et al., 2016; Iqbal et 

al., 2021; Moumni and Lahrouni, 2021)  

Inverse difference 

moment 
∑ ∑

1

1 + (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 Land cover classification (Lu et al., 

2010) 

Sum average 

∑ 𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

Poultry carcass identification (Park and 

Chen, 2010) 

Sum variance 

∑(𝑖 − 𝑓𝑠)2𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

Poultry carcass identification (Park and 

Chen, 2010)  

Sum entropy 

∑ 𝑝𝑥+𝑦(𝑖)𝑙𝑜𝑔(𝑝𝑥+𝑦(𝑖))

2𝑁𝑔

𝑖=2

 

 Crop discrimination (Soares et al., 

1997)  

Entropy 

− ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔(𝑝(𝑖, 𝑗))

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 Crop classification using UAV 

multispectral imagery (Yang et al., 

2021) 

Difference variance 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑥−𝑦 Poultry carcass identification (Park and 

Chen, 2010) 
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Where, Ng denotes the gray-scale level, and P(i,j) is the normalized gray-scale value at the position 

i and j within the kernel and its sum is 1. µx, µy, σx and σy are the means and standard deviations 

of px and py. Also, HX and HY are the entropies of px and py. 

The feature selection step eliminates the less important feature at each iteration. The random forest 

recursive feature elimination (RF-RFE) method (Genuer et al., 2015) was used to select the optimal 

texture features which is basically a recursive process that make the ranking of features according 

to the feature importance given by the RF. Through iterative loops, the texture feature set was 

continuously reduced to select the required features. The 10-fold cross validation strategy was used 

to select the best basis function for the feature selection. 

2.3.5 Pre-process imbalanced data  

In this study, sample number of each lodging class was imbalance with only few high and severe 

lodging plots. Data balancing or resampling are commonly used methods to tackle the issue of 

Difference entropy 

− ∑ 𝑝𝑥−𝑦(𝑖)𝑙𝑜𝑔(𝑝𝑥−𝑦(𝑖))

𝑁𝑔

𝑖=0

 

  Poultry carcass identification (Park 

and Chen, 2010) 

Information measures 

of correlation I 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 − 𝐻𝑋𝑌1

max (𝐻𝑋, 𝐻𝑌)
 

Plant identification (Shearer, 1990) 

Information measures 

of correlation II 

[1 − exp(−2(𝐻𝑋𝑌2

− 𝐸𝑛𝑡𝑟𝑜𝑝𝑦))
1/2

 

Plant identification (Shearer, 1990)  

Maximal correlation 

coefficient 

(𝑆𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄)1/2 

where, 

                      𝑄(𝑖, 𝑗) =

 ∑
𝑝(𝑖,𝑘)𝑝(𝑗,𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)𝑘  

Crop classification (Zhou et al., 2019) 
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class imbalance in machine learning models, by isolating it from the classification algorithms. Five 

pre-processing methods (i.e., SMOTE-Tomek Links, SMOTE-ENN, Borderline-SMOTE, 

SMOTE-NC and ADASYN) were compared to identify the suitable models for the imbalanced 

data in this study.   

Synthetic Minority Oversampling Technique (SMOTE) algorithm is a resampling method based 

on random oversampling algorithm that generates synthetic samples by the difference between 

adjacent minority samples (Amiruddin et al., 2022). The process includes the selection of an 

example of x minority class and the nearest minority class neighbors. The synthetic data is created 

by choosing one of the k nearest neighbors y at random, then connecting x and y to from a line 

segment in space characteristics. Then the synthetic dataset is produced as a combination of two 

selected samples x and y (He and Garcia, 2009). SMOTE can increase the number of minority 

classes of the dataset (Skryjomski and Krawczyk, 2017; Fernández et al., 2018). Several over-

sampling methods has been derived using the SMOTE as a basis (Zeng et al., 2016) which includes 

SMOTE-Tomek Links, SMOTE-ENN, Borderline SMOTE, SMOTE-NC, in this study.  

The SMOTE-Tomek Links   method involves the integration of SMOTE oversampling and Tomek 

Links undersampling techniques (Ai-Jun and Peng, 2020). It generates synthetic data for the 

minority class using SMOTE, and simultaneously, removes data that are identified as Tomek Links 

from the majority class. The SMOTE-ENN is a com-bination of SMOTE and Edited Nearest 

Neighbor (ENN), which is an undersampling method. SMOTE-ENN enhance the accuracy of 

classifying minority classes by eliminating observations from the majority classes that are near the 

class boundary of dis-tinct classes calculated through the nearest neighbor algorithm (Shi et al., 

2020). One of the main characteristics of SMOTE-ENN method is that the processed data does not 

have the same number of instances in different classes. Instead of having equal numbers of in-
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stances in each category, the resampled majority class will still be larger than the minority class, 

but the size difference between the categories will be reduced. In addition, Borderline-SMOTE is 

another technique used for oversampling in datasets that are not balanced. The Borderline SMOTE 

technique enhances the distribution of samples with-in a dataset by generating new samples based 

on a small number of samples that are located at the boundary (Gao et al., 2020). Lastly, SMOTE-

NC is an extension of SMOTE that takes into account several factors, such as the nearest neighbors 

of the minority instances, the median of the standard deviation of both nominal and continuous 

variables, the Euclidean distance between the minority instance and its k-nearest neighbors, and 

the desired ratio of the minority class over the majority class (Rashu et al., 2014; Chawla et al., 

2002).  

On the other hand, Adaptive Synthetic (ADASYN) sampling approach was also tested in this study. 

Similar to SMOTE method, ADASYN generates more synthetic samples for the minority classes 

along the linear function by weighting distance (Taghizadeh-Mehrjardi et al., 2020) and according 

to the level of difficulty in learning (He and Garcia, 2009). ADASYN utilizes a weighted 

distribution for diverse minority classes as a basis to determine the quantity of artificial samples 

that must be produced for each minority category (He et al., 2008).  

2.3.6 Machine learning models for soybean lodging classification  

Extreme gradient boosting (XGBoost) method is one of widely used decision tree method for 

classification.  XGBoost controls the overfitting by using the regularized model formalization, 

which resulted in better performance compared to the previous boosted algorithms (Cisty and 

Soldanova, 2018). XGBoost consists of a few hyperparameters such as nrounds (the number of 

trees), eta, learning rate and depth (the depth of the tree) (Georganos et al., 2018) that can be 

optimized to improve the performance. To optimize the XGBoost model performance, a nested 
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cross-validation approach was applied to find the optimal hyper-parameter factors to produce the 

best models. Hyper-parameter was tuned for each of the pre-processed dataset and are included in 

the Table 2 and 3.    The study uses Tree-Structured Parzen Estimator (TPE) method to tune the 

hyper-parameters, which involves defining the hyper-parameter spaces and distributions. The aim 

was to develop a model with high precision and re-call for the soybean lodging classification.  

An ensemble classification algorithm, random forest (RF) model was used to classify soybean 

lodging based on image feature. RF is a group of tree-based classifiers and uses bootstrapping to 

improve the diversification of classification trees. Random Forest takes advantage of the high 

speed and accuracy of decision tree algorithm for classification problems by generating multiple 

decision tree models. Each decision tree is in-dependent, and the errors are minimized in a 

collaborative way, resulting in more ac-curate and reliable classification results (Zhu et al., 2022). 

To optimize the RF model performance, grid search method was used with 5-fold cross-validation 

to find the optimal hyper-parameters. Six hyper-parameters were tuned using the grid search 

method for each of the treated dataset including original dataset. Best values of hyper-parameters 

are included in the Table 4 and 5. RF was used to develop soybean lodging classification model 

using these best hyper-parameter values.    

The K-nearest neighbor (KNN) is a non-parametric supervised machine learning algorithm which 

is one of the popular algorithms for data processing and modeling (Uddin et al., 2022). The KNN 

algorithm was used to classify the soybean lodging genotypes selection, where the primary 

parameter “n_neighbor” = 3 was set for the analysis. 

Artificial neural networks (ANNs) have been extensively used for the classification of crops and 

crop traits (Murthy et al., 2003; Wang et al., 2009; Vieira et al., 2022). ANN contains an input 

layer, multiple hidden layers, and one output layer. Each hidden layer contains multiple numbers 
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of neurons and quantifies the related mathematical equations to identify the complex relationship 

be-tween the data and the input layer and the data in the output layer. An artificial neural network 

can be constructed with the tuning of two hyperparameters such as the number of nodes in the 

hidden layer and the number of control iterations (Beck et al., 2018). 

Table 2-2. Description of the hyperparameters used for the analysis using XGBoost Classifier. 

Hyper-parameters Description 

n_estimators The number of boosting rounds or decision tree to be built. 

max_depth The maximum depth of each decision tree. 

learning_rate The step size shrinkage used in updating weights during each boosting 

round. A lower learning rate can help prevent overfitting but may 

require a higher number of boosting rounds. 

gamma The minimum loss reduction required to split a node. A higher value 

can lead to fewer and more conservative splits, while a lower value 

can lead to more splits and potentially overfitting. 

subsample The fraction of observations to be randomly sampled for each tree. A 

lower value can lead to a more conservative model, while a higher 

value can lead to overfitting. 

colsample_bytree The fraction of columns to be randomly sampled for each tree. A lower 

value can lead to a more conservative model, while a higher value can 

lead to overfitting. 

min_child_weight The minimum sum of instance weight needed in a child. A higher 

value can lead to a more conservative model, while a lower value can 

lead to overfitting. 

Table 2-3. XGBoost hyper-parameter best values using TPE method for the analysis of original 

dataset and treated dataset (SMOTE-Tomek Links, SMOTE-ENN, Borderline-SMOTE, SMOTE-

NC and ADASYN) for balancing.  

Hyper-parameter Search 

Space 

Best Values 

Original 

dataset 

Dataset 

Treated 

by 

SMOTE-

Tomek 

Link 

Dataset 

Treated 

by 

SMOTE-

ENN 

Dataset 

Treated by 

Borderline-

SMOTE 

Dataset 

Treated 

by 

SMOTE-

NC 

Dataset 

Treated by 

ADASYN 

n_estimators 100, 

1000 

348 593 337 664 944 652 
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max_depth 3, 10 6 8 10 10 8 9 

learning_rate 0.01, 1 0.01 0.08 0.08 0.03 0.06 0.09 

gamma 0, 1 0.56 0.20 0.03 0.003 0.19 0.13 

subsample 0.5, 1 0.99 0.62 0.8 0.80 0.8 0.71 

colsample_bytree 0.5, 1 0.79 0.90 0.98 0.83 0.9 0.76 

min_child_weight 1, 5 2 1 2 2 1 1 

Table 2-4. Description of the hyperparameters used for the analysis using RF Classifier. 

Hyper-parameters Description 

n_estimators Determines the number of decision trees to be built in the random 

forest. 

max_features Identifies the maximum number of features needed when splitting a 

node in each decision tree. It controls the randomness in feature 

selection. 

min_samples_split This hyperparameter determines the minimum number of samples 

needed to split an internal node in a decision tree. 

min_samples_leaf Identifies the minimum number of samples required to be at a leaf 

node in a decision tree. 

Max_depth Identifies the number of maximum depths of a decision tree which 

mainly limits the number of levels in the tree, prevents 

overcomplexity, and reduce the overfitting.  

bootstrap Determines the bootstrap samples were used or not to build each 

decision tree in the random forest.  

Table 2-5. RF hyper-parameter best values using grid search method for the analysis of original 

dataset and treated dataset (SMOTE-Tomek Links, SMOTE-ENN, Borderline-SMOTE, SMOTE-

NC and ADASYN) for balancing.  

Hyper-parameter Search 

Space 

Best Values 

Original 

dataset 

Dataset 

Treated 

by 

SMOTE-

Tomek 

Link 

Dataset 

Treated 

by 

SMOTE-

ENN 

Dataset 

Treated by 

Borderline-

SMOTE 

Dataset 

Treated 

by 

SMOTE-

NC 

Dataset 

Treated by 

ADASYN 

n_estimators 50, 

100, 

200 

50 50 100 100 100 50 
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max_features sqrt, 

log2 

sqrt sqrt sqrt sqrt sqrt sqrt 

min_samples_split 1, 2, 4 1 2 1 1 1 1 

min_samples_leaf 1, 10 5 5 5 10 5 5 

Max_depth 1, 10, 

50 

10 10 10 10 10 10 

bootstrap True, 

False 

True True True True True True 

2.3.7 Data analysis and accuracy assessment 

All the analysis and modeling were performed in Google Colaboratory (Colab) Pro. Machine 

learning classifiers (XGBoost, RF, KNN and ANN) were com-pared regarding their performance 

in classifying the four lodging classes. The balanced dataset was split into training and testing with 

80% and 20%, respectively. The model performance was evaluated using a 5-fold cross-validation 

(CV) to calculate the classification accuracy.  

The four classes of soybean lodging scores were assessed based on the number of samples that 

were correctly or falsely classified as either presence (True Positive, TP or False Positive, FP) or 

absence (True Negative, TN or False Negative, FN) using XGBoost, RF, KNN, and ANN models. 

A group of metrices were used for evaluation and they were calculated using Eqs. 1-5. The 

evaluation was based on several performance metrices, including precision, recall, F1-score, 

kappa, and overall accuracy (OA). The precision indicates the proportion of correctly predicted 

presences, recall represents the ratio of correctly predicted positive samples, and F1-score is the 

harmonic mean of precision and recall the F1-score is measure of model accuracy as well that 

balances precision and recall which ranges from 0 to 1, with 1 being the best possible score, 

indicating perfect precision and recall. Kappa value represents the proportion of correctly predicted 

sites, and OA indicates the overall accuracy of the model. 

Accuracy =  
No. of samples classified correctly in a test set

Total No. of samples in a test set
 × 100% 

(1) 



40 
 

 

Kappa =  
Po − Pe

1 − Pe
 

Where, P0 = is the overall accuracy of the model 

Pe = is the measure of the agreement between the model predictions and actual class values 

(2) 

Precision =  
TP

TP + FP
 

(3) 

Recall =  
TP

TP + FN
 

(4) 

F1 score =  
2 ∗ (Precision ∗ Recall)

(Precision + Recall)
 

(5) 

2.4 Results 

2.4.1 Feature selection 

Twelve texture features were selected using the random forest recursive feature elimination (RF-

RFE) method with two others (Entropy and Information measures of correlation I) eliminated from 

the all the features. The result show that the 12 features were important to obtain the highest score 

by performing the RFE algorithm with cross-validation. Figure 4 shows that the RFE uses a 

random forest algorithm to test combination of features, where the number of features was 12 with 

the maximum score of 0.754.   These twelve features and one target and 1266 observations (plots) 

were used to analyze the soybean lodging using four different machine learning classifiers.   
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Figure 2-4. Recursive feature elimination (RFE) for feature selection. 

2.4.2 Original and balanced dataset   

Table 6 shows the number of data points included in each class for original dataset and for four 

classifiers. Each classifier includes five pre-processing methods datasets. Original dataset was 

highly imbalanced, where non-lodging class was 76%, medium lodging was 16%, high lodging 

was 6% and severe lodging was 0.08% of all datasets. To overcome the imbalance issue, five pre-

processing (SMOTE-Tomek Link, SMOTE-ENN, Borderline-SMOTE, SMOTE-NC and 

ADASYN) methods was used to balance the dataset and the number of data points included in 

each pre-processing method for each class are shown in Table 6.     
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Table 2-6. Comparison of datasets before and after pre-processing for each classifier. 

Dataset NL ML HL SL 

Original 964 206 85 11 

SMOTE-Tomek Link 923 964 964 964 

SMOTE-ENN 224 700 784 925 

Borderline-SMOTE 964 964 964 964 

SMOTE-NC 964 964 964 964 

ADASYN 964 976 966 962 

2.4.3 Classification performance of machine learning models  

2.4.3.1 Classification performance of four machine learning models using original dataset 

Using the original dataset for the classification of soybean lodging, we found that XGBoost, RF, 

KNN, and ANN showed the overall accuracy of 0.80, 079, 0.77, and 0.73, respectively. All the 

machine learning classifiers only showed higher precision, recall, and F1-score for NL class. No 

model correctly classified other classes of ML, HL, and SL. Be-cause of there were a very few 

numbers of data points was associated in ML, HL, and SL classes. More precisely, 36 data points 

in ML, 12 data points in HL, and only 4 data points were associated in testing set for the 

classification using original dataset. Due to this limited number of data points, classifiers couldn’t 

recognize any of them and resulted in very poor precision, recall, and F1-score for these classes. 

Confusion matrix and model performance metrices of four lodging classes using original dataset 

are shown Table 7. Overall accuracy, kappa value, and misclassification rate are shown in a 

supplementary Figure 5. Due to the poor results using original and imbalanced dataset, we used 
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five data balancing method (SMOTE-Tomek Links, SMOTE-ENN, Borderline-SMOTE, SMOTE-

NC, and ADASYN). Following section describes the results of ML classifiers using five balancing 

methods.   

Table 2-7. Confusion matrix and model performance metrices of four lodging classes of soybean 

using original dataset and four machine learning (XGBoost, RF, KNN, and ANN) classifiers. 

Pre-processed 
Dataset 

Actual 
samples 

NL ML HL SL Precision Recall 
F1-
score 

 

 

SMOTE-

Tomek Link 

NL 201 1 0 0 0.80 1.00 0.89 

ML 35 1 0 0 0.25 0.03 0.05 

HL 10 2 0 0 0.00 0.00 0.00 

SL 4 0 0 0 0.00 0.00 0.00 

 

 

Borderline-

SMOTE 

NL 200 2 0 0 0.80 0.99 0.88 

ML 35 1 0 0 0.25 0.03 0.05 

HL 11 1 0 0 0.00 0.00 0.00 

SL 4 0 0 0 0.00 0.00 0.00 

 

 

SMOTE-NC 

NL 193 8 1 0 0.80 0.96 0.87 

ML 34 2 0 0 0.18 0.06 0.09 

HL 11 1 0 0 0.00 0.00 0.00 

SL 4 0 0 0 0.00 0.00 0.00 

 

 

ADASYN 

NL 186 4 3 0 0.75 0.96 0.84 

ML 35 0 0 0 0.00 0.00 0.00 

HL 21 1 0 0 0.00 0.00 0.00 

SL 4 0 0 0 0.00 0.00 0.00 

Where, soybean lodging classes are NL = Non-lodging, ML = Moderate lodging, HL = High 

lodging, and SL = Severe lodging. Data processing methods are SMOTE-Tomek Link = 

Synthetic Minority Over-sampling Method with Tomek Link, SMOTE-ENN= Synthetic 

Minority Oversampling Method with Edited Nearest Neighbor, Borderline-SMOTE = Borderline 

method with Synthetic Minority Oversampling, SMOTE-NC = Synthetic Minority Oversampling 

Method with Nominal Continuous ADASYN = Adaptive Synthetic method and OA = overall 

accuracy. 
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Figure 2-5. Overall accuracy, kappa coefficient and misclassification rate achieved using 

original imbalanced dataset and four machine learning classifiers. 

2.4.3.2 Classification performance using five pre-processed datasets of XGBoost classifier using 

five balancing methods 

Table 8 represents the results of the evaluation of XGBoost classifier using five types of balanced 

dataset for classifying four soybean lodging classes (NL, ML, HL and SL). The results of XGBoost 

model shown in the table shows higher classification accuracy of 0.94 using SMOTE-ENN dataset, 

whereas using other dataset the classification accuracy ranges between 0.84-0.89 (Figure 6). 

SMOTE-ENN dataset outperformed than other datasets. Where the precision, recall, F1-score, and 

kappa value. Higher precision, recall and F1-score was obtained for SL classes with the values of 

0.99, 0.99 and 0.99, respectively. On the other hand, higher kappa value of 0.91 was also obtained 

using SMOTE-ENN dataset. Overall accuracy, kappa coefficient and misclassification rate of each 

class for five balanced datasets are showed in figure 5. Lower misclassification rate of 12% was 

obtained using SMOTE-ENN dataset among all other datasets.  A comprehensive comparison 

showed that using SMOTE-ENN was the most ideal dataset, with higher area under the receiver 
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operating curve (AUC) from ROC curve and the average precision (AP) values from the precision-

recall curve (Figure 7 and 8). 

Table 2-8. Confusion matrix and model performance metrices of four lodging classes of soybean 

using XGBoost classifier. 

Pre-processed 
Dataset 

Actual 
samples 

NL ML HL SL Precision Recall 
F1-
score 

 

 

SMOTE-

Tomek Link 

NL 123 30 20 14 0.77 0.66 0.71 

ML 21 166 10 4 0.82 0.83 0.82 

HL 13 5 181 1 0.85 0.91 0.88 

SL 2 1 1 171 0.90 0.98 0.94 

 

 

SMOTE-ENN 

NL 27 9 5 1 0.93 0.64 0.76 

ML 1 127 4 0 0.87 0.96 0.91 

HL 1 9 153 0 0.94 0.94 0.94 

SL 0 1 1 188 0.99 0.99 0.99 

 

 

Borderline-

SMOTE 

NL 135 20 15 6 0.77 0.77 0.77 

ML 29 183 3 2 0.88 0.84 0.86 

HL 8 4 179 0 0.91 0.94 0.92 

SL 3 2 0 183 0.96 0.97 0.97 

 

 

SMOTE-NC 

NL 135 27 12 1 0.82 0.77 0.80 

ML 22 184 4 1 0.86 0.87 0.86 

HL 7 4 179 0 0.92 0.94 0.93 

SL 0 0 0 196 0.99 1.00 0.99 

 

 

ADASYN 

NL 122 30 23 6 0.80 0.67 0.73 

ML 20 160 11 4 0.80 0.82 0.81 

HL 11 9 179 1 0.84 0.90 0.86 

SL 0 0 1 179 0.95 0.99 0.97 
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Figure 2-6. Overall accuracy, kappa coefficient and misclassification rate achieved using five 

balanced dataset and XGBoost classifier. 

 

Figure 2-7. The ROC curve using five balanced datasets and XGBoost classifier.   
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Figure 2-8. The Precision-Recall curve using five balanced datasets and XGBoost classifier. 

2.4.3.3 Classification performance using five pre-processed datasets of RF classifier using five 

balancing methods 

Table 9 represents the results of RF classifier to classify soybean lodging using five balanced 

datasets. RF classifier resulted in higher overall classification accuracy of 0.93 was obtained using 

SMOTE-ENN dataset whereas 0.85, 0.88, 0.86 and 0.85 was obtained from SMOTE-Tomek Link, 

Borderline-SMOTE, SMOTE-NC and ADASYN, respectively. SMOTE-ENN outperformed all 

other methods with higher precision, recall, F1-score, kappa value. The misclassification rate was 

also minimum for SMOTE-ENN dataset with the value of 13%. Overall accuracy, kappa 

coefficient and misclassification rate of each balanced dataset are shown in Figure 9. As using 

SMOTE-ENN dataset showed better results than other datasets, it resulted best AUC from ROC 

curve AP values from the precision-recall curve (Figure 10 and 11). 
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Table 2-9. Confusion matrix and model performance metrices of four lodging classes of soybean 

using RF classifier. 

Pre-processed 
Dataset 

Actual 
samples 

NL ML HL SL Precision Recall F1-score 

 

 

SMOTE-
Tomek Link 

NL 121 34 19 13 0.81 0.65 0.72 

ML 16 174 6 5 0.82 0.87 0.84 

HL 9 4 184 3 0.87 0.92 0.90 

SL 4 0 2 169 0.89 0.97 0.93 

 

 

SMOTE-ENN 

NL 25 12 4 1 0.89 0.60 0.71 

ML 3 123 4 2 0.87 0.93 0.90 

HL 0 6 156 1 0.94 0.96 0.95 

SL 0 0 2 188 0.98 0.99 0.98 

 

 

Borderline-
SMOTE 

NL 134 22 16 4 0.78 0.76 0.77 

ML 25 187 5 0 0.88 0.86 0.87 

HL 10 4 177 0 0.89 0.93 0.91 

SL 3 0 0 185 0.98 0.98 0.98 

 

 

SMOTE-NC 

NL 125 26 18 6 0.80 0.71 0.76 

ML 22 179 7 3 0.85 0.85 0.85 

HL 7 6 172 5 0.87 0.91 0.89 

SL 2 0 1 193 0.93 0.98 0.96 

 

 

ADASYN 

NL 118 34 22 7 0.80 0.65 0.72 

ML 19 161 12 3 0.79 0.83 0.80 

HL 9 9 181 1 0.84 0.91 0.87 

SL 2 1 0 195 0.95 0.98 0.97 
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Figure 2-9. Overall accuracy, kappa coefficient and misclassification rate achieved using 

different balanced dataset and RF classifier. 

 

Figure 2-10. The ROC curve using five balanced datasets and RF classifier. 
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Figure 2-11. The Precision-Recall curve using five balanced datasets and RF classifier.   

2.4.3.4 Classification performance using five pre-processed datasets of KNN classifier using five 

balancing methods 

Soybean lodging classification results of KNN classifier using five types of balanced dataset are 

presented in Table 10. Unlike other classifiers XGBoost and RF, KNN showed the similar trend in 

classifying the soybean lodging. Higher overall classification accuracy was obtained using the 

SMOTE-ENN dataset with the value of 0.91 (Figure 12), where NL class showed lower recall and 

f1-score of 0.55 and 0.69, respectively. Other classes ML, HL and SL showed consistency with the 

value greater than 0.75 in all respect. Higher kappa value of 0.87 and lower misclassification rate 

was also obtained from SMOTE-ENN with the value of 17% (Figure 12). Other results using 

balanced dataset doesn’t show as better as SMOTE-ENN. The AUC values for each class were 

0.96, 0.98, 1.00, and 1.00 for NL, ML, HL, and SL, respectively whereas, AP values were 0.90, 

0.96, 0.99 and 1.00 (Figure 13 and 14) for SMOTE-ENN dataset. 
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Table 2-10. Confusion matrix and model performance metrices of four lodging classes of soybean 

using KNN classifier. 

Pre-processed 
Dataset 

Actual 
samples 

NL ML HL SL Precision Recall 
F1-
score 

 

 

SMOTE-
Tomek Link 

NL 64 60 36 27 0.89 0.34 0.49 

ML 6 173 15 7 0.72 0.86 0.78 

HL 1 7 189 3 0.78 0.94 0.86 

SL 1 1 2 171 0.82 0.98 0.89 

 

 

SMOTE-ENN 

NL 23 17 1 1 0.92 0.55 0.69 

ML 1 115 12 4 0.82 0.87 0.84 

HL 1 9 153 0 0.92 0.94 0.93 

SL 0 0 0 190 0.97 1.00 0.99 

 

 

Borderline-
SMOTE 

NL 91 48 28 9 0.79 0.52 0.63 

ML 18 191 5 3 0.77 0.88 0.82 

HL 5 9 177 0 0.84 0.93 0.88 

SL 1 1 1 185 0.94 0.98 0.96 

 

 

SMOTE-NC 

NL 84 55 24 12 0.74 0.48 0.58 

ML 18 172 17 4 0.72 0.82 0.76 

HL 10 12 164 4 0.77 0.86 0.81 

SL 2 1 9 184 0.90 0.94 0.92 

 

 

ADASYN 

NL 61 51 49 20 0.80 0.34 0.47 

ML 9 170 15 1 0.72 0.87 0.79 

HL 6 12 181 1 0.73 0.91 0.81 

SL 0 2 2 194 0.90 0.98 0.98 
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Figure 2-12. Overall accuracy, kappa coefficient and misclassification rate achieved using 

different balanced dataset and KNN classifier. 

  

Figure 2-13. The ROC curve using five balanced datasets and KNN classifier.   
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Figure 2-14. The Precision-Recall curve using five balanced datasets and KNN classifier.   

2.4.3.5 Classification performance using five pre-processed datasets of ANN classifier using five 

balancing methods 

Table 11 shows the lodging classification results using five balanced dataset and ANN classifier. 

As previous results, SMOTE-ENN showed the higher classification accuracy of 0.96 (Figure 15) 

with higher precision, recall and f1-score for ML, HL and SL except the class NL (Table 6). Very 

minimum misclassification rate of 7% was obtained using the SMOTE-ENN dataset, whereas 

other datasets resulted in 32%, 25%, 25% and 36% misclassification rate (Figure 15). Other results 

using SMOTE-Tomek Link, Borderline-SMOTE, SMOTE-NC and ADASYN dataset showed 

classification accuracy higher than 0.8 but SMOTE-ENN outperformed in every case. On the other 

hand, higher AUC and AP values was obtained from the SMOTE-ENN dataset for each class 

(Figure 16 and 17). 
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Table 2-11. Confusion matrix and model performance metrices of four lodging classes of soybean 

using ANN classifier. 

Pre-processed 
Dataset 

Actual 
samples 

NL ML HL SL Precision Recall F1-score 

 

 

SMOTE-
Tomek Link 

NL 105 58 24 5 0.55 0.87 0.67 

ML 14 162 8 4 0.86 0.72 0.78 

HL 2 6 193 1 0.95 0.86 0.90 

SL 0 0 0 181 1.00 0.95 0.97 

 

 

SMOTE-ENN 

NL 22 15 3 1 0.53 0.92 0.67 

ML 1 147 0 0 0.99 0.91 0.95 

HL 1 0 158 0 0.99 0.98 0.98 

SL 0 0 0 179 1.00 0.99 0.99 

 

 

Borderline-
SMOTE 

NL 133 56 21 0 0.63 0.90 0.74 

ML 7 171 2 0 0.95 0.74 0.83 

HL 6 3 191 0 0.95 0.89 0.92 

SL 1 1 0 180 0.98 1.00 0.99 

 

 

SMOTE-NC 

NL 166 27 15 2 0.79 0.82 0.81 

ML 21 149 10 0 0.83 0.81 0.82 

HL 14 8 177 1 0.88 0.87 0.88 

SL 0 0 0 182 1.00 0.98 0.99 

 

 

ADASYN 

NL 94 59 40 5 0.48 0.85 0.61 

ML 12 166 9 1 0.88 0.72 0.79 

HL 4 4 184 5 0.93 0.78 0.85 

SL 0 0 0 191 1.00 0.94 0.97 
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Figure 2-15. Overall accuracy, kappa coefficient and misclassification rate achieved using 

different balanced dataset and ANN classifier. 

 

Figure 2-16. The ROC curve using five balanced datasets and ANN classifier.   
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Figure 2-17. The Precision-Recall curve using five balanced datasets and ANN classifier.   

2.5 Discussion  

Lodging is one of the major factors of reduced crop yields (Wu et al., 2022).  Accurate 

classification of crop lodging is highly economical for decision-making regarding breeding 

purposes. Some researchers already used UAV RGB imagery to classify lodging of different crops 

with the increasing development of UAV technology. But in our knowledge, there is no research 

conducted to classify soybean lodging for breeding purposes. One of the reasons might be 

complexity of analysis using imbalanced dataset and focuses on mostly known phenotypic traits 

leads to put less focus on soybean lodging classification using UAV-based imagery. Though there 

was big challenge associated with the data pre-processing as the lodging classes were highly 

imbalanced, we came to a point to justify our results with other researcher’s findings. We used 

original dataset and five data balancing methods (SMOTE-Tomek Link, SMOTE-ENN, 

Borderline-SMOTE, SMOTE-NC and ADASYN) to balance the dataset and were analyzed each 
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of these balanced datasets using XGBOOST, RF, KNN and ANN classifiers. From the above-

described results, SMOTE-ENN performed the best among all balancing techniques for all the 

machine learning classifiers, achieving the highest overall accuracy, lowest misclassification rate 

and highest Kappa coefficient in all the cases. Based on the SMOTE-ENN dataset results of four 

classifiers, the comparison was described in this following section.  

RGB image features for maize lodging severity with the accuracy of 94.5% with the XGBoost 

classifier after using SMOTE-ENN pre-processing (Han et al., 2022). The researchers used be-

fore and after balancing the dataset method for maize lodging classification, where the non-lodging 

and lodging data distribution was 713 and 87 before balancing, respectively. After balancing using 

SMOTE-ENN method, the non-lodging and lodging dataset be-comes 546 and 671, respectively. 

Which reduces the non-lodging dataset and increases the lodging dataset for balancing the dataset 

[81]. Undersampling and SMOTE method was used for wheat yield estimation by (Chemchem et 

al., 2019), where the researcher finds out that the SMOTE data balancing method significantly 

increases training score and AUC ROC values using well known machine learning methods. 

Random forest classifier showed the training score and AUC ROC values of 99.40% and 0.72 

(without sampling), 99.78% and 0.73 (undersampling), and 99.92% and 0.90 (SMOTE sampling), 

respectively. Hyperspectral imagery data available from the public domain with 16 classes were 

classified using tree based ensembled classifiers by Datta (Datta et al., 2022), encompassing 

several data balancing methods, which resulted in SMOTE, Tomek-Links and their combinations 

higher accuracy and best resampling strategy.  

In our study we follow the same data balancing method SMOTE-ENN, where the number of NL 

dataset (Table 2) reduced and the number of ML, HL, SL increased, using the data balancing 

method. In result, our study of soybean lodging classification resulted in 94% accuracy with the 
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XGBoost classifier and SMOTE-ENN data balancing method. RGB image features was used for 

grass lodging severity and found the accuracy of 79.1% (Tan et al., 2021), whereas 86.61% 

accuracy was observed by (Sun et al., 2019) for maize lodging classification using maximum 

likelihood classification (MLC) algorithm. On the other hand, used random forest (RF) classifier 

was used for barley lodging mapping and found the overall accuracy of 99.7% using multispectral 

imagery (Vlachopoulos et al., 2021). In our study, we found overall accuracy of 93% on the testing 

dataset using RF classifier for soybean lodging classification. Other re-searcher’s results 

superiority using RF may be associated with its data feature extraction and number of training and 

testing balanced dataset. Furthermore, KNN yield classification accuracy of 91% for soybean 

lodging whereas nearest neighborhood classification and support vector machine (SVM) by 

(Chauhan et al., 2019; Rajapaksa et al., 2018) reported wheat lodging classification 90% and 

92.6%, respectively using multispectral imagery. Furthermore, Principal component analysis and 

ANN was used to differentiate the rice lodging with the overall accuracy of 97.8% using 

hyperspectral reflectance data (Liu et al., 2011), whereas our study reveals the overall accuracy of 

96% using RGB image derived textural features for soybean lodging. The higher accuracy obtained 

by [85] might be the reason for using hyperspectral imagery technique which can identify and 

quantify molecular absorption. Soybean lodging which can have effects on crop yield and quality 

can be minimized by accurately classifying soybean lodging. Breeders can identify and address 

the factors associated in lodging such as genetics, environmental conditions or other agronomic 

factors. On the other hand, soybean lodging classification based of deep learning algorithm can 

automatically extract intrinsic feature from the dataset using different supervised and unsupervised 

learning to classify the different extent of soybean lodging. The best advantage of RGB imagery 

technique, which includes low cost and beneficial for smallholders to detect crop lodging.  
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There is still a huge lack in soybean lodging detection research for breeding. Though there are 

other traits such as yield, plant height, days to maturity, leaf wilting are associated to select the 

best genotypes for breeding purpose, lodging is one of the crucial factors considered by the 

breeders which somehow not in mainstream research using UAV based imagery technology. One 

of the biggest limitations in soybean lodging detection is imbalanced dataset of different classes 

which creates the challenge for researchers in analyzing and obtaining good output. To address the 

emerging issue four balancing method was used to balance the class difference. Further, detailed 

classification exploring other super-vised deep learning methods along with the machine learning 

methods can be explored to obtain higher accuracy for soybean lodging detection. 

2.6 Conclusions 

In this study, the research was aimed to classify the soybean lodging extent using UAV RGB 

imagery technology for breeding purposes. The RGB image derived textural features and RGB 

image were tested to classify the different soybean lodging extent. The im-ages were pre-processed 

by adjusting the grids according to each plot shape, cropping and background removing to generate 

the texture features for machine learning models. The experimental results indicate that the 

developed classification models precisely distinguished high lodged and severe lodged soybean 

genotypes with different genotype background with higher precision and recall using every 

machine learning deep learning models. The classification performance of the machine learning 

models using RGB image derived texture features was 94%, 93%, 91% and 96% using SMOTE-

ENN XGBoost, SMOTE-ENN RF, SMOTE-ENN KNN and SMOTE-ENN ANN, respectively. In 

addition, image features and overall classification accuracies of different machine learning models 

shows the consistency and similar pattern in classifying four classes which can be more justified 

using different environments dataset of non-tested genotypes. Further research is highly 
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encouraged using multispectral imagery technology and different supervised deep learning 

methods to enhance the classification accuracies. But as a cost-effective choice for breeders and 

associated researchers UAV based RGB imagery system can be the solution for plant breeding 

program in identifying the superior genotypes by identifying the lodged genotypes.   
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CHAPTER THREE 

ASSESSMENT OF SOYBEAN PUBESCENCE COLOR USING UAV-BASED IMAGERY 

AND DEEP LEARNING METHODS 

3.1 Abstract 

Soybean pubescence color is an essential phenotype, the information required for cultivar 

registration and decision-making in the breeding program. In a conventional breeding program, 

pubescence color is classified by the breeders through visual observation and scoring, which is 

time-consuming, laborious, and subject to human error. Hence, the goal of the study was to use 

UAV-based imagery as a potential alternative in identifying the soybean pubescence color for an 

accurate and time-efficient breeding program. The UAV was equipped with an RGB sensor, and 

the imagery was collected from the breeding field in 2019. The field consists of a total of 1266 

breeding four-row plots. UAV images were stitched to build orthomosaic, and soybean plots were 

segmented using a grid method.  Three classes of pubescence color (gray, tawny, and segregation) 

were classified using UAV-based imagery and seven pre-trained deep learning models, namely, 

ResNet50, InceptionResNet-V2, Inception-V3, EfficientNet, DenseNet121, DenseNet169, and 

DenseNet201. The images were pre-processed, resized, and augmented for the input of the deep 

learning models, and the pre-trained deep learning models were fine-tuned for the expected output. 

The result depicts that the ResNet50 and DenseNet121 show higher overall accuracy of 88% with 

higher precision, recall, and F1-score for three classes. The results indicate that the UAV-based 

imagery can be used to correctly classify the soybean crucial phenotypes and justify the 

potentiality of UAV-based imagery and deep learning methods.  
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3.2 Introduction 

Soybean (Glycine max L.) is one of the most valuable crops worldwide, enabling its use in feed, 

oilseed crops, and as a nutritional source (Food and Agriculture Organization of the United 

Nations, 2012). At present, Argentina, Brazil, and the USA are the top soybean producer countries 

in the world at the global scale comprising 16, 32, and 33%, respectively (USDA NASS, 2017). 

The global projected soybean production was expected to reach 311.1 million metric tons in 2020, 

whereas it increased to 371.3 million metric tons by 2030. The growth rate of soybean production 

from 2020 to 2030 is 1.8%, 2.9% from 2005 to 2007, and 2.5% from 2007 to 2010 (Siamabele, 

2021). Increasing the soybean production to achieve the goal, advanced genotypes are a prime 

concern for soybean breeders with different phenotypes. Soybean pubescence color is one of the 

phenotypes that breeders look for and are used in cultivar registration and to determine cultivar 

purity (Bruce et al., 2021).   

Soybean pubescence colour is a trichome colour that all soybean plants grow “hair” on the stem 

and leaves, which is visually assessed. The trait is mainly scored in the maturity stage of the 

soybean by an experienced breeder for each soybean plot. Soybean pubescence color are mainly 

three types: tawny, light tawny (near-gray) and gray. Tawny and gray pubescence colors are 

visually distinguishable, while the light tawny colours are often misclassified due to the colour 

similarities with other colour classes. The soybean plant breeding program enables different types 

of phenotypic traits encompassing a large scale of field data to decide on cultivar advancement. 

Soybean pubescence colours are controlled by two genes T and Td (Palmer et al., 2004). The T 

gene plays a significant role and affects pubescence colour. Dominant T and recessive t alleles 

produce tawny and gray pubescence colours, respectively. On the other hand, T gene maintains the 

seed coat coloration and hypocotyl (Palmer and Payne, 1979; Palmer et al., 2004; Murai et al., 
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2016). Furthermore, Bernard (1975) investigated that a different gene Td affects pubescence color 

in the presence of the dominant T allele. Dominant and recessive alleles of the Td locus produce 

tawny and light tawny pubescence colour in the soybean (Bernard, 1975).   

In a conventional soybean breeding program, thousands of soybean rows from progeny trial (PT), 

preliminary yield trail (PYT) and advanced yield trail (AYT) with different traits and phenotypes 

are identified based on the visual observation by experienced breeders. The visual observation and 

scoring of the soybean pubescence colour are very laborious and subjective to human bias, which 

may affect the preciseness of breeding purposes (Jiménez et al., 2017). Therefore, there is an 

essentiality of improving and developing and efficient and effective tool to classify the soybean 

pubescence color using emerging technologies. With the improvement of remote sensing 

technologies in agriculture, several soybean traits and phenotypes are successfully assessed using 

unmanned aerial vehicles (UAV) and imaging systems along with different machine learning (ML) 

and deep learning (DL) methods. With the availability of a range of imaging platforms and 

increasing availability of analytical methods to use the data for plant and associated researchers 

were able to make more frequent and effective decisions for their research. Several research on 

quantifying crop growth traits such as plant height (Feng et al., 2019), canopy area (An et al., 

2016), leaf temperature (Sagan et al., 2019), yield estimation (Maimaitijinag et al., 2020), 

determining maturity stages (Zhou et al., 2019), and identifying plant stresses (Moghimi et al., 

2018; Zhou et al., 2020) have been done using UAV based imaging technology. Furthermore, 

image-derived features have been used by numerous researchers to quantify different crop 

responses such as biotic and abiotic stress (Tamimi et al., 2022), drought stress (Duan et al., 2018), 

salt stress (Zhou et al., 2018), and flooding stress (Cao et al., 2019). Furthermore, several research 

have been conducted to identify the lodging of different crops using UAV-based imagery, such as 



77 
 

rice (Tian et al., 2021), maize (Bagherzadi et al., 2017), oats (Zhang et al., 2014), and barley 

(Vlachopoulos et al., 2021).  

Conventional approaches to classify different crop traits or phenotypes using UAV-based imagery 

have relied on classical machine learning algorithms, which include support vector machine 

(SVM), random forest (RF), K-nearest neighbor (KNN), decision tree, K-means clustering, naive 

bayes and so on. These techniques are based on extracting image features using different image 

feature extraction methods, such as Local Binary Pattern (LBP), Histogram of Oriented Gradients 

(HOG), and Scale Invariant Feature Transform (SIFT). The problem with ML methods is time-

consuming and inefficient regarding complex data (Bouguettaya et al., 2022). Hence, the 

combination of UAV imagery and deep learning methods plays an important role in identifying 

crops and phenotypes. Numerous research is spotted on from last few years using UAV imagery 

and deep learning methods such as cotton and rice yield estimation (Ashapure et al., 2020; Yang 

et al., 2019), water stress monitoring (Gao et al., 2020), crop monitoring (Theau et al., 2020; Wu 

et al., 2021), pesticide and fertilizer spraying (Hasan et al., 2019), and wheat lodging (Zhang et al., 

2020). Though several research have been conducted using UAV imaging and deep learning 

methods, to our knowledge there is only one research is available only on soybean pubescence 

color using UAV-based multispectral imagery and ML methods to classify the pubescence color. 

Insufficient attention has been paid to classifying soybean pubescence colour using deep learning 

methods. The goal of this study was to investigate the potential use of UAV-based imagery in 

quantifying pubescence color of soybean breeding lines using UAV-based imagery and deep 

learning methods. The objective of this work was to use pre-trained deep-learning models to 

classify three classes of soybean pubescence colour and evaluate the results with performance 

matrices. 
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3.3 Materials and methods 

3.3.1 Field experiment  

A field experiment was conducted in 2019 at the Bay Farm Research Facility (38°54'08.3"N, 

92°12'29.8"W) in Columbia, Missouri, United States. The research field is described as humid 

subtropical climate region (Köppen climate classification code: Cfa) (Rubel et al., 2017). A total 

of 1773 soybean plots were planted on June 3, 2019, without replicates, in a four-row plots. Each 

row length was 3.6 m with a spacing of 0.8 m. The experiment was managed according to standard 

operation protocol by the farm management team. Soybean pubescence color in this experiment 

was evaluated and scored by the experienced plant breeders at the full maturity stage of R8. 

Pubescence color was rated with character letter as T for tawny, g for gray and S for segregating 

color. In this study there was no light tawny class, instead of there was a color class named as 

segregating which cannot be classified as tawny or gray or light tawny class. Hence, the class was 

named as segregating by the breeders. A total of 1773 plots were processed, and 1266 plots were 

used for the final images to be used for the deep learning models. Rest of the plots were filler and 

were discarded from the pre-processing and analysis. Pubescence color classes T, G, and S based 

on their scoring are shown in Figure 1.  
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Figure 3-1. Ground-based classification scale of filed plots of soybean pubescence color with 

three phenotypic classes which includes tawny (T), gray (G), and segregation (S). 

3.3.2 UAV Imagery data collection 

 The aerial images were collected at the maturity stage of R8 on 29th August 2019 us-ing an UAV 

platform (DJI Matrice 600 Pro, DJI, Shenzhen, China) equipped with a Sony A6300 (Sony 

Corporation, Tokyo, Japan) RGB (red-green-blue) camera. The digital camera was used to acquire 

images at 0.5 frames per second (fps) along with the resolution (number of pixels) of 6000×4000 

pixels at a flight height of 30 m above the ground level with an overlap of 80% for both sides of 

image. During the image acquisition, the camera configuration was set to shutter 1/1000 s, ISO 

100-200, F-stop auto and daylight mode. The Real-Time Kinematic (RTK) GNSS positioning 

system (Reach RS+, Emlid, St. Petersburg, Russia) was used to obtain the GNSS coordinates of 

the GCPs. To ensure sufficient satellite reception for each data collection, the base station was 

mounted on a tribrach that was fixed in an open area in the fields. The base position was obtained 

in the initial setting by accumulating its GNSS coordinates for 5 minutes, with an averaged single 

accuracy of ap-proximately 2.5 meters. The base station was placed in the same location over a 
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growing season during every flight. The rover receiver was placed vertically in the holes on a 

monopod after the GCPs were pulled out, and the GNSS coordinate of each GCP was recorded 

after accumulating for 10 seconds using a manufacturer-developed App. ReachView. The geo-

referencing information of each image was recorded in a separate .csv file. Images were stitched 

using Agisoft PhotoScan Pro (v1.3.4, St. Petersburg, Russia) for further processing. 

3.3.3 Image processing 

First, in the data processing step, an orthomosaic image was generated using Agisoft PhotoScan 

Pro (v1.3.4, St. Petersburg, Russia) from the acquired images on 1st September 2019. The 

procedures were described by (Zhou et al., 2018). Orthomosaic image was generated and exported 

as .tif images. The images were processed using the Image Processing Toolbox and Computer 

Vision System Toolbox (ver. 2021b, The MathWorks, Natick, MA, USA). Individual soybean plots 

were separated from each orthomosaic image by manually cropping a rectangle region of interest 

(ROI) around each plot. Size of each plot varied hence the size of ROI also varied to cover each 

soybean plot according to its width and length. The image size of each plot was resized with the 

size of 224 × 224 pixels as the requirement of every deep learning model by using the function 

“resize” from the package TensorFlow (ver. 2.8.0). Furthermore, the method of interpolation was 

set to be “nearest”, so each pixel value becomes rounded by following (Fengkai et al., 2023). The 

background of each image such as soil, shadow, and plant residue were not removed from the 

images as the soil color and the plant color was almost same which makes impossible to remove 

the background from the images.  
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3.3.4 Image augmentation 

In this study, image enhancement was done to increase the number of images for the input of pre-

trained deep learning models. As, original dataset consist of 1266 images of three classes which is 

very low number of images to for the deep learning models. We used image rotation (two rotation 

angels: 0◦ (i.e., the original image), and 90◦) and scaling (two scaling factors: 1.2, and 1.8) to 

enhance the soybean pubescence color image dataset collected from the breeding field. By using 

the image rotation and scaling factor techniques, we were able to obtain soybean pubescence color 

images with different resolution and angles. This image transformation added varying diversity to 

our dataset and reduces the chance of model overfitting issues due to the limited number of 

samples. In this study we used Python scikit-learn and Numpy libraries to extract, rotate and scale 

the soybean images.  

Table 3-1. Division of each soybean class images in training and testing set.  

Class Training Dataset Testing Dataset 

T 473 203 

G 410 177 

S 2 1 

Total 885 381 

Enhancement 3544 1520 

3.3.5 Deep learning methods for soybean pubescence color classification 

Seven pre-trained convolutional neural network (CNN) deep learning models were tested to 

classify the soybean cultivars into three pre-defined pubescence color classes (tawny, gray, and 

segregating). The Residual Network (ResNet) brings a novel concept to tackle complex tasks and 

improve the detection accuracy. Furthermore, ResNet minimize the problems such as saturation 

and degradation of training process of deep CNN (Mukti and Biswas, 2019). In this study, we used 
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ResNet50 architecture which have 50 layers of residual networks. ResNet50 has been used by 

several researchers as well to assess the soybean leaf defoliation, plant disease detection and corn 

emergence (Silva et al., 2019; Mukti and Biswas, 2019; and Vong et al., 2022).  

Inception-V3 network is a transfer learning algorithm, which has been implemented in this study 

for the classification of pubescence color. The neural networks are mostly dependent on the depth 

of the network by increasing the number of convolutional layers. But the inception architecture 

has changed the method and uses Inception Neural Network with different sizes of filters and 

different maximum pooling to reduce the dimension of the data which leads to obtain improved 

features and fewer computational parameters (Lambat et al., 2022). Furthermore, Inception-V3 

uses a batch normalization layer in between the classifier and the fully connected layers, following 

a batch gradient approach also used in the batch normalization to fasten the deep neural network 

training and model convergence process (Igried et al., 2023). The Inception-v3 network 

architecture has been used for the precise agricultural modeling (Igried et al., 2023), crop diseases 

classification and detection (Patel et al., 2022; Lambat et al., 2022). 

Inception-ResNet-V2 was also used in this study for the classification of soybean pubescence color 

which is composed of inception modules with different functions. The algorithm extracts the 

features more precisely from the input image by adopting a stronger connection structure in the 

inception module. The dense connection block in the architecture increases the rate of feature using 

and the network learn the data more intensively (Zhang et al., 2019). The depth wise convolution 

is being used and the number of feature maps also become halves to improve the calculation 

efficiency which reduced due the increasing number of dense blocks. InceptionResNet-v2 have 

been used by different researchers, such as for crop pest identification (Liu et al., 2022), plant lead 

disease classification (Naveenkumar et al., 2021), and weed recognition (Hasan et al., 2022).      
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EfficientNet was used in this study for the classification of soybean pubescence color. EfficientNet 

is one of the state-of-the-art models, achieves 84.4% accuracy with 66M parameters in the 

ImageNet classification problem. The algorithm uniformly scales down the depth, width, and 

resolution during the scaling down the model. Furthermore, the algorithm consists of total 8 

models in between B0 and B7. Though the model grows but the calculated parameters doesn’t 

increase much but increase the accuracy. Numerous researchers have used the model in the 

agricultural crops, such as plant leaf disease classification (Atila et al., 2021; Hanh et al., 2022), 

crop insect identification (Monis et al., 2022), and maize disease detection (Liu et al., 2020). 

Another deep convolutional architecture DenseNet which draws on the idea of ResNet and propose 

the explicit connection from all previous layers to all subsequent layers (He et al., 2016). In the 

DenseNet architecture, a transition layer is introduced between the adjacent dense blocks. 

Transition layer consists of 1×1 convolution and 2×2 average pooling layers. Pooling is used to 

adjust the size of the output feature map. 1×1 convolution is mainly used in the DenseNet to 

decrease the number of input feature maps which not only reduce the dimension amount but also 

consolidate the features of each channel (Zhang et al., 2019). For an example, in the DenseNet201, 

there is a dense block which have 48 convolution operations which includes 1×1 and 3×3 filters. 

In summary, the DenseNet architecture adequately decrease the computational complexity but 

maintains the flow of the information by effectively implying 1×1 convolutions before the 3×3 

convolutions in the dense block (Feng et al., 2022). In this study, DenseNet-121, DenseNet-169, 

and DenseNet-201 was used to classify the soybean pubescence color.  

For all the above mentioned pre-trained deep learning models, in the last layer Softmax was chosen 

as the activation function and categorical cross entropy was used as loss function. Adam optimizer 
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was used to improve the accuracy and reduce the testing loss while training, and the learning rate 

was 0.001.  

3.3.6 Experimental setup 

All models used in this study were runed with GPU support and all the experimental models were 

conducted in Jupyter Lab on a 64-bit Windows 11 Enterprise operating system running on Intel® 

Core™ i9-10900X CPU @ 3.70GHz and 128 GB RAM with NVIDIA GeForce RTX 3090 Ti 

having 64GB RAM. All codes were written in python with Keras and TensorFlow framework. The 

augmented dataset of soybean pubescence color was randomly divided into training and testing set 

by 80% and 20%, respectively. Table-1 represents the full dataset have been used in the study.  

3.3.7 Performance metrices 

The three classes of soybean pubescence color were assessed based on the number of samples that 

were correctly or falsely classified as either presence (True Positive, TP or False Positive, FP) or 

absence (True Negative, TN or False Negative, FN) using seven different pre-trained deep learning 

algorithms. A group of metrices were used for evaluation and they were calculated using equations 

1-4. The evaluation was based on several performance metrices, including precision, recall, F1-

score, and overall accuracy (OA). The precision indicates the proportion of correctly predicted 

presences, recall represents the ratio of correctly predicted positive samples, and F1-score is the 

harmonic mean of precision and recall the F1 score is measure of model accuracy as well that 

balances precision and recall which ranges from 0 to 1, with 1 being the best possible score, 

indicating perfect precision and recall. Kappa value represents the proportion of correctly predicted 

sites, and OA indicates the overall accuracy of the model.  

Accuracy =  
No. of samples classified correctly in a test set

Total No. of samples in a test set
 × 100% 

(1) 
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Precision =  
TP

TP + FP
 

(2) 

Recall =  
TP

TP + FN
 

(3) 

F1 score =  
2 ∗ (Precision ∗ Recall)

(Precision + Recall)
 

(4) 

3.4 Results 

3.4.1 Classification performance of pre-trained ResNet50 deep learning model 

Table 2 represents the results of seven pre-trained deep learning models for the classification of 

soybean pubescence color. The deep learning models were selected based on user friendly and 

most popular in recent times for the classification practices. The classification accuracy using pre-

trained deep learning model ResNet50 was 0.88 with the precision, recall, and F1-score higher 

than 0.86 for all classes. The misclassification rate of the model was 25% and the kappa value was 

0.75. Precision, recall, and F1-score was found 1.00 for segregation color as the segregation class 

correctly classified all four samples. Figure 2 shows the loss versus epochs and model accuracy 

versus epochs graphic for the ResNet50 model. The training step of 10 epochs and learning rate of 

0.0001 was set to obtain the accuracy level. The loss curve of training and testing dataset was not 

far from each other. On the other hand, figure 3 shows the receiver operating characteristic curve 

(ROC) and precision-recall (PR) curve of the model using ResNet50 classifier. Area under the 

curve (AUC) and average precision (AP) are commonly used metrices for evaluating the 

performance of classification models and indicates that the classifier performs better in classifying 

the soybean pubescence color with the value of 0.93, 0.93, and 1.00 for gray, tawny, and 

segregation class. Whereas 0.92, 0.92, and 1.00 AP values was obtained for three classes, 

respectively.     
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Table 3-2. Confusion matrix and model performance metrices of three pubescence classes of 

soybean using seven pre-trained deep learning model.  

Classifier 
Actual 

samples 
G T S Precision Recall 

F1-

score 
OA 

 

ResNet50 

G 605 103 0 0.87 0.85 0.86  

0.88 T 85 723 0 0.87 0.89 0.88 

S 0 0 4 1.00 1.00 1.00 

 

InceptionResNetV2 

G 642 66 0 0.83 0.90 0.87  

0.87 T 129 679 0 0.91 0.84 0.87 

S 0 0 4 1.00 1.00 1.00 

 

InceptionV3 

G 625 83 0 0.84 0.88 0.86  

0.86 T 120 688 0 0.89 0.85 0.87 

S 0 0 4 1.00 1.00 1.00 

 

EfficientNet 

G 527 181 0 0.91 0.74 0.82  

0.84 T 48 760 0 0.80 0.94 0.86 

S 0 0 4 1.00 1.00 1.00 

 

DenseNet169 

G 425 283 0 0.89 0.60 0.72  

0.78 T 49 759 0 0.72 0.93 0.82 

S 0 0 4 1.00  1.00 1.00 

 

DenseNet121 

G 586 122 0 0.89 0.82 0.86  

0.88 T 66 742 0 0.85 0.91 0.88 

S 0 0 4 1.00 1.00 1.00 

 

DenseNet201 

G 594 114 0 0.87 0.83 0.85  

0.86 T 87 721 0 0.86 0.89 0.87 

S 0 0 4 1.00 1.00 1.00 
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Figure 3-2. Accuracy and loss curves using training and testing datasets for ResNet50 model. (a) 

best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. 

 

Figure 3-3. The ROC and precision-recall curves using testing datasets for ResNet50 model. (a) 

true positive rate versus false positive rate versus, and (b) precision versus recall. 
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3.4.2 Classification performance of pre-trained InceptionResNet-V2 deep learning model 

Another pre-trained classifier InceptionResNet-V2 resulted in the overall accuracy of 0.87 along 

with the higher recall value of 0.90 for gray and lower recall of 0.84 for tawny color because the 

number of correctly classified sample was higher for gray and lower for tawny color, respectively. 

Higher precision, recall, and F1-score also obtained for segregation as there was no 

misclassification. The kappa value was 0.74 and the misclassification rate of the model was 26%. 

The training and testing loss and model accuracy curve (Figure 4) shows that the testing loss is far 

apart from the training loss and testing accuracy is very low than the training accuracy, which 

suggests that the model is overfitting. The training step of 12 epochs and learning rate of 0.0001 

was set to obtain the accuracy level.  The AUC and AP values from the ROC and PR curve (Figure 

5) shows that the values range from 0.95-1.00 for three classes.  

 

Figure 3-4. Accuracy and loss curves using training and testing datasets for InceptionResNet-V2 

model. (a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. 
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Figure 3-5. The ROC and precision-recall curves using testing datasets for InceptionResNet-V2 

model. (a) true positive rate versus false positive rate versus, and (b) precision versus recall. 

3.4.3 Classification performance of pre-trained Inception-V3 deep learning model 

Inception-V3 was also used to classify the three classes of soybean pubescence color which 

resulted in overall accuracy of 0.86, precision, recall, and F1-score was 0.84, 0.88, and 0.86 for 

gray class and 0.89, 085, 0.87 was for tawny class, respectively. The kappa value was 0.74 and the 

misclassification rate of the model was 27%. Figure 6 depicts the training and testing losses with 

training step of 100 epochs and learning rate of 0.0001. The AUC and AP values from ROC and 

PR curve (Figure 7) was 0.92, 092, 1.00 and 0.89, 090, 1.00 for gray, tawny, and segregation 

classes, respectively. 
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Figure 3-6. Accuracy and loss curves using training and testing datasets for Inception-V3 model. 

(a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. 

 

Figure 3-7. The ROC and precision-recall curves using testing datasets for Inception-V3 model. 

(a) true positive rate versus false positive rate versus, and (b) precision versus recall. 

3.4.4 Classification performance of pre-trained EfficientNet deep learning model 

EfficientNet resulted in lower recall of 0.74 for gray class as the classifier misclassified a 

significant number of samples but correctly classified the greatest number of tawny classes, which 
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resulted in higher recall of 0.94. The total misclassification rate of the model was 30% with the 

kappa value of 0.69. The overall classification accuracy of the model was 0.84 with a training set 

of 70 epochs and learning rate of 0.0001. Figure 8 shows the training and testing loss curve and 

model accuracy performance. The AUC and AP values were 0.94, 0.94, 1.00 and 0.92, 0.94, 1.00 

for gray, tawny, and segregation class of soybean pubescence color (Figure 9).   

 

Figure 3-8. Accuracy and loss curves using training and testing datasets for EfficeintNet model. 

(a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. 
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Figure 3-9. The ROC and precision-recall curves using testing datasets for EfficientNet model. 

(a) true positive rate versus false positive rate versus, and (b) precision versus recall. 

3.4.5 Classification performance of pre-trained DenseNet169 deep learning model 

DenseNet169 was tested to classify three classes of soybean pubescence color, which resulted poor 

overall classification accuracy of 0.78 among all the pre-trained deep learning models. Where gray 

class has the highest number of misclassifications which resulted in lower recall of 0.60. But the 

tawny class was classification rate was comparatively high which resulted in higher recall of 0.93. 

The model produces a total of 44% misclassification rate with a kappa value of 0.55. Figure 10 

depicts the training and testing losses with training step of 120 epochs and learning rate of 0.0001. 

The AUC and AP values from ROC and PR curve (Figure 11) was 0.90, 0.90, 1.00 and 0.88, 0.89, 

1.00 for gray, tawny, and segregation classes, respectively.  

 

Figure 3-10. Accuracy and loss curves using training and testing datasets for DenseNet169 

model. (a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. 



93 
 

 

Figure 3-11. The ROC and precision-recall curves using testing datasets for DenseNet169 

model. (a) true positive rate versus false positive rate versus, and (b) precision versus recall. 

3.4.6 Classification performance of pre-trained DenseNet121 deep learning model 

DenseNet121 was tested as well and which resulted in overall accuracy of 0.88 with comparatively 

better results in classifying both the gray and tawny class with precision and recall of 0.89, 0.82 

and 0.85, 0.91, respectively. The misclassification rate of the model was 25% with the kappa value 

of 0.75. The training and testing loss and accuracy curve is displayed in Figure 12. The accuracy 

was obtained with a training step of 80 epochs with the learning rate of 0.0001. Figure 13 indicates 

the AUC and AP values from the ROC and PR curve with the values of 0.93, 0.93, 1.00 and 0.88, 

0.93, 1.00 for gray, tawny, and segregation class, respectively. 
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Figure 3-12. Accuracy and loss curves using training and testing datasets for DenseNet121 

model. (a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. 

 

Figure 3-13. The ROC and precision-recall curves using testing datasets for DenseNet121 

model. (a) true positive rate versus false positive rate versus, and (b) precision versus recall. 

3.4.7 Classification performance of pre-trained DenseNet201 deep learning model 

The last classifier was tested using DenseNet201 algorithm which resulted in the overall accuracy 

of 0.86 with the precision, recall for gray and tawny classes are 0.87, 0.83 and 0.86, 0.89. The 
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misclassification rate of the model was 26% with a kappa value of 0.73. The accuracy was obtained 

with the training set of 70 epochs and learning rate of 0.0001. Figure 14 depicts the training and 

testing loss curve along with the accuracy curve. Which resulted in similar loss factor of 

DenseNet121 and ResNet50. Figure 14 shows the AUC and AP values from the ROC and PR curve 

for the three classes of soybean pubescence color with the values of 0.91, 0.91, 1.00 and 0.89, 0.91, 

1.00, respectively.  

 

Figure 3-14. Accuracy and loss curves using training and testing datasets for DenseNet201 

model. (a) best-fit model loss versus epochs, and (b) best-fit model accuracy versus epochs. 
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Figure 3-15. The ROC and precision-recall curves using testing datasets for DenseNet201 

model. (a) true positive rate versus false positive rate versus, and (b) precision versus recall. 

3.5 Comparison of deep learning model results and discussion 

Pubescence color is one of the phenotypes that breeders look after during the maturity stage of 

soybean. The potentiality of using UAV based imaging technology and related tools would be 

valuable to the soybean researchers to quickly discriminate the pubescence color. In our 

knowledge, there is only one research has been conducted on soybean pubescence color 

classification using UAV based imagery technology. Bruce et al., (2021) used support vector 

machine to classify the pubescence color and 83.1% accuracy was obtained to distinguish gray and 

tawny class. One of the reasons might be that pubescence color is not known as focused phenotype 

and complexity of analyzing imbalanced dataset. Soybean pubescence color mostly three types, 

i.e., gray, tawny, and light tawny but in this study, there was no light tawny class. Instead, light 

tawny there was segregation color which are mainly cannot be identified as mentioned types. The 

objective was to use pre-trained deep learning models for the classification of three classes namely, 

gray, tawny, and segregation. As of there is no pubescence color study using deep learning 
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methods, this section will compare the results of other researchers using same deep learning 

models for different crop classification. Figure 16 shows the overall accuracy was obtained with 

the training set of epochs was used and Figure 17 depicts the misclassification rate and kappa value 

for each deep learning models. From the above-described results, ResNet50 and DenseNet121 

performed the best among all other classifiers, achieving the higher overall accuracy, precision, 

recall, F1-score, kappa value and lowest misclassification rate. The overall accuracy of 88% was 

obtained from ResNet50 and DenseNet121 but the required epochs was 10 and 80 with the kappa 

value of 75 and 25% misclassification rate. Atila et al., (2021) used ResNet50 for the plant leaf 

disease classification and resulted in 99.88% average accuracy using the augmented dataset where 

the researcher had the big data of more than sixty thousand with 38 classes which resulted in higher 

classification accuracy. On the other hand, ResNet50 was used by Lu et al., (2022) along with 

other classifiers for the crop classification which resulted in 84.1% overall accuracy with the 0.848 

kappa value using RGB and NDVI satellite imagery. Nandhini and Ashokkumar (2022) used 

DenseNet121 to classify the plant leaf disease with 14 classes with the accuracy of 98.7%. Also, a 

big dataset of 54,000 images containing 38 classes with 26 diseases and 14 species of crops was 

used by Andrew et al., (2022) using DenseNet121 which resulted in a classification accuracy of 

99.81%. 

On the other hand, similar result of overall accuracy of 87% obtained from InceptionResNet-V2 

with 12 epochs with the kappa value of 74 and misclassification rate of 26%. But the training and 

testing loss curve and accuracy curve (Figure 4) shows that the model is overfitting by depicting 

the curves are far from each other. Furthermore, 86% overall accuracy was obtained from both the 

Inception-V3 and DenseNet201 with the training set of 110 and 70 epochs, respectively. The 

models also resulted in the kappa value of 74 and 73 with the misclassification rate of 27% and 
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26%, respectively. Hasan et al., (2023) used InceptionResNet-V2 and InceptionV3 fine-tuned 

model to classify different types of weeds with 20 classes in which 89.39% and 86.08% testing 

accuracy was obtained to classify DeepWeeds and 77.14% and 98.10% testing accuracy was 

obtained to classify the cotton tomato weed. On the other hand, cotton weed, and soybean weed 

was classified with a test accuracy of 99.33%, 99.59% and 98.42%, 99.71% using 

InceptionResNet50 and InceptionV3 classifier, respectively (Hasan et al., 2023). DenseNet201 

was used for tomato classification system with an overall accuracy of 96.16% and 100% by Lu et 

al., (2021). EfficeintNet produced the overall accuracy of 84% with the epochs of 70 and kappa 

value was 69 with the misclassification rate of 30%. DenseNet169 depicted very poor 

classification accuracy of 78% with the epochs 70 and the misclassification rate of the model was 

44%.  EfficientNet was used for corn leaf disease detection by Fathimathul et al., (2023) with an 

overall accuracy of 98.99%. An overall accuracy of 83.5% was obtained for corn leaf disease 

detection with augmented dataset by Wahyuningrum et al., (2021) using DenseNet169. 

 

Figure 3-16. The overall accuracy and number of epochs of different deep learning models. 
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Figure 3-17. The kappa value and misclassification rate of different deep learning models. 

3.6 Conclusion 

In this study, the research was aimed to classify the soybean pubescence color using UAV-based 

imagery and pre-trained deep learning methods for breeding purposes. The RGB image was used 

after few pre-processing steps which includes grid generation, adjusting the grids according to the 

size and shape of each plot and cropping the plots. The images were resized to 224×224 pixels for 

the input of the deep learning models and the models were fine tuned for the expected output. The 

classification performance was 88%, 87%, 86%, 84%, 78%, 88%, and 86% using ResNet50, 

InceptionResNet-V2, Inception-V3, EfficientNet, DenseNet169, DenseNet121, and DenseNet201, 

respectively. In comparison, ResNet50 and DenseNet121 comparatively showed better 

performance in classifying three classes of pubescence color along with other evaluation metrices. 

There is still limitation in research such as earlier stages of data can be used to classify the 

pubescence color with different environment of datasets and non-tested genotypes. Another 

problem is the imbalance dataset can be considered in the future research to address the balancing 

treatments for the improved results with increasing number of samples. Furthermore, revised 
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research is encouraged using color based limited augmentation in the RGB imagery and separately 

using multispectral imagery with improved and deep learning algorithms. But as a cost-effective 

tool for the breeders and associated researchers UAV-based RGB imagery technology can be used 

in identifying the genotypes by reducing the human labor and time.    
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CHAPTER FOUR 

CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

With the advancement of the UAV technique, it is becoming easier, more efficient, and user-

friendly to screen high-throughput phenotypic data. In this study, a HTP based UAV equipped with 

a digital camera was used to develop an image-based crop trait quantification for soybean breeding 

program. A digital camera was equipped with a UAV to obtain high-resolution images, along with 

the GNSS units to provide accurate geo-referencing to stitch the images and processing. Soybean 

crucial morphological (lodging and pubescence colour) traits were classified from UAV-based 

RGB-derived image features and images directly. The goal was to exploit the potentiality of using 

UAV-acquired phenotypic information on evaluating these morphological traits for soybean 

breeding program.  

For soybean lodging classification, RGB image-derived texture features were used after a few pre-

processing steps. A total of fourteen texture features were derived. Random forest-recursive feature 

elimination method was used to eliminate the least important image features, and finally, 12 

features were obtained for the analysis. One of the biggest challenges was to analyze the 

imbalanced dataset of soybean lodging classes. There were four classes of soybean lodging, 

namely, non-lodging, medium lodging, high lodging, and severe lodging.  The original dataset was 

highly imbalanced, where the non-lodging class was 76%, medium lodging was 16%, high lodging 

was 6%, and severe lodging was 0.08% of the total dataset. To overcome the imbalance problem, 

five different (SMOTE-Tomek Links, SMOTE-ENN, Borderline-SMOTE, SMOTE-NC, and 

ADASYN) balancing methods were used to treat and balance the dataset. The SMOTE-ENN 

method proved to be the best balancing method for soybean lodging dataset as we achieved best 
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results from different machine learning (XGBoost, RF, KNN, and ANN) methods. The 

classification performance of the machine learning models using RGB image-derived texture 

features was 94%, 93%, 91% and 96% using SMOTE-ENN XGBoost, SMOTE-ENN RF, 

SMOTE-ENN KNN and SMOTE-ENN ANN, respectively. In addition, image features and overall 

classification accuracies of different machine learning models show consistency and a similar 

pattern in classifying four classes which can be more justified using different environments 

datasets of non-tested genotypes. The proposed method showed a new technique to deal with the 

highly imbalanced dataset and to classify a crucial soybean phenotype for the breeding program. 

In which the breeders would benefit identifying the lodged and non-lodged genotypes within a 

short period of time and with higher efficiency.  

Seven pre-trained deep learning models were used for the classification of soybean pubescence 

colour, which is identified as a secondary trait by the breeders and mainly used for registering the 

genotypes and making decisions on the genotype advancement. From an orthomosaic image, each 

plot of the breeding field was cropped, which involves grid generation and manual adjustment of 

grids according to the size and shape of the plot. Then the images were resized to 224×224 pixels 

for the input of the pre-trained DL models. There were three pubescence color classes and a total 

of 1266 images (plots) were obtained; hence the four-image augmentation method was applied to 

enhance the number of images and to prevent the overfitting of the models. Among seven pre-

trained models, ResNet50 and DenseNet121 showed a higher overall accuracy of 88% in 

classifying three soybean pubescence colour classes. Whereas other methods also showed a similar 

trend in classification and results, which could be more justified by using several days of datasets 

and by using different environments datasets. Therefore, the method could help the breeders in 
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selecting and identifying different colour classes of soybean pubescence, which will improve the 

soybean breeding efficiency by advancing the genotype selection intensity and accuracy.   

4.2 Future work 

There is still a huge lack of soybean lodging and pubescence colour detection research for breeding 

programs. Though there are other traits such as yield, plant height, days to maturity, and leaf 

wilting are associated with genotype selection for breeding purposes, lodging and pubescence 

colour are crucial factors considered by the breeders which somehow not in mainstream research 

using UAV-based imagery and advanced ML technology. One of the biggest limitations was an 

imbalanced dataset of different classes, which created a challenge for researchers in analyzing and 

obtaining good output. Further, detailed classification using different environments and different 

stages of datasets exploring other advanced machine learning methods can be explored to obtain 

higher accuracy for these trait detections and identification. 
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