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THREE ESSAYS ON RENEWABLE PORTFOLIO STANDARDS 

 

Seokho Lee 

Dr. Harvey James, Jr., and Dr. Julian Binfield, Dissertation Supervisors 

ABSTRACT 

 

The first essay investigates the technical efficiencies of South Korean solar 

photovoltaic (PV) power plants by type: ground-mounted PV (GPV) and rooftop PV 

(BPV). The two-step stochastic frontier analysis (SFA) of the true-random effects model 

is used to capture heterogeneity. In the results, the first-order input parameters are 

positive and significant, satisfying the monotonicity condition for valid production 

functions, except for the daily sunshine hours. The average technical efficiency (TE) 

scores for BPV and GPV are 0.995 and 0.991, respectively, it can be concluded that there 

is no evidence that many plants of these types are significantly lagging behind the most 

efficient producers of the type. The estimates of mean technology gap ratio (TGR) values 

are very close to 1, and the meta-technology efficiency (MTE) scores are 0.991 for the 

BPV and 0.985 for the GPV. There is a small difference in TEs, TGRs, and input use. 

The second essay examines how the Renewable Portfolio Standards (RPS) policy 

influences the decision-making process of manufacturers regarding the choice between 

staying in their current country or relocating to a foreign country in response to initiatives 

such as RE100. Three-stage game is considered in which three player groups participate: 

the social net benefit maximizing government sets the RPS target in the first stage, the 

profit maximizing RPS obligors (utilities) makes decisions regarding the amount of 
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renewable electricity they will provide in the second stage, and the profit maximizing 

firms supplying RE100 companies determine to remain in their current country or 

relocate to another country offering cheaper renewable electricity in the third stage. The 

findings indicate that a rational government will choose a target share that maintains 

employment as long as it brings a non-negative net benefit. Moreover, there exists a 

range where between domestic and foreign renewable energy prices to determine 

domestic production, even when domestic prices are higher. By increasing the price of 

non-renewable electricity, it is possible to subsidize renewable electricity depending on 

cost transparency. The exogenous variables determine the subgame perfect equilibrium.  

The third essay investigates the impact of RPS policies on total primary crop 

acreage in the United States. Our empirical framework is based on the premise that 

acreage is influenced by climatic factors, farmers’ crop management practices, and land 

allocation decisions, while considering input and expected production prices. We extend 

the framework to incorporate the influence of renewable electricity policy (RPS) and 

other agricultural policy (CRP). The coefficients of the composite price index are 

positively related to acreage, while the coefficients of the fertilizer price index exhibit a 

negative relationship. The estimated output price elasticities range from 0.297 to 0.329, 

and the elasticities from the models considering electricity market characteristics show 

similar magnitudes, approximately 0.30. The RPS electricity supply target is found to 

significantly reduce acreage, although the actual magnitude of reduction is relatively 

modest, estimated at around 24 to 26 acres per 1000 MWh. Crop acreage changes by 

target level of renewable electricity is similar to STRATA’s data, however it can be seen 

as overestimated based on the National Renewable Energy Laboratory (NREL)’s data. 
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TECHNICAL EFFICIENCY AND TECHNOLOGICAL GAPS 

BETWEEN ROOFTOP AND GROUND-MOUNTED SOLAR 

PHOTOVOLATAIC PLANTS IN SOUTH KOREA 

 

1. Introduction 

In many countries there are significant concerns about the emission of greenhouse 

gases and microparticles associated with traditional fossil fuel generation, especially 

coal-fired power generation. To mitigate climate change and to secure sustainable energy, 

the renewable energy such as solar power and wind power, has been emerging as an 

alternative to address climate problems and energy demands. Various policies have been 

implemented to promote the deployment of renewable energy, such as feed-in-tariffs 

(FIT), feed-in premiums (FIP), and supply targets as well as mandated supply. According 

to REN21’s report of 2021, the most used policies are supply targets, with 33 countries 

including Australia, Greece, South Korea, the United Kingdom, and the United States 

having implemented Renewable Portfolio Standards (RPS) nationally or sub-nationally.1  

An RPS typically increases the proportion of renewable electricity supplied by 

imposing mandatory obligations. This policy requires electricity suppliers to obtain a 

certain percentage of their electricity from renewable sources to meet RPS obligations. 

Compliance can be proved by Renewable Energy Certificates (RECs) which can be 

acquired by generation of renewable electricity or purchasing RECs in the market. RECs 

are issued when renewable energy electricity is produced at a certain level adjusted where 

required based on production method.  

 
1 Renewables 2021 Global Status Report 
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In the RPS system, renewable electricity producers sell their electricity and RECs 

in electricity markets and REC markets, respectively. It is a more market-oriented policy 

than the Feed-in Systems (FIT and FIP) with the tariffs or premium reflecting the 

additional cost of renewable energy production. In the electricity market, the renewable 

electricity producers compete as electricity producers with coal-fired plant companies or 

nuclear power plant companies to sell their electricity. In the REC market, they can sell 

RECs to obligors who must demonstrate compliance with their RPS obligations. 

Therefore, the renewable electricity producers can achieve their revenue from RECs sales 

to offset the costs associated with renewable energy supplies. 

Prior to 2000 in South Korea, a lack of economic feasibility for renewable energy 

compared to traditional energy sources, especially nuclear power, hampered the 

development of the industry. To address this challenge and to encourage the production 

of renewable electricity, South Korea adapted FIT in early 2000s. Implementing FIT 

presented several challenges, in particular the determination of the proper level of tariffs, 

and the government budget sources on the tariffs.2   

In 2012, the South Korean government adapted the RPS system instead of FIT to 

overcome the problems of FIT. To foster competitive and balanced renewable electricity 

market among the different technologies, differentiated RECs are assigned to different 

technologies. In the case of solar photovoltaic power (PV), the differentiated RECs are 

assigned by installed capacity and type of installation. As of 2022, installed solar PV 

 
2 Many countries that implemented FIT use tariffs that directly reflect the difference in electricity rates, but 

in South Korea, the difference was subsidized by the Electric Power Industry Basis Fund. The fund not 

only supports the deployment of renewable energy, but also supports power demand management projects, 

power source development promotion projects, and power support projects for residents of islands and 

remote areas. However, due to tariffs that caused excessive windfalls, there was a boom in construction of 

renewable energy power plants, and budget problems for funds to be used for other projects emerged (Lee 

and Cho, 2017). 
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capacity accounts for 15% of total capacity, with capacity increasing to 19 times that of 

10 years ago.     

As we stated above, RECs are issued based on the capacity and types of 

installation, and PVs installed on the rooftop are guaranteed higher REC weights than 

PVs installed on the ground. One reason for this is that South Korea has a small land area 

compared to its population, so the installation of PV on existing structures is favored. The 

purpose of this paper is to study the technical efficiency and technological gaps of 

rooftop and ground-mounted solar PV plants in South Korea using a stochastic meta-

frontier model. For this topic, the research questions follow: Is there a difference in 

technical efficiency between rooftop PV and ground-mounted PV after the 

implementation of RPS in South Korea? How do these types of power plants differ from 

meta-technology, and what factors affect their technology efficiency? 

The remainder of this paper is organized as follows: Section 2 review previous 

literature related to methodologies and renewable energy, especially solar PV. In Section 

3 the theoretical model and outline of the empirical model is explained, and the empirical 

model is described in Section 4. Section 5 provides an overview of PV plant structures in 

South Korea under the RPS policy, highlighting typical differences. In Section 6, the 

dataset and variables used in the production function will be described. The empirical 

estimations and results are presented in Section 7, and conclusions will be followed in 

Section 8. 
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2. Literature review 

Farrell (1957) introduced the concept of (Farrell) technical efficiency (TE) to 

measure productivity efficiency. It is a measure of how well an entity utilizes its inputs to 

produce output compared to the best-performing entity in the observed dataset. The 

concept of technical efficiency had been developed by Charnes, Cooper, and Rhodes 

(1978) who introduced data envelopment analysis (DEA), a non-parametric mathematical 

technique. From DEA, the relative efficiency of multiple entities or decision-making 

units (DMUs) is evaluated. 

Aigner et al. (1977) and Meeusen and van den Broeck (1977) introduced 

stochastic frontier analysis (SFA). In SFA, both the observed output and the unobserved 

random factors are considered in the production function of a firm or entity to capture 

inefficiencies which allow deviations from the maximum attainable output. SFA enables 

the identification of inefficiencies, the evaluation of performance relative to the 

production frontier, and the determination of factors that contribute to inefficiency. Also, 

Greene introduced true-fix and true-random effect models to capture heterogeneity for 

different groups (Greene 2005a, 2005b) with SFA.  

The concept of the meta-production function is advocated by Hayami (1969), 

Hayami and Ruttan (1970, 1971). It was applied to SFA by researchers such as Battese 

and Rao (2002), Battese et al. (2004), and O’Donnell et al. (2008), and developed to 

meta-frontier analysis. It can break down the causes of inefficiency into operational 

inefficiency and uncontrollable production environment factors (Honma and Hu, 2018). 

Meta-frontier analysis allows the heterogeneity by estimating separate each group 

frontier, representing a unique production possibility for each group. Then, these frontiers 
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are compared to a meta-frontier, which represents the optimal achievable frontier across 

all groups, given the available technologies and resources.  

Huang et al. (2014) introduced a two-step stochastic frontier approach for 

estimating TE scores in firms belonging to different groups that adopt different 

technologies. The difference between the work of Battese et al. (2004) and O’Donnell et 

al. (2008) is that they formulate and apply a stochastic frontier analysis model to estimate 

the meta-frontier in the second step instead of linear programming. Alem et al. (2018) 

developed Huang et al.’s method by applying the model devised by Greene (2005a, 

2005b). 

Sueyoshi and Goto (2014) conducted a comparative analysis of the technical 

efficiency of PV power plants in Germany and the US. They used cross-sectional data 

and applied the DEA method with a radial model. The inputs considered were insolation, 

average annual sunshine, photovoltaic modules, and land area, while the outputs included 

installed capacity and annual power generation. The study found that PV power plants in 

Germany operated more efficiently than those in the US, which was attributed to the FIT 

policy. 

Cucchiella and Gastaldi (2013) assessed the efficiency of photovoltaic technology 

in Italy using cross-sectional data. They employed Data DEA under both constant return 

to scale (CRS) and variable return to scale (VRS) assumptions. The inputs included 

renewable power plant capacity, solar irradiation, investment cost, and management cost, 

while the outputs consisted of avoided CO2 emissions and energy intensity. The study 

identified the most and least efficient regions and provided a detailed analysis of the 

results. 



 

 6 

Jung (2011) presented an efficiency evaluation method for FIT in the private solar 

power plant sector in Jeonnam Province, South Korea. The study used cross-sectional 

data and applied an output-oriented DEA under both CRS and VRS assumptions. The 

inputs considered were total project cost, construction unit price, plant area, personnel, 

and installed capacity, while the output was annual power generation. The study revealed 

that 59% of the examined PV plants had an efficiency below 0.050. 

You, Fang, Wang, and Fang (2018) compared the environmental efficiency of 118 

PV plants in China using cross-sectional data. They employed an output-oriented DEA 

under VRS assumption. The inputs considered were insolation, annual sunshine duration, 

and covering area, while the outputs included installed capacity, annual electricity 

generation, CO2 emission reduction, and coal saving. The study revealed a wide range of 

inefficiencies among the PV plants, with variations in performance across different 

economic zones. Rooftop PV plants were found to have the highest efficiencies among 

the four types of PV plants due to minimal power loss. 

 

Table 1 Literature reviews on the renewable energy and solar PV plants 

Study Objective Location Model Inputs Outputs 

Sueyoshi and 

Goto (2014) 

Technical 

efficiency of PV 

power plants in 

Germany and the 

U.S. 

Germany / 

The U.S. 

Input- and 

Output-

oriented DEA 

under VRS for 

alternative 

1. Insolation 

(kWh/m2/day) 

2. Average annual 

sunshine (hours) 

3. Photovoltaic modules 

(# of modules) 

4. Land area (m2) 

1. Installed capacity 

(MWp) 

2. Annual power 

generation (GWh) 

Cucchiella and 

Gastaldi 

(2013) 

Efficiency of 

photovoltaic 

technology 

Italy DEA under 

CRS and VRS 

1. Renewable power 

plant capacity (MWh) 

2. Solar irradiation 

(kWh/m2) 

3. Investment cost 

(€/MWh) 

4. Management cost 

(€/MWh) 

1. Avoided CO2 

emission (CO2/MWh) 

2. Energy intensity 

(tep/M€) 
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Jung (2011) Efficiency of 

private solar power 

plants 

Jeonnam 

Province, 

South Korea 

Output-

oriented DEA 

under CRS 

and VRS 

1. Total project cost 

(KRW) 

2. Construction unit 

price (KRW) 

3. Plant area (m2) 

4. Personnel (person) 

5. Installed capacity 

(kW) 

Annual power 

generation (kWh) 

You et al. 

(2018) 

Environmental 

efficiency of PV 

plants 

China Output-

oriented DEA 

under VRS 

1. Insolation (MJ/m2) 

2. Annual sunshine 

duration (hours) 

3. Covering area (m2) 

1. Installed capacity (W) 

2. Annual electricity 

generation (kWh) 

3. CO2 emission 

reduction (t) 

4. Coal saving (t) 

This study Technical 

efficiency and 

technological gap 

South Korea Output-

oriented 

Stochastic 

meta-frontier 

1. Insolation 

(kWh/m2/day) 

2. Average annual 

sunshine (hours) 

3. Photovoltaic modules 

(# of modules) 

4. Land area (m2) 

1. Annual power 

generation (GWh) 

Source: Author’s summarization 

 

3. Theoretical model 

The previous studies used DEA that assumes the strict disposability, which implies 

that the DMU can control all inputs or outputs. In the analysis to examine TE of solar PV 

plants with yearly data, DEA does not satisfy the strict disposability because some or all 

inputs cannot be controlled by DMU. When the PV plant is installed, it is reasonable to 

assume that the land area and capacity (or number of modules) are fixed. Moreover, there 

are several advantages to use SFA: firstly, the parameters are estimated by maximum 

likelihood method, the usual statistical inferences can be conducted rather than 

simulations or bootstrapping. Secondly, the stochastic meta-frontier analysis can estimate 

the technology gaps by treating them as a conventional one-sided error term (Huang et 

al., 2014).  
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The approach of Alem et al. (2018) is followed which used the two-step SFA of 

Huang et al. (2014) and adapted the true-random effects model of Greene’s (2005b) to 

capture heterogeneity. 

 A single output general stochastic production frontier model is given by: 

 (1) 

where  is the output scalar produced by plant i at time,  is a input vector for the plant 

i at time t, ,  is the stochastic noise error term of plant i at time t, and  is the technical 

inefficiency of plant i at time t, where i = 1, 2, …, N and t = 1, 2, …, T.   is a unknown 

parameter vector to be estimated by SFA. 

Both  and  are assumed to be independently and identically distributed (iid) with 

variances  and , respectively. This model assumes that all plants use the same 

production function in the same environment.  

 Since it is assumed that there are differences in generation between two (k) types 

of PV plants, we can estimate group stochastic frontiers for each type as follows: 

 (2) 

where  denotes the output,  is the input vector,  is the stochastic error term, and  

is the technical inefficiency for plant i of the kth type at time t.  is a unknown parameter 

vector for the kth type.   and  are assumed to be iid and follow normal distribution 

and half normal distribution, respectively (  and   ), 

where  is environment determinants for inefficiency or production. Parameters are 

estimated using the ‘true’ random-effect model of Greene (2005b) to account for the 

plant effect (unobserved heterogeneity) within the type.  
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The TE of the ith plant relative to the type k frontier can be calculated, as: 

 

(3) 

where  is a technical efficiency of the individual plant i relative to the kth group 

frontier. For the estimation of the stochastic meta-frontier function, we follow the 

approach of Huang et al. (2014). In step 2, we specify the follow SFA: 

 (4) 

where the  are the predictions from the group frontier from step 1 in (2). It 

means a vector for the entire sample consists of individual vectors of a group frontier 

predictions. Like the models above,  is the error term, and  is the technical 

inefficiency. They are assumed to be iid, and distributed as , and 

, respectively. Also,  is a vector of unknown parameters to be 

estimated for the meta-frontier. 

 At a given input level , the observed output  of the ith plant relative to the 

meta-frontier consists of three components, ,  

where  is technological gap ratio, 

 is the plant’s technical efficiency, and 

 is the random noise component. 

 Then, the two-step approach to estimate the meta-frontier consists of two SFA 

regressions: 

https://www.codecogs.com/eqnedit.php?latex=u_%7Bit%7D%5E%7BM%7D%20%5Csim%20N%5E%7B%2B%7D%5Cleft(0%2C%5Csigma_%7BuM%7D%5E%7B2%7D%5Cright)#0
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 (5) 

 (6) 

where  is the estimate of the type-specific frontier Equation (5). Since the 

estimates  are type specific, regression (5) estimated K times, one for each 

region (k = 1, 2). These output estimates from two regions are then pooled to estimate (6).  

 

 

Figure 1 Meta-frontier production model 

Source: Adapted from Huang et al. (2014), p.243 

 

 Since the meta-frontier should be larger than or equal to the group-specific 

frontier, the estimated Technological gap ratio must be less than or equal to unity: 

 
(7) 

where  are the estimated composite residuals of (6). 

The technology gap ratio (TGR) is the expected value of  given the estimated 

https://www.codecogs.com/eqnedit.php?latex=%5Cln%20y_%7Bit%7D%5E%7Bk%7D%3Df%5E%7Bk%7D%5Cleft(x_%7Bit%7D%5E%7Bk%7D%2C%5Cbeta%5E%7Bk%7D%5Cright)%2Bv_%7Bit%7D%5E%7Bk%7D-u_%7Bit%7D%5E%7Bk%7D%2C%5Cquad%20i%3D1%2C2%2C%5Cdots%2CN_%7Bk%7D%3Bt%3D1%2C2%2C%5Cdots%2CT#0
https://www.codecogs.com/eqnedit.php?latex=%5Cln%20%5Chat%7Bf%7D%5E%7Bk%7D%5Cleft(x_%7Bit%7D%5E%7Bk%7D%2C%5Cbeta%5E%7Bk%7D%5Cright)%3Df%5E%7BM%7D(x_%7Bit%7D%5E%7Bk%7D%2C%5Cbeta)%2Bv_%7Bit%7D%5E%7BM%7D-u_%7Bit%7D%5E%7BM%7D%2C%5Cquad%20%5Cforall%20i%2C%5C%2Ct%20%5Cquad%20k%3D1%2C2#0
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composite residuals. The multiplication of estimated of the TGR in Equation (7) and the 

individual plant’s estimated TE in equation (3) indicates the TE of the ith plant to the 

meta-frontier, that is, . 

 

4. Empirical model 

 The second-order flexible translog (TL) function was estimated. The type k 

frontier (5) is specified as: 

 

  

(8) 

where   is a vector of outputs,  is a vector of inputs  by plants 

 over time , and all the , and  are parameters to be 

estimated. The error term  allows random measurement error, and it is symmetrical and 

is assumed to follow the assumptions,  and .  is specified as 

, and  is a plant-specific component for capturing time-invariant 

unobserved heterogeneity, which is assumed to have an iid normal distribution. The trend 

variable, t, is introduced to capture the effect of technological change. The same 

estimation model is used to estimate (6), but the dependent variable in (8) is replaced by 

. 

 All data for the TL model are described as deviations from their sample means, 

which allow us to interpret the first-order parameters directly as partial production 

elasticities at the geometric means (Coelli et al. 2005). We set the trend variable as zero 

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%20s#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta%5E%7Bk%7D#0
https://www.codecogs.com/eqnedit.php?latex=u_%7Bit%7D%5E%7Bk%7D%20%5Csim%20N%5E%7B%2B%7D(0%2C%5Csigma_%7Buk%7D%5E%7B2%7D(z_%7Bit%7D%5E%7Bk%7D))#0
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in the year 2013 and normalize all other variables by dividing each variable by its mean 

value before calculating logarithms.  

 

5. Korea RPS and Solar PV plants 

 To understand South Korea’s RPS system, it is good to know the particular 

features of the electricity market in South Korea. In liberalized electricity markets like the 

United States and the United Kingdom, RPS obligations are imposed on the utilities 

because they will try to source the lowest cost renewable electricity when purchasing 

power from the various power generators. Renewable electricity producers can either sell 

electricity and RECs to utilities or sell electricity to power consumers and RECs on the 

REC market. 

However, in South Korea, Korea Electric Power Corporation (KEPCO) is a 

legally guaranteed monopolistic electricity supplier in the retail market and is responsible 

for both transmission and distribution. As it is a monopolist in retail market, it acts as a 

monopsonist in the wholesale electricity market. Systematically, there is the possibility of 

an unfair wholesale market when KEPCO buys RECs if it is assigned as the only obligor. 

Because of this problem, the South Korean government assigned RPS obligations to 

power generation companies with installed capacity of 500 MW or more. This is a unique 

feature of South Korean RPS. 

Another feature is that most of RPS obligations are allocated to the subsidiaries of 

KEPCO that were a part of KEPCO, when it was in charge of the power generation in the 

past. Other than those entities, some private power companies are assigned as RPS 

obligors as well. With the exception of private power companies that can adjust 
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manpower and financial resources according to business needs, most of the RPS obligors 

have the possibility that their business may be constrained in various forms. Since these 

are public corporations, their management is evaluated by the government every year and 

are constrained by various restrictions on their budget and manpower management. 

Therefore, it is not easy for companies to allocate the desired amount of manpower to the 

new renewable energy projects based on their own judgment. It may be difficult to 

construct and operate small projects by themselves unless those projects are themselves 

part of large-scale projects. 

Korea’s RPS is a system that mandates power companies to obtain a specified 

percentage of their total electricity generation from renewable sources. It was introduced 

in 2012 to substitute FIT, and the legislation set an annual target ratio as 10% renewable 

electricity in the electricity supply in 2022. RPS obligors are expanded from 12 in 2012 

to 23 in 2021. The lower enforcement decree specified the obligation ratio for each year. 

During that time the decree underwent five revisions, and the recent obligation ratio in 

2030 was extended to 25%. The latest decree shows that targets have fallen (Table 2). 

 

Table 2 RPS obligation revisions and target ratio  

 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Enact 2 2.5 3 3.5 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 

1st 

3.30.15 
2 2.2 3 3 3.5 4 4.5 5 6 7 8 9 10 10 10 10 10 10 10 

2nd 

12.5.16 
2 2.2 3 3 3.5 4 5 6 7 8 9 10 10 10 10 10 10 10 10 

3rd 

9.29.20 
2 2.2 3 3 3.5 4 5 6 7 9 10 10 10 10 10 10 10 10 10 

4th 
1.4.22 

2 2.2 3 3 3.5 4 5 6 7 9 12.5 14.5 17 20.5 25 25 25 25 25 

5th 

4.11.23 
2 2.2 3 3 3.5 4 5 6 7 9 12.5 13 13.5 14 15 17 19 22.5 25 

Source: Korean Law Information Center, Ministry of Government Legislation 
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As we stated before, the RPS brings revenue to renewable electricity producers in 

two main ways - revenue from electricity sales and revenue from RECs sales. Since both 

electricity and RECs are traded in their respective markets, the RPS is market-oriented 

policy. One of the reasons why the government uses a market mechanism is that RPS also 

induces competition among renewable energy sources. If the government were to weight 

RECs equally, competition would be on the basis of cost regardless of renewable energy 

sources. However, the South Korean government imposes differentiated RECs weights 

not only to compete between renewable energy sources but also to promote a specific 

source which is not secured economic feasibility now but its development is needed to 

meet some policy goals.3 

 

Table 3 REC weights of solar PV 

Location Installed Capacity Previous Current (July, 2021) 

General land (GPV) < 100 kW  1.2 1.2 

100 kW – 3000 kW 1.0 1.0 

> 3000 kW 0.7 0.8 

Rooftop or installation on other 

facilities (BPV) 

< 100 kW  1.5 1.5 

100 kW – 3000 kW 1.5 1.5 

> 3000 kW 1.5 1.5 

Floating PV  < 100 kW  1.5 1.6 

100 kW – 3000 kW 1.5 1.4 

> 3000 kW 1.5 1.2 

Forest any 0.7 0.5 

Self consumption any 1.0 1.0 

Source: MOTIE press/announcement 

 

In South Korea, the total mandatory supply is determined by the RPS mandatory 

supply ratio set year by year, and the technology preference is determined by the REC 

weights. Table 3 shows that the differentiated REC weights of solar PV by size and 

 
3 South Korean government allowed temporarily to ESS-linked solar PV to promote the development of the battery 

industry. 
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installation locations. The actual RECs are issued per 1 MWh by multiplying the weight 

assigned to each type. Installed capacity is classified into less than 100kW, 100~3000kW, 

and more than 3000kW, and the installation site is divided into general land, forest, 

facilities such as buildings, and water. 

First, looking at the weighs by the installed capacity, the largest weight is 

assigned to solar power plants of less than 100 kW, and the smallest weight is given to 

PV plants exceeding 3000 kW across all types, except BPV. This seems promote the 

deployment of small-scale solar power plants that are relatively easy to install. From 

these figures BPV has the highest REC weights compared to the GPV. These types of 

weights suggest that installation on existing facilities is recommended, even if the 

construction difficulty and cost are higher than installation on general land that occupy a 

relatively large land area. Clearly, we can find that solar PVs installed in forests are 

assigned the lowest weight regardless of the installed capacity. It may be that this reflects 

the concerns about environmental, landscape damages. 

Finally, South Korea’s solar REC weight does not consider technical factors such 

as whether the panels are tracking or fixed, but only considers the installation location 

and related technologies and costs. Since the REC weight selection is determined by 

increasing or decreasing the weight according to the cost of installation, BPV is allocated 

a higher weight than GPV to encourage capacity installed on the structures. 

 

6. Data 

 The data used for our empirical analysis is plant-level unbalanced panel data for 

2013-2018, with 8,273 observations from 3,000 solar plants where 1,500 are ground-
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mounted PVs (GPV) and 1,500 are rooftop PVs (BPV) from random sampling. The data 

source is the New and Renewable Energy Center, Korea Energy Agency, collected 

annually when RECs are issued for renewable electricity producers. A summary of the 

output and input variables is shown in Table 4. 

 

Table 4 Descriptive Statistics of PV plants 

 Unit Total BPV GPV 

Output variable     

Annual generation kWh 225,014.5 173,607 293,239.1 

  (546,084) (427,988) (665,435.9) 

Input variables     

Land area m2 2,245.2 1,372.4 3.403.6 

  (7,019.9) (5,770.1) (8,255.6) 

Number of modules count 581.9 466.3 735.3 

  (1,437.5) (1,167.0) (1,720.7) 

Daily insolation kW/m2 3.784 3.764 3.811 

  (0.155) (0.151) (0.155) 

Daily sunshine hours hour 6.389 6.416 6.352 
  (0.516) (0.551) (0.464) 

Plant-specific environmental variables     

Age of plant year 2.040 2.180 1.853 

  (1.092) (1.139) (0.997) 

Regional Dummy variables     

Central East (1 = Yes / 0 = No)  0.056 0.047 0.067 

  (0.230) (0.213) (0.250) 

Central West (1 = Yes / 0 = No)  0.308 0.334 0.274 

  (0.462) (0.472) (0.446) 

South East (1 = Yes / 0 = No)  0.106 0.133 0.070 

  (0.308) (0.340) (0.255) 

South West (1 = Yes / 0 = No)  0.520 0.482 0.570 

  (0.500) (0.500) (0.495) 

Jeju (1 = Yes / 0 = No)  0.011 0.004 0.019 

  (0.102) (0.062) (0.138) 

Observations  8,273 4,718 3,555 

Standard deviations in the parenthesis     

 

The data used for this analysis contain one output variable and four input 

variables. Output (y) is electricity generation, and it is measured in kWh. The TL 

production function in the empirical model (8) is specified using the four input variables 

described next.  
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Land (x1) is defined as the area of the address of the solar power plant is installed 

and the unit is square meters. KNREC’s data does not include power plant area data. 

However, the address of the power plant is included. To secure the area data, the area of 

the address is checked on the website SEE:REAL provided by the Korea Land and 

Housing Corporation. GPVs do not make a big difference even if they use the area of the 

address. However, there is a difference between the area of the address and the solar 

installation area of BPV. For rooftop solar power, roof surface area data is used. The 

number of modules (x2) is determined by dividing the overall installed capacity by the 

capacity of each individual module in the KRNEC data and rounding up to the nearest 

whole number. Daily insolation (x3) is the total amount of solar radiation energy received 

per 1 square meter over a given day, and it is measured in kilowatt-hours per square 

meter (kWh/m²). Daily insolation data are provided by the Korea Institute of Energy 

Research, consisting of 291,924 grids (1 km2) across South Korea. It is not possible to 

measure plant input as accurately as solar radiation data directly measured at individual 

plants, but it provides plant-specific data that is closest to reality among existing data. 

Comparing the latitude and longitude data of individual plants with the latitude and 

longitude of the grid of insolation data, the data of the nearest grid is used as the 

insolation of the plant. 

Daily sunshine hours (x4) is the number of hours in a day during which sunlight is 

received at a specific location. It is a measurement of the duration or amount of time that 

the sun is visible and directly illuminating the Earth’s surface. Unlike temperature, 

rainfall, etc., it was difficult to find data on the hours of sunshine measured by city, 

county, or district. However, as Sueyoshi and Goto (2014) used it as an important input, 
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it is necessary to use data from the closest location. The Korea Meteorological 

Administration measures the hours of sunshine in 95 meteorological stations. Among the 

available data, it is thought that the Korea Meteorological Agency data provides accurate 

information throughout the country, and the closest meteorological zone for each 

individual plant is identified and used as the sunshine time data. 

 In the analysis, both plant-specific or z-variables are included. Solar PV systems 

generate electricity by converting sunlight directly into electrical energy. Solar panels, 

composed of multiple solar cells made of semiconductor materials like silicon, absorb 

photons from sunlight, exciting electrons and creating an electric current. In general, 

photovoltaic power generation is known to have a degradation rate from about 0.5% per 

year (Jordan et al., 2016) to less than 1% per year (NREL). Based on this information, the 

plant-specific z-variables considered for plant-level efficiency consist of plant’s age (z1) 

measured as the number of years plant has been operated. All things being equal, solar 

power generation should decrease with increasing age. On the other hand, in terms of 

power plant operation, increasing the age of a power plant means that operational 

experience is accumulated. It indicates that immediate and quick response to various 

failures and various phenomena is possible than before. Therefore, age will be the result 

of a combination of declining original characteristics and increasing experiential factors.  

Another feature is the installation area (z2 - z6). In agriculture, the area in which a 

farm is located is an important factor in capturing the unexplained characteristics of an 

individual farm. The meta-frontier stochastic analysis also establishes and analyzes that 

different technologies are used by region (Huang, 2014; Alem et al., 2018). Although this 

regional division is meaningful and important in itself, this study treats the region as a 
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factor that determines the characteristics of a plant other than input because it is of 

interest to understand the difference by type of installation location. It is divided into 5 

regional regions and a dummy variable is created and analyzed. Regional classification 

follows the regions classified according to climate and environmental conditions by 

Moon (1996). Regional classification is made as shown in Figure 2 (a) below. 

 

  

(a) Regions by environment  (b) Administrative District 

Figure 2 Regional categorization by environment 

Source: Author’s categorization based on Moon (1996) 

 

7. Results and discussion 

 In order to test the goodness-of-fit between Cobb-Douglas model and translog 

model, we conducted the likelihood ratio (LR) test for all SF models each type and 

pooled data. The results reject the null hypothesis of a simplification of the TL to Cobb-

Douglas functional form. Therefore, TL functional form retained, and the results from SF 

and meta-frontier model using TL functional form are presented.  
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Table 5 Estimates for the parameters of the TL stochastic frontier model by type, for the pooled 

data model, and for the meta-frontier  

 BPV GPV Pooled data Meta-frontier 

Elasticities     

x1 (Number of modules) 0.970*** 0.873*** 0.924*** 0.906*** 

 (0.008) (0.012) (0.007) (0.000) 

x2 (Land area) 0.018* 0.135*** 0.091*** 0.089*** 

 (0.007) (0.011) (0.006) (0.000) 

x3 (Daily insolation) 1.078*** 0.770*** 0.967*** 0.934*** 

 (0.097) (0.088) (0.063) (0.005) 

x4 (Daily sunshine hours) -0.034 0.060 -0.020 -0.002 

 (0.037) (0.047) (0.027) (0.002) 

t (Time trend) -0.005 0.014*** 0.003 0.002*** 

 (0.004) (0.004) (0.003) (0.000) 

t2 (Time trend) -0.001 -0.005*** -0.002*** -0.002*** 

 (0.001) (0.001) (0.001) (0.000) 

Plant-specific environmental variables     

z1 (Age) 1.679*** 1.414*** 1.332***  

 (0.196) (0.114) (0.113)  

z2 (region Central East) -22.790*** -1.542 -4.864  

 (1.598) (1.662) (2.681)  

z3 (region Central West) -6.401*** -0.735 -2.006*  

 (1.332) (1.319) (0.834)  

z4 (region South East) -6.128*** 1.030 -1.762*  

 (1.180) (0.836) (0.810)  

z5 (region South West) -4.174*** 0.315 -1.081  

 (0.839) (0.762) (0.722)  

     

Observations 4,718 3,555 8,273 8,273 

Number of Plants 1,500 1,500 3,500 3,000 

Note: Robust standard errors in parentheses. 

*** 1% level, **   5% level, *   10% level 

 

Table 5 presents the estimation results of the true random effects model for 

different types of photovoltaic, the pooled data model, as well as meta-frontier model. In 

all cases, the model demonstrates positive and significant first-order parameters, 

satisfying the monotonicity condition for valid production functions, except for the daily 

sunshine hours. Among the models considered, the coefficient of the stochastic frontier 

(SF) for daily insolation is the highest, indicating that changes in daily insolation have a 

more pronounced impact on power generation compared to other inputs. 
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Examining the individual input elasticities, the number of modules (x1) exhibits 

the second-largest elasticity across all models (excluding GPV, where it is the most 

elastic), and all show high statistical significance. The module elasticity is 0.970 for BPV 

and 0.873 for GPV. Among the GPV elasticity estimates, the number of modules has the 

greatest influence on power generation. The estimated elasticity for land input (x2) is 

0.018 for BPV and 0.135 for GPV, showing statistical significance at the 1% and 10% 

levels, respectively, in all models except BPV. Daily insolation (x3) has an elasticity of 

1.078 for BPV and 0.770 for GPV. It is observed that daily insolation has the most 

substantial impact on BPV compared to the partial elasticities of other inputs. A 1% 

increase in daily insolation for BPV leads to an approximate 1.078% increase in power 

generation. Daily sunshine hours (x4) only show a positive value in GPV, and its 

statistical significance is not observed across all regions. The first three inputs were based 

on actual plant data or geographically close approximations, whereas the daily sunshine 

hours utilized values measured at 95 weather stations, leading to a lack of reflection of 

plant-specific differences. 

 Technological change (TC) represents the productivity changes resulting from the 

adoption of new production practices. The first-order coefficients of the time-trend 

variable provide estimates of the average annual rate of TC (Alem et al, 2018). In the 

case of BPV, the first-order coefficient is negative but not statistically significant. 

However, for GPV and the meta-frontier model, the coefficient is positive and 

statistically significant. Additionally, the parameters associated with the time-squared 

variable (t2) are negative and significant for all models except BPV. This suggests that 

the rate of TC increased at a decreasing rate over the period covered by the data, as 
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shown in Table 5. The presence of a positive first-order coefficient can be attributed to 

advancements in module efficiency or technological developments. Conversely, the 

negative secondary coefficient can be explained by the fact that sites with favorable solar 

radiation and location conditions are typically developed earlier, while sites with less 

favorable conditions are developed later. 

The lower section of Table 5 presents estimates of plant-specific and regional 

environmental variables affecting technological inefficiency. Age has a consistent 

negative impact on TE across all types, as indicated by positive and statistically 

significant parameter estimates for inefficiencies of this variable. These results confirm 

that there are degradations of PV panels in both BPV and GPV.4 

Regional dummies are based on Jeju Island and are compared to other regions. 

The results show that BPV significantly increases TE in regions other than Jeju. This 

suggests that BPV is less efficient in Jeju compared to other regions. On the other hand, 

for GPV, the central regions are found to be more efficient than Jeju, while the southern 

regions are less efficient. However, statistically, there is no significant difference between 

GPV in these regions and Jeju. Environmental condition, especially strong wind is a 

possibility because BPV in Jeju island has lower TE compared to other region. Jeju island 

is more frequently affected by strong winds such as typhoons and the infrastructure on 

the rooftops are exposed by harsh environmental conditions. 

In Table 6, the average TE score for BPV is 0.995, indicating that these plants 

achieve 99.5% of the maximum possible output given the inputs used. This means that, 

on average, the plants have a potential to increase their production by approximately 

 
4 NREL (2018) provides information about the degradation rate of solar panel is 0.5% per year. 
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0.5% to reach technical efficiency. The average TE scores for GPV is 0.991, indicating 

that the plants potentially can be increased their production by 0.9%. Therefore, it can be 

concluded that there is no evidence that many plants of these types are significantly 

lagging behind the most efficient producers of their types. 

 

Table 6 Technical efficiency and technology gap ratio estimates 

 BPV GPV All types 

TEs to the typical frontier (TEit)   Pooled 

Mean 0.995 0.991 0.992 

Std. Dev. 0.008 0.010 0.009 

Minimum 0.843 0.836 0.851 

Maximum 1.000 0.999 0.999 

Technology gap ratio (TGR)    

Mean 0.997 0.993  

Std. Dev. 0.003 0.016  

Minimum 0.954 0.321  

Maximum 1.000 1.000  

Tes to the meta-frontier (MTEit)   Meta 
Mean 0.991 0.985 0.988 

Std. Dev. 0.008 0.019 0.014 

Minimum 0.843 0.320 0.320 

Maximum 0.999 0.998 0.999 

 

 The estimates of the mean TGR value of BPV and GPV are very close to 1. A 

TGR value of 1 indicates that the typical frontier closely aligns with the meta-frontier. 

BPV types have a slightly higher TGR value (0.997) compared to GPV, suggesting that 

BPV are slightly closer to the meta-frontier than those of GPV, but the amount of 

difference is negligible. The TGR values range up to 1.00 for both types, indicating that 

some plants are already achieving the maximum generation predicted by the meta-

production function given the current technology. 

The average TE scores for the group frontier model (TEit) and the meta-frontier 

model (MTEit) are very similar, as indicated by the TGR estimates close to 1 in Table 6. 

For the 2013-2018 period, the MTEit scores are 0.991 for the BPV and 0.985 for the GPV. 
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This implies that BPV is more efficient than GPV with respect to the meta-frontier 

production function. However, from an economic point of view, there is little difference 

between the two types. 

 

 

Figure 3 TEs to the meta-frontier  

Source: Author’s calculation 

  

Some tests are needed to judge whether BPV and GPV are using heterogeneous 

production frontiers. We conduct the Kolmogorov-Smirnov test and t-test for the MTE of 

both types, the test results mean that the distribution of BPV and GPV are heterogeneous. 

Statistically, MTE scores of BPV and GPV are different however the difference is 

negligible in terms of economic significance. 

 



 

 25 

8. Conclusions 

 The objective of this paper is to compare TE for BPV and GPV in South Korea 

using a stochastic meta-frontier approach. More specifically, it is checked whether there 

is a difference between BPV and GPV in terms of MTE and which factors can affect the 

efficiency. The results of the analysis show that TE scores and TGRs are very close to 1. 

The estimated average TE score are 0.995 for the BPV and 0.991 for the GPV. The 

results suggest that the two types of PV plants use available technology in the group sub-

optimally. That is, there are some plants which produce less electricity from the inputs 

they use or use more inputs to produce the same level of electricity, when compared to 

the best-performing plants in their group. 

 The age of the plants had a negative impact on TE in all types, and the regional 

effect was only statistically significant for BPV. The estimated average TGR values were 

very close to 1, and there were no significant differences between types. A TGR value of 

1 indicates that the frontier of a specific type aligns with the meta-frontier. Comparing all 

types, GPV had the lower average MTE scores than BPV and this implies that BPV more 

efficiently generate than GPV. However, the difference is very small in economic point 

of view. 

 A priori expectations were that there would be slightly larger differences in TE 

and TGR among different PV plant types, reflecting the technological variations between 

them in Korea. Solar power plants in South Korea are still considered relatively 

expensive compared to other conventional power sources. While the RPS system 

promotes renewable energy generation and provides economic incentives through REC 

sales, uncertainties exist as both electricity and REC sales follow market mechanisms. 
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Therefore, it is crucial to minimize factors that cause inefficiency to ensure economic 

viability, regardless of the type and installation location. Thus, assuming a shared 

underlying technology across types appears to be reasonable. 

 Throughout the course of this study, several limitations were encountered. Firstly, 

it was challenging to determine the exact area of solar installations as the competent 

authorities did not provide comprehensive information. Some local governments 

provided area data, but it was not available in most cases. Secondly, there were instances 

where the actual plant location and the address of the power generation company were 

mixed up. Thirdly, appropriate inputs needed to be selected and suitable data secured for 

the research methodology. This study borrowed input and output data from Sueyoshi and 

Goto (2014), which used average values over a specific period. Their study focused on 

identifying average power generation amounts by selecting locations from a long-term 

perspective. However, this study used annual measurement data for the installed plants, 

which differed from Sueyoshi and Goto’s (2014) approach. In their study, power 

generation facility capacity and power generation constituted the output. Although this 

study considered land and module counts in combination with power generation, it did 

not exclude facility capacity as it is necessary to secure the power generation amount. 

When conducting stochastic meta-frontier analysis for multiple outputs, calculations 

based on specific gravity for a particular output do not make sense in this context. Data 

that have a significant impact on evaluating the productivity of installed power generation 

facilities, such as variable costs related to manpower operation or labor costs, may be 

more appropriate. However, separate aggregated data for these factors was not available, 

limiting their inclusion in the analysis. 
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Lastly, regarding company characteristics and capacity, the study identified 

whether a company was public or private. However, data for private companies were not 

utilized as it was challenging to determine if a public company had the actual 

characteristics of a public company based on share investments. Additionally, while the 

development of large-capacity power plants is progressing, the data obtained had limited 

representation of such plants, with over 90% of power plants being small-scale facilities 

of less than 100 kW. This reflected group and regional characteristics and posed 

challenges in considering capacity. 

In this study, it was observed that BPV and GPV were mostly operated in a 

manner close to best practice, and each technology was found to be near the meta-

frontier. It was concluded that BPV is a favorable option for expansion, given concerns in 

Korea about limited land area, reduction of farmland, landscape damage, and 

deforestation. 
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APPENDIX A. Regions by environment 

Table 7 Classification of counties by environment 

Region Province County 

Central 

East 

Gangwon Donghae, Gangneung, Goseong, Jeongseon, Pyeongchang, Samcheok, Sokcho, Taebaek 

Gyeongbuk Andong, Bonghwa, Cheongsong, Gumi, Mungyeong, Pohang, Sangju, Uiseong, Uljin, Yecheon, 

Yeongdeok, Yeongju, Yeongyang 

Central 

West 

Chungbuk Boeun, Cheongju, Chungju, Damyang, Eumseong, Goesan, Jecheon, Jeungpyeong, Jincheon, Okcheon, 

Yeongdong 

Chungnam Asan, Boryeong, Buyeo, Cheonan, Cheongyang, Dangjin, Geumsan, Gongju, Hongseong, Nonsan, 

Seocheon, Seosan, Taean, Yesan 

Daejeon Daejeon 

Gangwon Cheolwon, Chuncheon, Hoengseong, Hongcheon, Hwacheon, Inje, Wonju, Yangju, Yeongwol 

Gyeongbuk Gimcheon, Sangju 

Gyeonggi Ansan, Anseong, Dongducheon, Gapyeong, Gimpo, Goyang, Gwanju, Hanam, Hwaseong, Icheon, 

Namyangju, Paju, Pocheon, Pyeongtaek, Seongnam, Siheung, Suwon, Uijeongbu, Yangju, 

Yangpyeong, Yeoju, Yeoncheon, Yongin 

Incheon Incheon 

Sejong Sejong 

Seoul Seoul 

South 

East 

Busan Busan 

Daegu Daegu 

Gyeongbuk Cheongdo, Chilgok, Goryeong, Gumi, Gunwi, Gyeongju, Gyeongsan, Seongju, Uiseong, Yeongcheon 

Gyeongnam Changnyeong, Changwon, Geoje, Gimhae, Goseong, Hadong, Haman, Hamyang, Hapcheon, Jinju, 

Miryang, Namhae, Sacheon, Sancheong, Tongyeong, Yangsan 

Jeonbuk Jangsu 

Jeonnam Gwangyang, Suncheon, Yeosu 

Ulsan Ulsan 

Seouth 

West 

Chungnam Seocheon 

Gwangju Gwangju 

Gyeongnam Hamyang 

Jeonbuk Buan, Gimje, Gochang, Gunsan, Iksan, Imsil, Jeongeup, Jeonju, Jinan, Muju, Namwon, Sunchang, 

Wanju  

Jeonnam Boseong, Damyang, Gangjin, Goheung, Gokseong, Gurye, Gwangyang, Haenam, Hampyeong, 

Hwasun, Jangheung, Jangseong, Jindo, Mokpo, Muan, Naju, Sinan, Suncheon, Wando, Yeongam, 

Yeonggwang 

Jeju Jeju Jeju, Seogwipo 
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RENEWABLE PORTFOLIO STANDARDS, THE LEARNING 

CURVE, AND RE100: ANALYZING THE IMPACT OF THE FIRM 

LOCATION DECISION 

 

1. Introduction 

RE100 is a global initiative led by influential companies that are committed to 

obtaining all of their electricity from renewable energy sources; wind, solar, geothermal, 

sustainably obtained biomass (including biogas), and sustainable hydropower.1 The 

primary objective of RE100 is to accelerate the transition to renewable energy and reduce 

greenhouse gas emissions. It consists of companies from various industries that have 

publicly pledged to operate exclusively on renewable electricity. 

 

Table 1 Status of participation companies in RE100 companies  

Headquarter location 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

Africa 0 0 0 0 0 0 0 0 0 0 

Asia 0 2 2 4 14 20 26 38 40 12 

Europe 10 18 9 18 13 18 20 15 6 4 

North America 2 13 13 10 11 17 14 11 11 1 

South America 0 0 0 0 0 0 0 0 0 0 

Oceania 0 0 0 0 2 8 5 2 1 0 

Cumulative Total 12 45 69 101 141 204 269 335 393 410 

Source: Authors own calculations using data from RE100 website (https://www.there100.org/re100-members) 

 

 
1 According to RE100 Joining Criteria (2022), a company’s annual electricity demand needs to at least 0.1 

TWh. If its consumption is smaller than that level, joining is determined by considering the following 

criteria: 1) Key player in a RE100 priority region, 2) Key player in their industry/RE100 target sector, 3) 

Willing to be involved in policy advocacy in RE100 priority regions, 4) Globally or nationally recognized 

and trusted brand and/or major multi-national company (Fortune 1000 or equivalent), and 5) Other 

consideration of clear international or regional influence that is of benefit to RE100’s aims   
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The RE100 initiative started with the participation of 12 companies in 2014, and 

410 companies are participating as of May 2023 (Table 1). Based on the location of their 

headquarters, initial membership comprised of companies based in Europe and North 

America (the United States), but over participation of companies based in Asia and 

Oceania (Australia) has increased significantly. Although there is no member company 

with its headquarters based in Africa or South America, there are RE100 companies that 

procured renewable electricity in Africa and South America (Figure 1).  

 

 

Figure 1 RE100 members’ electricity and renewable electricity consumption by market around 

world 

Source: RE100 website (https://www.there100.org/about-us) 

 

Figure 2 shows that the industrial composition of 410 RE100 participating 

companies. The service industry, which is expected to consume relatively little 

electricity, accounts for the largest portion at 36%. But the manufacturing industry, 

whose companies generally consume relatively more electricity, accounts for the second 
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largest portion at 23%. This highlights that the RE100 is a campaign promoted across 

industries, and not targeted at a specific industry. 

 

 

Figure 2 Industrial composition of RE100 companies  

Source: Authors own calculations using data from RE100 website (https://www.there100.org/re100-members) 

 

The electricity consumption of RE100 companies exceeds 420 TWh per year, 

which is equivalent to the energy consumption of medium-sized countries.2 These 

companies have reported a gradual increase in their consumption of renewable electricity, 

reaching 49% in 2021 compared to 45% in 2020 and 41% in 2019.3 As RE100 companies 

intensify their efforts to expand the use of renewable energy, manufacturers face a crucial 

decision. They must decide whether to continue producing their goods using expensive 

renewable power in their current country or to relocate to a foreign country that offers 

more favorable conditions for renewable energy production. This decision becomes 

 
2 See the RE100 homepage. 
3 See the RE100 homepage. 
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particularly significant considering initiatives like RE100, which strongly encourage 

companies to transition to 100% renewable energy. 

If a company that meets the RE100 entry criteria, it must submit an 

implementation plan within a year, and must achieve at least 60% energy from renewable 

sources by 2030, 90% by 2040, and 100% by 2050. In addition, there are five possible 

ways to meet these requirements: 1) Self-generation, 2) Direct procurement, 3) Contracts 

with electricity suppliers, 4) Unbundled procurement of energy attribute certificate 

(EACs), and 5) Passive procurement (Climate group and CDP, 2022).  

The important principle is that companies participating in RE100 must achieve 

renewable energy at all workplaces. For instance, suppose an international company A 

has workplaces in country B with low renewable electricity prices and country C with 

high renewable electricity prices. It cannot be admitted as implementation by purchasing 

more electricity (EACs) in country B to replace renewable electricity in country C. If a 

RE100 company is procuring parts and intermediate goods to produce final products, the 

parts and intermediate goods must also be produced using renewable electricity to be 

recognized as 100% renewably produced. 

Renewable portfolio standards (RPS) are governmental policies implemented to 

promote the utilization of renewable energy sources in electricity generation. These 

policies mandate or incentivize electricity providers to ensure that a specified minimum 

portion of the electricity they supply to customers comes from eligible renewable 

resources. The aim of RPS is to foster the adoption and integration of renewable energy 

into the overall energy mix, thereby reducing reliance on fossil fuels and mitigating 

environmental impacts (EIA, 2023). RPS policy has emerged as a significant driver for 
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the global adoption of renewable energy sources in power generation. This policy sets a 

minimum requirement for the supply of renewable energy and encourages the supply to 

go beyond that minimum level, aiming to improve the economic feasibility of renewable 

energy production. 

Additionally, it is essential to consider the learning effect as renewable energy 

supply expands. The learning effect refers to the gradual decrease in costs that occurs as 

renewable energy technologies mature and gain wider acceptance. It is based on the 

premise that efficiency improvements, economies of scale, and technological 

advancements lead to cost reductions in renewable energy production over time. 

The objective of this study is to examine how the RPS policy influences the 

decision-making process of manufacturers regarding the choice between staying in their 

current country or relocating to a foreign country in response to initiatives such as 

RE100. RE100 has influenced the location decision s of its members, for example Volvo 

has cancelled contracts with suppliers that cannot supply parts produced using renewable 

energy by 2025, and BMW is requiring parts be produced with renewable energy within 

2-3 years (Lee, 2023). By analyzing the intricate relationship between renewable energy 

costs, government policies, and manufacturing strategies, this study aims to provide 

valuable insights into the factors that shape manufacturers' decisions regarding renewable 

energy adoption and location selection. 

This chapter is organized as follows. Section 2 provides a summary of prior 

studies related to renewable portfolio standards (RPS), the RE100 initiative, and the 

learning curve. In Section 3, a game model is introduced for analysis. Sections 4 to 6 

examine each subgame using backward induction. Section 7 explores the subgame 
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perfect equilibrium, with discussion of the results in Section 8. Finally, we draw 

conclusions about this research method in Section 9. 

 

2. Literature review 

Several studies have examined the impact of renewable portfolio standards (RPS) 

on power generation and facility capacity using econometric models. Yin and Powers 

(2010), Upton and Snyder (2017), and Joshi (2021) are among the researchers who have 

explored this topic. Joshi’s study reveals that the adoption of RPS leads to a more than 

one-third increase in overall renewable electricity capacity. However, Upton and Snyder's 

findings do not provide evidence that states with RPS have experienced significant 

increases in renewable energy generation compared to other policy approaches such as 

mandatory targets. 

Zhou and Solomon (2020) examined the role of RPS in influencing renewable 

electricity capacity deployment in the U.S. Specifically, it investigated whether RPS 

policies act as a floor or a cap on capacity additions beyond compliance. They discovered 

that stricter RPS policies are linked to a decrease in non-RPS related renewable 

electricity capacity additions, particularly when limited by renewable electricity potential 

capacity. However, this negative effect is attenuated in states with abundant renewable 

energy resources, as a stringent RPS policy can incentivize additional investments in 

renewable electricity capacity beyond the mandated targets.  

Ma and Xu (2023) conducted a theoretical investigation into solar investment 

issues using a game model. Their findings suggest that higher RPS requirements can 

benefit regulators, particularly when there is less resistance to regulation and a high 
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penalty rate. The study also indicates that the development of solar technology leads to an 

increase in the optimal price of photovoltaic (PV) panels and encourages investment in 

solar energy. Additionally, the study suggests that increasing solar investment is 

preferable for achieving higher renewable output when there is a high requirement for 

renewable energy. Furthermore, the research highlights that developers benefit from 

higher RPS requirements as it promotes PV adoption and increases panel prices. 

Nasiri and Zaccour (2010) conducted a game-theoretic analysis on RPS because 

the peculiar attribute of an RPS system resembles a coupled constraint game. They 

provided a generic game-theoretic model for an RPS system and explored a 3-player case 

study. In that model, they provided some insight on equilibrium levels of electricity 

generation and certificate trading.  

Zhao et al. (2021) analyzed the effectiveness of RPS by simulating power 

producers’ behavior based on a subjective game model. They found three main results: 1) 

After RPS is implemented, the uncertainty of power producers’ behavior steadily 

decreases, and the game equilibrium is created, destroyed, and then re-established. 2) 

When a given method yields a larger reward, power producers are more likely to use that 

technique in subsequent games. 3) When the fine is two times the price of a Tradable 

Green Certificate (TGC), electricity producers agree to trade TGCs, and the RPS 

becomes operational. 

The concept of the learning curve was introduced by Wright (1936) and 

originated from observations of workers in aircraft factories gradually improving their 

performance as they repeatedly engaged in specific tasks. It represents the relationship 

between the cumulative experience or production volume and the improvement in 
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productivity or efficiency over time. The learning curve concept has since been widely 

applied in various fields to understand and analyze the effects of experience, repetition, 

and learning on performance and cost. 

The learning curve effect has been widely observed and studied in various 

industries and domains, including manufacturing (Argote and Epple, 1990), industry 

(Petrakis et al., 1997), semiconductor manufacturing (Irwin and Klenow 1994), 

technology (Plaza et al, 2010), firm competition (Spence, 1981) and renewable energy 

(van der Zwaan & Rabl, 2003; Nemet, 2006). The underlying principle is that as 

individuals, organizations, or industries gain experience and knowledge, they become 

better at what they do, leading to increased efficiency, economies of scale, and 

technological advancements. This, in turn, leads to cost reductions and improved 

performance. Over the course of its long history, the concept of the learning curve has 

been extensively studied, leading to the development of various models. These models, 

including the Plateau model, S-curve model, Dejong model, and Stanford-D model, have 

been proposed and discussed in numerous studies (Yelle and Lowell, 1979; Anzanello 

and Forliatto, 2011). 

Van der Zwaan & Rabl (2003) studied the learning curve analysis of solar 

photovoltaics (PV) and they predicted that the cost of solar power would decrease rapidly 

in the subsequent years. Also, they predicted that considerable amount of PV electricity 

will appear in world electricity generation after 2020. In reality, the learning rate of 

renewable electricity, especially PV, has been much higher than their expectation. Nemet 

(2006) found that while learning from experience does have an impact, it only weakly 

explains the changes observed in the most critical factors, namely plant size, module 
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efficiency and the cost of silicon. The paper emphasizes that other factors beyond 

learning from experience must be considered to fully understand and explain the 

variations in these key cost factors in the PV industry. Reichenbach and Requate (2012) 

conducted a study on the impact of learning by doing, learning spillovers, and imperfect 

competition in the energy sector. They found that implementing a tax in the fossil-fuel 

sector and an output subsidy for renewable energy equipment producers is the optimal 

policy approach to address pollution and promote the growth of renewable energy 

sources. 

Lee et al. (2022) discovered that the cost of renewable energy generation 

decreases over time. They determined that deviating from traditional utility environments 

and opting for corporate power purchase agreements for implementing RE100 is a cost-

effective strategy. The study emphasizes the importance of policymakers creating an 

environment that allows companies to freely choose from a range of power purchase 

options and certification methods to enhance their competitive advantage. 

 

3. The Model 

Consider a game in which three player groups participate: the government, RPS 

obligors, and firms supplying RE100 companies. This model comprises three stages, each 

involving different decisions by the player groups. In this model, we assume that the 

government maximizes the social net benefit from renewable energy supply, and it 

consider the change of employment by firms’ location selection. The obligors of RPS are 
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utilities, and they seek to maximize their profits.4 Also, the firms supply their products to 

RE100 companies as parts or intermediate goods, and they are profit maximizing 

companies.  

 

 

Figure 3 Game tree of RPS under RE100 initiative 

 

In the first stage, the government sets the RPS target  representing the 

percentage of renewable energy generation required in the country’s electricity mix. The 

government's choice of the RPS target influences the overall framework for renewable 

energy adoption and serves as a crucial policy signal. Moving to the second stage, the 

RPS obligor i makes decisions regarding the amount of renewable electricity they will 

provide . The RPS obligors play a vital role in implementing renewable energy 

 
4 We assume the exclusion of purchasing renewable electricity from contracts with electricity suppliers, and 

passive procurement because self-generation does not use a market mechanism, and direct procurement 

does not change the behaviors of obligors. The purchase of unbundled EACs is another important topic to 

investigate for the RPS system because the firms and obligors may compete to secure EACs.  
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projects and determining the actual supply of renewable electricity to meet the RPS 

target. Finally, in the third stage, firm js, which are responsible for supplying products to 

RE100 companies, face a critical decision. They must assess whether to remain in their 

current country or relocate to another country offering cheaper renewable electricity. This 

decision hinges on the cost of renewable electricity and its competitiveness compared to 

non-renewable energy sources. By making a strategic choice, the firms aim to maximize 

their payoffs while fulfilling the requirements of RE100 companies. 

In this game, the players seek to maximize their expected payoffs while 

considering the decisions and actions of the other player groups. The interplay between 

the government’s RPS target, the RPS obligors’ renewable energy provision, and the 

firms’ location decisions create a dynamic and complex strategic environment. By 

analyzing this game, we can gain insights into the interactions and outcomes that arise 

from the decisions made by these three player groups. 

 

Table 2 Summary of game players  

Participant Description Objective Participant can change 

Government Represents the institution that 

sets the RPS. Could be 

national or local government 

Meeting the RPS target, 

maximizing employment and 

social net benefit 

RPS target 

RPS obligors The institution responsible for 

meeting the RPS. Would 

usually be a utility. 

Meeting the RPS commitment 

and maximizing their profits 

Amount of renewable 

electricity they will provide 

Firms Firms that are affected by 

RE100 initiative 

Maximizing their profits by 

supplying their products to 

RE100 companies 

Where they locate to produce 

their products 
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Now we will check the players’ payoffs with general functions. The government 

payoff consists of some benefits and costs from renewable electricity and employment 

(labor) like below: 

  (1) 

where  is the marginal benefit of renewable electricity  is the marginal benefit of 

non-renewable electricity.  and  are cost functions of renewable electricity 

and non-renewable electricity, respectively.  and  are the marginal benefit and cost of 

labor, respectively.  and  are total and renewable electricity cumulative supplies, 

respectively. I is the total number of obligors for the RPS, and J is the total number of 

manufacturers to supply their products to RE100 companies.  

Once, the government decides the level of obligation (t), then the RPS obligors 

have to decide how much renewable electricity to provide. In this game, we examine the 

scenario where the RPS is enforced as a mandatory obligation. This means that if an 

obligor fails to fulfill their obligation, they incur penalties at least equal to the renewable 

energy price of other obligors for the amount of unfulfillment. Then, the payoff of obligor 

i is defined below: 

 

                                                                          

(2) 

where  is a price for electricity.  and  are total and renewable electricity supplies of 

obligor i.  is the additive penalty when the RPS obligor i cannot achieve its obligation, 

and it is greater than or equal to 0.  is the average marginal cost of other obligors’ 

renewable electricity. 

Given output price and input prices, the payoff of firm j is defined below: 
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(3) 

where  is the product price received from RE100 companies.  and  are renewable 

electricity prices in domestic and foreign countries, respectively, which must contain the 

price of the renewable energy certificate.  and  are labor costs of domestic and 

foreign countries, respectively.  Cf represents a fixed cost that arises when firms decide to 

relocate from their current country to a foreign country. 

We observe that the cost function of renewable energy exhibits characteristics of a 

long-term average cost function due to the learning effect. As a technology that is still 

maturing and evolving compared to traditional power sources, historical data confirms 

that the marginal cost of renewable energy, particularly solar and wind power, decreases 

annually. 

 

4. Subgame starting at the third stage 

In this analysis, we assume the firm js belong to the open small economy and they 

are identical. It means that the firm’s supply cannot change the price of its product and 

the price is given. Also, there is no reason why RE100 companies discriminate against 

the quantity of their demand depending on the location, we assume that if firm j can 

supply its product produced by renewable electricity, then the quantities of its supply are 

the same in domestic and foreign countries. 

 

Assumption 1. The firm j’s production function follows the Cobb-Douglas production 

function. 
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The payoff of firm j can be described below:  

 

(4) 

Given prices, we can find the maximized profits of firm j are described below: 

 

(5) 

 

Assumption 2. Assumes that labor costs are equal to 1 in both domestic and foreign 

countries to isolate the specific impact of renewable electricity. 

 

Then, firm j’s strategy in the third stage is defined below: 

 

(6) 

Based on our analysis, we can ascertain that there exists a range where domestic 

production is influenced by both the price levels of previous domestic renewable energy 

and foreign renewable energy, even if the price of domestic renewable energy is higher 

than that of foreign renewable energy. Furthermore, it can be observed that in the event 

of an increase in foreign fixed costs and electricity prices, domestic production of 

renewable energy persists even if it is supplied at a comparatively higher price 

domestically.  
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Lemma 1. In optimal production, a larger quantity of renewable electricity is used when a 

firm produces its products in a foreign country compared to when it produces them in 

domestically. 

 

5. Subgame starting at the second stage 

Now, we are going to study the identical obligor i’s profit maximization problem 

under the RPS. The implementation of the policy means that the economic feasibility of 

renewable electricity is not secured when compared to non-renewable electricity. Since 

we assume that players are rational, we will ignore the situation of the excess supply of 

renewable electricity.  

 

Assumption 3. There is a learning effect associated with renewable energy electricity, 

while non-renewable energy does not exhibit this learning effect because it is a mature 

technology. 

 

For the cost function of renewable electricity, we will consider that there is a 

learning effect and adopt Wright’s model. Meanwhile, for the non-renewable electricity 

cost function, we will assume the constant marginal cost because it is a mature 

technology. Using backward induction, the RPS obligor i’s maximization problem when 

the firm js staying: 

 

s.t.  and  or 
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s.t.  

where  is the marginal cost of the 1st unit of renewable electricity,  is the learning rate 

where ( 0 < a < 1). When the learning rate is close to 1, it is high learning rate.  is the 

marginal cost of non-renewable electricity, and  is the fixed cost of non-renewable 

electricity. Then, we can derive the RPS obligor i’s best response correspondence with 

respect to the target share when the firms select to stay. 

 

(7) 

Let  be the share of obligor i’s market share ( ) and assume that the 

demand decrease is affected by the amount of its share. 

 

where  is the total renewable electricity used from the firm js.  is the amount of 

renewable electricity provided from obligor i to firm js. The RPS obligor i’s 

maximization problem when firm js moving is described below: 

 

 

s.t.  and  or  

 

s.t.  
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 Then, we can get the RPS obligor i’s best response correspondence with respect to 

the target share when the firms decide to relocate to other countries.  

 

(8) 

 

 

Figure 4 Obligor i’s response correspondences 

 

In Figure 4, we can observe that there is a range in which the RPS target share is 

binding, and it is evident that a higher target share must be chosen to supply the same 

level of renewable energy power. As the overall electricity demand decreases, it becomes 

apparent that the share must increase to meet the same quantity. However, it is important 

to note that the supply volume, which is bound by the RPS target share under the given 

price and cost conditions, remains the same in both cases.  
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Table 3 The minimum and maximum binding target shares  

Subgame Minimum Target Share Maximum Target Share 

Firm j staying 

   

Firm j moving 

  

 

6. Subgame starting at the first stage 

The government, utilizing backward induction, possesses knowledge of how other 

players respond in the game. It is aware that renewable energy, specifically renewable 

electricity, is still in its nascent stage, and its cost has been decreasing as a result of the 

learning curve effect. We simply assume that the marginal benefits from renewable 

electricity and non-renewable electricity are constant. Then, the government’s payoff 

consists of benefits from using renewable electricity, benefits from using non-renewable 

electricity, benefits from avoiding unemployment, costs from renewable electricity, and 

costs from non-renewable electricity. 

 

Assumption 4. RPS obligors supply an equal level of power and have an equivalent level 

of responsibility. i.e., they are identical in terms of their obligations and contributions. 

 

The government knows the strategies employed by other players within the 

subgame and recognizes the specific range where the RPS policy is effective and binding. 

Consequently, the government’s payoff maximization problem can be formulated as 

follows: 
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(9) 

 

               

(10) 

The optimal target share for the government for both cases are derived as follows: 

,   

And we can find the numerator is the same, and the difference in both cases is total 

electricity supply of obligor i in the denominator. 

 

7. Subgame perfect equilibrium 

In this section, we examine the payoffs of each player in the subgame perfect 

equilibrium. We initiate the analysis from the first stage by substituting the government’s 

optimal target ratios,  and , obtained in the previous section, into equations (9) and 

(10) respectively. This calculation allows us to determine the government’s payoff in the 

subgame perfect equilibrium.  

                   

                    

(11) 

 (12) 

where  

 

Proposition 1. If the social benefits of employment outweigh the costs and the marginal 

benefit of non-renewable electricity is equal to the marginal cost, then it is socially more 

beneficial to maintain employment. 
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Proof) From equations (11) and (12), we can compare the optimal payoffs of 

government, and it is greater than or at least equal to 0. Therefore, the government 

decides the target share as  

  

 

In the initial stage, the government determines the RPS obligation target, , in 

order to incentivize the firms to remain in the market and maintain the current level of 

employment. In the subsequent stage, each obligor determines its optimal provision of 

renewable electricity by employing the best response correspondence, and the subgame 

perfect payoff is below: 

 

Since the rational obligor will not select the electricity price which brings a negative 

profit, the minimum renewable electricity price that the RPS obligor can provide is 

below:  

 
(13) 

 

Proposition 2. In cases where the electricity price information of the RPS obligors is not 

transparent during RE100 verification, it is possible to provide renewable electricity at 

lower prices by increasing the prices of non-renewable energy electricity. 

Proof)  From equation (13), take a partial derivative with respect to , then
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This implies that obligors can provide renewable electricity at a lower price, even 

if it results in a negative profit for renewable electricity. This is possible because they can 

offset the negative profit with the higher profit earned from the higher price of non-

renewable electricity, ensuring a non-negative overall profit. However, the RE100 

initiative prohibits the use of renewable electricity in the form of subsidies, which means 

that renewable electricity must be paid for.5  

 

Assumption 5. The home country has the capability to offer renewable electricity at a 

price that is equal to or lower than the price that would induce the same payoff as if the 

firm were to relocate. 

 

The price of renewable electricity in the current country will be decided between 

this range and the maximized profit will be below: 

 

If there are no restrictions on obligors’ selection of renewable electricity prices, the price 

that maximizes their payoff will be determined at the highest possible level.  

 

 
5 RE100 requires participating companies to use renewable electricity, and the principle is to pay the cost 

necessary to supply renewable electricity. Therefore, it is against the principle of lower the price of 

renewable electricity by increasing the price of non-renewable electricity.  
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Considering the domestic renewable electricity price, firm j maximizes its profit, and the 

subgame perfect equilibrium payoff is equivalent to the payoff obtained by selecting to 

relocate to the foreign country.  

 

If the government could influence the pricing of renewable electricity or if there are other 

factors that result in the supply of renewable electricity at the lowest possible level, the 

payoff for firm j will be determined at the following level:  

 

 

Proposition 3. Even in the presence of renewable energy expansion driven by RPS, if 

companies are unable to obtain renewable electricity at a certain price level, they may 

choose to relocate to foreign countries as an alternative option. 

Proof) This implies that assumption 5 does not hold. The lowest level of renewable 

electricity price is determined by all exogenous variables. It means that we cannot 

exclude the possibility that  

 

In this case, the subgame perfect equilibrium outcome will be changed from staying in 

domestic country to moving foreign country. 
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8. Discussion 

  In the course of analyzing the game, several findings have emerged. Firstly, 

assuming equal prices for domestic and international labor, it was observed that more 

electricity was consumed when produced overseas due to the lower price of renewable 

electricity. This aligns with basic production-related properties.  

Secondly, interesting results were obtained regarding the learning rate. Assuming 

an exogenous learning rate based on the learning curve, it was observed that higher input 

levels lead to lower average production costs. When comparing the learning rate, 

minimum price, and target weight, it was found that a higher learning rate corresponds to 

a lower minimum price and lower target weight. Consequently, as the total power supply 

increases, the target share decreases, which is contrary to initial expectations. This 

phenomenon is attributed to the fact that the effect of the learning curve does not 

incorporate the passage of time in production.  

 Therefore, taking the learning curve into consideration, it can be concluded that 

expanding the supply of renewable energy by increasing the proportion of renewable 

energy electricity through RPS is feasible. 

 

9. Conclusions 

  This study examined the impact of Renewable Portfolio Standards (RPS) and the 

RE100 initiative on firm location decisions regarding renewable energy adoption. By 

analyzing the interplay between government policies, renewable energy costs, and 

manufacturing strategies, valuable insights were gained into the factors that shape 
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manufacturers’ decisions in the context of renewable energy adoption and location 

selection.  

In the game model analysis, three player groups were considered: the government, 

RPS obligors, and firms supplying RE100 companies. The government’s decision to set 

the RPS target influenced the overall framework for renewable energy adoption, while 

RPS obligors played a vital role in implementing renewable energy projects. Firms 

supplying RE100 companies faced the critical decision of whether to remain in their 

current country or relocate to another country with more favorable renewable energy 

conditions. The analysis revealed that domestic production of renewable energy persisted 

even when the price was higher domestically, depending on foreign fixed costs and 

electricity prices.  

The findings indicate that a rational government will choose a target share that 

maintains employment as long as it brings a non-negative net benefit. Moreover, there 

exists a range where between domestic and foreign renewable energy prices to determine 

domestic production, even when domestic prices are higher. By increasing the price of 

non-renewable electricity, it is possible to subsidize renewable electricity depending on 

cost transparency. Unfortunately, some countries are unable to maintain the target share 

for domestic employment due to exogenous variables. Furthermore, it was observed that 

firms tend to utilize a larger quantity of renewable electricity when manufacturing their 

products in a foreign country compared to domestic production.  

However, it is important to acknowledge certain limitations in our study. Firstly, 

we did not account for the time effect, despite this being the initial attempt to examine the 

RPS and RE100 initiative. Considering the passage of time may yield comparative statics 
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in line with the expected direction. Secondly, our analysis was simplified and primarily 

focused on the supplying firm to the RE100 companies. However, there are other 

competing electricity technologies and firms that provide goods domestically. In such 

cases, it becomes necessary to construct a more comprehensive model to assess the 

overall effects on the entire economy. 

Nevertheless, our primary objective was to investigate the RPS effect concerning 

the RE100 initiative while considering the learning curve. In this regard, our research 

provides valuable insights and answers to these questions. 

 

  

  



 

 59 

References 

Anzanello, M. J., & Fogliatto, F. S. (2011, September). Learning curve models and 

applications: Literature review and research directions. International Journal of 

Industrial Ergonomics, 41(5), 573–583. 

https://doi.org/10.1016/j.ergon.2011.05.001 

Argote, L., & Epple, D. (1990, February 23). Learning Curves in Manufacturing. Science, 

247(4945), 920–924. https://doi.org/10.1126/science.247.4945.920 

Climate Group, & CDP. (2022, Octorber). RE100 Joining Criteria. Retrieved June 4, 

2023, from https://www.there100.org/sites/re100/files/2022-

10/RE100%20Joining%20Criteria%20Oct%202022.pdf 

Climate Group, & CDP. (2022, December 12). RE100 Technical Criteria. Retrieved June 

4, 2023, from https://www.there100.org/sites/re100/files/2022-

12/Dec%2012%20-%20RE100%20technical%20criteria%20%2B%20appendices.

pdf 

Lee, JH. (2023, May 15). Europe’s “RE100 air raid”… Korean parts makers at a loss 

due to green protection. Hankyung.Com. Retrieved June 7, 2023, from 

https://www.hankyung.com/economy/article/2023051546741 

Joshi, J. (2021, June). Do renewable portfolio standards increase renewable energy 

capacity? Evidence from the United States. Journal of Environmental 

Management, 287, 112261. https://doi.org/10.1016/j.jenvman.2021.112261 



 

 60 

Lee, J. W., Choi, E. J., Jeong, M. J., Moragriega, R. C., Zaragoza, P. G., & Kim, S. W. 

(2022, November). Optimal sourcing strategy for enterprises to achieve 100% 

renewable energy. Energy Reports, 8, 14865–14874. 

https://doi.org/10.1016/j.egyr.2022.10.443 

Ma, J., & Xu, T. (2022, February 16). Optimal strategy of investing in solar energy for 

meeting the renewable portfolio standard requirement in America. Journal of the 

Operational Research Society, 74(1), 181–194. 

https://doi.org/10.1080/01605682.2022.2032427 

Nasiri, F., & Zaccour, G. (2010, November). Renewable Portfolio Standard Policy: A 

Game-theoretic Analysis. INFOR: Information Systems and Operational 

Research, 48(4), 251–260. https://doi.org/10.3138/infor.48.4.251 

Nemet, G. F. (2006, November). Beyond the learning curve: factors influencing cost 

reductions in photovoltaics. Energy Policy, 34(17), 3218–3232. 

https://doi.org/10.1016/j.enpol.2005.06.020 

Petrakis, E., Rasmusen, E., & Roy, S. (1997). The Learning Curve in a Competitive 

Industry. The RAND Journal of Economics, 28(2), 248. 

https://doi.org/10.2307/2555804 

Plaza, M., Ngwenyama, O. K., & Rohlf, K. (2010, January). A comparative analysis of 

learning curves: Implications for new technology implementation management. 

European Journal of Operational Research, 200(2), 518–528. 

https://doi.org/10.1016/j.ejor.2009.01.010 



 

 61 

RE100. (n.d.). RE100 - We are accelerating change towards zero carbon grids at scale. 

Retrieved June 4, 2023, from https://www.there100.org/ 

Reichenbach, J., & Requate, T. (2012, May). Subsidies for renewable energies in the 

presence of learning effects and market power. Resource and Energy Economics, 

34(2), 236–254. https://doi.org/10.1016/j.reseneeco.2011.11.001 

U.S. Energy Information Administration (EIA). (2022, November 30). Renewable energy 

explained - portfolio standards. Retrieved May 23, 2023, from 

https://www.eia.gov/energyexplained/renewable-sources/portfolio-standards.php 

U.S. EIA. (2019, June 12). Southwestern states have better solar resources and higher 

solar PV capacity factors. Retrieved June 8, 2023, from 

https://www.eia.gov/todayinenergy/detail.php?id=39832 

Spence, A. M. (1981). The Learning Curve and Competition. The Bell Journal of 

Economics, 12(1), 49. https://doi.org/10.2307/3003508 

Tao, M., Yang, D., & Liu, W. (2019, August). Learning effect and its prediction for 

cognitive tests used in studies on indoor environmental quality. Energy and 

Buildings, 197, 87–98. https://doi.org/10.1016/j.enbuild.2019.05.044 

Upton, G. B., & Snyder, B. F. (2017, August). Funding renewable energy: An analysis of 

renewable portfolio standards. Energy Economics, 66, 205–216. 

https://doi.org/10.1016/j.eneco.2017.06.003 

https://www.there100.org/
https://www.eia.gov/energyexplained/renewable-sources/portfolio-standards.php
https://www.eia.gov/todayinenergy/detail.php?id=39832
https://www.eia.gov/todayinenergy/detail.php?id=39832


 

 62 

van der Zwaan, B., & Rabl, A. (2003, January). Prospects for PV: a learning curve 

analysis. Solar Energy, 74(1), 19–31. https://doi.org/10.1016/s0038-

092x(03)00112-9 

WRIGHT, T. P. (1936, February). Factors Affecting the Cost of Airplanes. Journal of the 

Aeronautical Sciences, 3(4), 122–128. https://doi.org/10.2514/8.155 

Xin-gang, Z., Ling-zhi, R., Yu-zhuo, Z., & Guan, W. (2018, November). Evolutionary 

game analysis on the behavior strategies of power producers in renewable 

portfolio standard. Energy, 162, 505–516. 

https://doi.org/10.1016/j.energy.2018.07.209 

Yelle, L. E. (1979, April). THE LEARNING CURVE: HISTORICAL REVIEW AND 

COMPREHENSIVE SURVEY. Decision Sciences, 10(2), 302–328. 

https://doi.org/10.1111/j.1540-5915.1979.tb00026.x 

Yin, H., & Powers, N. (2010, February). Do state renewable portfolio standards promote 

in-state renewable generationʔ. Energy Policy, 38(2), 1140–1149. 

https://doi.org/10.1016/j.enpol.2009.10.067 

Zhou, S., & Solomon, B. D. (2020, May). Do renewable portfolio standards in the United 

States stunt renewable electricity development beyond mandatory targets? Energy 

Policy, 140, 111377. https://doi.org/10.1016/j.enpol.2020.111377 

 

  



 

 63 

Appendix A. Subgame at the third stage 

Firm j decides to stay. 

 

FOC with respect to  and  

       (A1) 

      (A2) 

From equation (A1) and (A2) 

      (A3) 

Plug (A3) into the production function, then 

 

      (A4) 

Plug (A4) into equation (A3) 

  (A5) 

Then, the maximized firm j’s profit (payoff) is defined below: 

   (A6) 
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Lemma 1. 

We assume that firm j moves out to another country that can provide renewable 

electricity cheaper than the currently located country ( ). When we compare the 

optimal electricity in both cases,  
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Appendix B. Subgame at the second stage 

Firm j decides to stay in the third stage. 

  

 

FOCs 

 

 

 

i)  

 

 

Therefore, it is a contradiction. 

ii)  

 

 

 

 

 

 

    (B1) 
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iii)  

 

 

 

 

 

 

     (B2) 

 

iv)  

 

 

 

 

     (B3) 

 

  

 

FOCs 
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v)  

 

 

 

      (B4) 

vi)  

 

 

       (B5) 

From the (B1) to (B5), we can derive the best response correspondence of obligor i. 
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THE IMPACT OF RPS POLICY ON THE PRIMARY CROPS 

PLANTED AREA IN THE UNITED STATES 

 

1. Introduction 

In the last 20 years, renewable energy has emerged as a promising solution to 

respond to climate change and reduce reliance on traditional fossil fuels. It has brought 

many advantages, including reducing greenhouse gas emissions and promoting 

sustainable energy systems, and jobs in related industries are also increasing. However, 

some renewable energy generation facilities require land. As a result, there is a growing 

interest in how renewable energy expansion has a potential impact land available for 

agricultural use. 

One of the primary features of renewable energy is the relatively low energy 

density of its raw materials compared to fossil fuels. This often necessitates significant 

land area for the installation of renewable energy facilities, particularly in power 

generation (val Zalk and Behrens, 2018). While the increased supply of renewable energy 

is generally viewed as positive in addressing climate change, it is crucial to consider the 

potential adverse effects on agricultural land and crop acreage resulting from these 

installations. 

There are a great many studies of acreage estimation, focusing on various factors 

influencing crop area, such as climate change, agricultural policies, and bioenergy. 

However, studies specifically examining the impact of renewable electricity, a relatively 

recent form of installed capacity that can affect crop cultivation and land use, are scarce. 

In this context, understanding the implications of renewable energy policies, 

particularly Renewable Portfolio Standards (RPS), on crop acreage becomes crucial. RPS 
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policies requires utilities or power suppliers to obtain a certain percentage of their 

electricity from renewable sources, aiming to promote renewable energy development, 

stimulate clean energy investments, and reduce greenhouse gas emissions.  

From the 2000s to the early 2010s, there was a record surge in the enactment and 

enforcement of RPS related laws in the United States (Figure 1). In 2014, 34 states 

implemented RPS policies, the peak in terms of the number of enforcing states. Since 

then the number of RPS states has fallen due to two reasons: impossibility of 

implementation and achievement of implementation. In 2015 West Virginia repealed the 

RPS for the first reason, but four states, Montana, North Dakota, Oklahoma, and South 

Dakota, successfully met their RPS. As of 2021, out of all the states and Washington 

D.C., 29 have implemented RPS, which accounts for more than half of the total.1   

 

 
Figure 1 Historical evolution of RPS policies in the U.S. states (1997-2022) 

Source: Authors own calculations using data from NCSL and DSIRE 

 
1 In 2020, Kansas achieved its RPS goals and changed its policy to voluntary target (enacted in 2015), 

while Virginia started implementation of RPS in 2020. 
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Notably, California, Colorado, Hawaii, Maine, Nevada, New Mexico, Virginia, 

Washington, and Washington D.C. have set ambitious targets of achieving 100% 

renewable (or clean) energy through their RPS policies.2 These states are actively 

working towards a complete transition to renewable energy sources in their electricity 

generation. Across the U.S. there has been widespread adoption and varying goals of RPS 

policies across different states, with a significant focus on achieving high levels of 

renewable energy generation.  

However, the expansion of renewable energy installations driven by RPS policies 

may compete with agricultural land, potentially leading to changes in total primary crops 

planted acreage (TPCA) and posing a threat to food security. In 2019 state of Ohio, 

farmers were offered $800-$1,200 per acre per year once a facility is constructed and 

operating (Donalson, 2019). In 2022 Callaway County in Missouri, there was an 

opposition to solar farm projects meanwhile a partner of solar farm leased about 400 

acres of land for $800 per acre annually over 40 years (Brenner, 2022). A similar 

situation is observed in 2023 Minnesota where the state has a goal of 100 percent carbon-

free energy by 2040. In this article, solar PV developers are offering landowners $800-

$1,500 per acre per year, young farmers are hard to access land because the bidding of 

PV developers are outbidding compared to the farmers’ bidding, $300 per acre per year 

(Marshall-Chalmers, 2023). Therefore, the issue of renewable energy expansion and 

arable land is an important topic to be investigated at the present time as similar problems 

are occurring throughout the United States. 

 
2 See Brief for the State Renewable Portfolio Standards and Goal of NCSL 
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For this topic, some research questions follow: do the target levels of renewable 

electricity make a significant impact on the total primary crops planted area in 48 

adjacent states of the United States from 1997 to 2022? How much does it impact? Does 

Conservation Reserve Program (CRP) enrolled area have a significant effect that is 

expected to have similar effects to target levels of renewable electricity? This study aims 

to investigate the impact of RPS policies on total primary crop acreage in the United 

States. It seeks to assess the significant influence of RPS policies on crop acreage, 

providing insights into potential conflicts and trade-offs between renewable energy 

expansion and agricultural land use for the 48 states from 1997 to 2022. To achieve this 

objective, the study will conduct a comprehensive analysis of renewable energy policies, 

crop acreage data, and other relevant factors such as land availability, economic 

considerations, and agricultural practices. 

The subsequent sections of this paper comprises a literature review in Section 2, 

research methodology is presented in Section 3, and data sources are discussed in Section 

4. In Section 5, the results are analyzed, and conclusions are presented in Section 6. 

Through a rigorous examination of RPS policies and their effects on total primary crop 

acreage, this study aims to contribute to the ongoing discussions on the sustainable 

deployment of renewable energy and its implications for agricultural land use. 

 

2. Literature review  

Regarding the competition between agriculture and solar power, research suggests 

that the displacement of agricultural land due to solar power installations is relatively 

small (Mauro and Lughi, 2017). Even with less than 1% of agricultural land dedicated to 
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solar power, global energy demands can be met (Adeh et al., 2019). Britz and Delzeit 

(2013) examined the impacts of Germany’s biogas production on agricultural markets, 

land use, and the environment. They found that the significant increase in biogas output, 

driven by the Renewable-Energy-Act (EEG), had sizeable effects on global agricultural 

markets, causing significant land use changes outside of Germany.  

According to Sacchelli et al. (2016), there is a trade-off between traditional 

food/feed cultivation and solar installation in unirrigated arable land in Italy. They found 

that regions with high crop yields and availability of non-irrigated arable land 

experienced a relevant decrease in crop production because of solar installation. 

Several studies have explored the relationship between climate variables, 

technology, crop prices, and crop yield variations in the United States. For the total 

acreage, Barr et al. (2011) examined agricultural land elasticities and found that the 

implied acreage elasticity with respect to the expected price are from 0.007 to 0.029 

depending on the time.  Huang and Khanna (2010) conducted an extensive analysis using 

historical data from 1977 to 2007 at the county-level, examining the impacts on corn, 

soybeans, and wheat. Their findings shed light on how changes in output prices, climate 

conditions, and technological advancements affect crop yields over time. Miao et al. 

(2015) investigated the influence of crop pricing and climatic factors on rainfed corn and 

soybean yields and acreage, revealing price elasticities and potential climate change 

scenarios. 

Uludere Aragon (2019) focused on examining the role of land quality in the 

response of corn acreage to price and policy changes from 1986 to 2015 in the western 

corn belt region. The author employed a multivariate panel model at the county-level and 
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considered various factors such as fertilizer price index, CRP rental payment, and average 

precipitation in April. In addition to corn prices, she also analyzed the impact of soybean, 

wheat/oats, and hay prices, as well as the biofuel dummy variable based on the FAIR Act 

and the 2006 Added variable. The analysis divided the data into groups based on total 

acreage and land quality. The study found that the price elasticity of corn acreage ranged 

from 0.176 to 0.519, and these elasticities were statistically significant. Corn acreage 

responded positively to soybean prices but negatively to fertilizer prices, wheat/oats 

prices, and CRP payments. Furthermore, a statistically significant positive response was 

observed in the time trend for the entire dataset and quartiles I-III. 

Salassi (1995) examined the response of rice acreage to the support price under 

government policy in a study on the U.S. rice acreage. The author found a price elasticity 

ranging from 0.18 to 0.43, based on average prices and divided into short-term and long-

term periods. 

DeLay (2019) confirmed that the Conservation Reserve Program (CRP) registered 

area responded positively to CRP rent. However, positive, and negative responses 

alternated depending on the inclusion of year fixed effects when considering expected 

prices using futures price. 

Table 1 presents a collection of studies focused on acreage estimation, which 

examine the utilization of different price variables. In this context, researchers commonly 

consider two types of prices: the futures price and the received price, which play a 

significant role in determining farmer behavior. Additionally, the inclusion or exclusion 

of a lagged acreage term varies across different models employed in these studies. 
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Table 1 Estimates of Acreage Elasticities in Different Studies  

Study Price Used Crop Type Own-price Elasticity 

Barr et al. (2011) Futures Total acreage 0.007-0.029 

Chavas and Holt (1990) Received Corn 0.15 

  Soybeans 0.45 

Chembezi and Womack (1992) Received Corn 0.10 

Lee and Helmberger (1985) Received Corn 0.05 

  Soybeans 0.25 

Lin and Dismukes (2007) Futures Corn 0.17-0.35 

  Soybeans 0.30 

Miller and Plantinga (1999) Received Corn 0.95 

  Soybeans 0.95 

Orazem and Miranowski (1994) Futures Corn 0.10 

  Soybeans 0.33 

Uludere Aragon (2019) Received Corn 0.291 (0.176-0.519) 

Salassi Supported Rice 0.18-0.61 

Tegene, Huffman, and Miranowski (1998) Received Corn 0.20 

Huang and Khanna (2010) Received Total acreage 0.257 

  Corn 0.510 

  Soybeans 0.487 

  Wheat 0.067 

Miao et al. (2015) Received Corn 0.45 

  Soybeans 0.63 

This study Received Total acreage 0.297-0.314 

Note: Adapted from Miao et al. (2015), p.3. Additional information added by the authors 

 

 

3. Methodology 

We model the state-specific acreage of total primary crops for state i and year t as 

 (1) 

where 𝛽0 is a constant and 𝛽1 to 𝛽6 are vectors of parameters to be estimated; 𝛬, 𝛹, 𝛤, P, 

𝛴 and 𝛺 are vectors of prices, climate variables, time trends, population density, 

conservation reserve program, and RPS vectors, respectively; ui is a state-level fixed 

effect, and 𝜖it is an error term. 

The vector 𝛬 encompasses the input and output prices, specifically represented by 

the fertilizer price index for input costs and the Laspeyres price index for the total output 

prices (Huang and Khanna, 2010). In contrast to previous studies that relied on a one-year 

https://www.codecogs.com/eqnedit.php?latex=A_%7Bit%7D%20%3D%20%5Cbeta_%7B0%7D%20%2B%20%5Cbeta_%7B1%7D%5CLambda_%7Bit%7D%2B%5Cbeta_%7B2%7D%5CPsi_%7Bit%7D%2B%5Cbeta_%7B3%7D%5CGamma_%7Bit%7D%2B%5Cbeta_%7B4%7DP_%7Bit%7D%2B%5Cbeta_%7B5%7D%20%5CSigma_%7Bit%7D%2B%5Cbeta_%7B6%7D%5COmega_%7Bit%7D%20%2B%20u_%7Bi%7D%2B%5Cepsilon_%7Bit%7D#0
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lagged expected price, this model employs a two-year average lagged price. If there are 

no other factors at play and the decision is solely between cultivation and fallow, the one-

year lagged price can effectively represent and clarify the situation. However, 

incorporating a two-year lagged price is necessary due to the complexities involved in the 

farmer’s perspective when considering renewable energy factors. It is not merely a matter 

of choosing to cultivate a different crop or fallow for one year. The two-year lagged price 

accounts for the possibility of farmers opting to seek alternative employment 

opportunities outside of farming for an extended period, or even considering farming in a 

different location. Thus, using a two-year lagged price makes more sense in this context, 

as it allows for a broader consideration of the potential outcomes and decisions related to 

renewable energy transition.3 

The climate variable vector (𝛹) incorporates seasonal precipitations, which are 

recognized as a crucial factor in determining crop acreage. Moreover, the time trend 

vector (𝛤) is included to account for technological advancements and changes in 

agricultural practices over time. Both linear and quadratic time trends are considered to 

capture any non-linear patterns that may emerge. CRP vector (𝛴) includes the area 

enrolled in conservation program. In addition to the analysis, notable additions include 

the inclusion of the RPS policy vector (𝛺), which represents the targeted electricity 

supply in states implementing RPS policies. Furthermore, several electricity-related 

variables such as electricity interstate net flow, electricity consumption, and electricity 

net supply have been incorporated. 

 
3 Krause et al. (1995) utilized expected market prices based on a weighted average of the average price received by 

farmers over the previous three years. 
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The common endogeneity concern associated with price estimation in acreage 

analysis is that a high (or low) price of a crop tends to increase (or decrease) the acreage 

of that crop meanwhile large (or small) acreage of a crop might induce low (or high) 

price of that crop. To solve the endogeneity problem associated with crop price, we 

employ a panel data instrumental variable (IV) estimator with state-fixed effects. This 

approach enables us to account for the national level of TPCA while effectively 

mitigating endogeneity issues. To serve as a suitable instrumental variable, certain 

criteria must be met: 1) it should have an impact on prices, 2) it should not influence 

TPCA, and 3) it should be applicable across all 48 states to utilize all data. In this study, 

we utilize hay stocks as of December 1 of the previous year as an instrumental variable. 

Given that hay is cultivated in all states under examination and serves as a substitute for 

other crops, it meets the requirements for an appropriate instrumental variable. 

 

4. Data 

Our research aims to assess the impact of Renewable Portfolio Standard (RPS) 

policies on the land area dedicated to primary crops. As RPS policies are implemented at 

the state level, we require state-level data to analyze their effects. Specifically, we need 

data on individual crop types, climate variables, RPS policy implementation, electricity 

market dynamics, and agricultural policies. To fulfill this objective, we conduct an 

analysis of 48 states, excluding Alaska, Hawaii, and Washington, DC. These states are 

chosen based on the availability of adequate and reliable acreage-related data during the 

analysis period spanning from 1997 to 2022.  
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To obtain data on individual crops, we rely on the US Department of 

Agriculture’s National Agricultural Statistics Service (USDA NASS). The USDA NASS 

provides information on various primary crops, including corn, sorghum, oats, barley, 

wheat (winter wheat, spring wheat, and durum wheat), rye, rice, soybeans, peanuts, 

sunflower, cotton, dry edible beans, potatoes, sugarbeets, canola, proso millet, all hay, 

tobacco, and sugarcane. We aggregate the planted and harvested areas of these crops 

from 1997 to 2022 to derive the total primary crop area for each state.4 

However, estimating the total primary crop planted area poses challenges when 

utilizing individual crop prices. To address this issue, we employ the Laspeyres price 

index based on the production volume of individual crops in 2015. This index serves as a 

price variable corresponding to output. We gather state-level production data for each 

crop from 1997 to 2022, received price data from 1996 to 2022, and stock data as of 

December 1st from USDA NASS. In certain states, namely those belonging to the New 

England region and Utah, there is a lack of price data for corn and wheat, despite our 

ability to determine which states cultivated these crops. In such instances, we resort to 

using the prices from the nearest states.5 Also, all price variables are adjusted to real 

prices using the GDP deflator in 2015 dollars. 

To conduct a panel analysis, it is good to have fertilizer prices categorized by 

state and year. However, obtaining such data from the USDA or other sources is 

challenging. This might lead previous researchers to utilize the fertilizer price index 

provided by the Economic Research Services of USDA as a substitute for actual fertilizer 

 
4 We exclude dry edible beans and consider the entire primary crop planted area. This is because it is challenging to 

select specific dry edible beans, and there is no significant difference between the total area and the area excluding dry 

edible beans. 
5 To fill in the missing prices for the New England region, we utilize the corn prices of New York. Similarly, for the 

missing prices of Utah, we use the wheat prices of California as a substitute. 
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prices. (Huang and Khanna, 2010; Miao et al. 2015; Uludere Aragon, 2019) In line with 

these previous research practices, we will also utilize the fertilizer price index which 

covers the period from 1997 to 2022 as a representative measure of output prices for our 

analysis. 

To assess the effectiveness of RPS policies, we obtain annual target shares of 

states implementing RPS from the Berkeley Lab. Additionally, we acquire variables 

related to the electricity market and new and renewable energy facilities from the US 

Energy Information Administration (EIA). These variables include solar nameplate 

capacity, electricity consumption (supply), and electricity interstate net flow by state 

from 1996 to 2020.6 By multiplying the electricity consumption data from the EIA with 

the RPS target shares obtained from the Berkeley Lab, we generate the target level of 

renewable electricity variable. 

To account for environmental factors, we collect monthly precipitation data from 

NOAA’s National Centers for Environmental Information spanning from 1997 to January 

2023. This data allows us to capture seasonal variations in precipitation, and we define 

the seasons as spring (March to May), summer (June to August), fall (September to 

November), and winter (December to February). As a convention, we categorize the 

precipitation of the first two months of the current year as belonging to the previous year 

to align with the seasonal classification. 

Population data for each state is sourced from the US Department of Commerce 

Bureau of Economic Analysis, while inland area information is derived from US census 

data. We calculate an economic factor by dividing the population by the inland area. We 

 
6 In the electricity market, consumption is equal to supply. If there is any imbalance between consumption and supply, 

it can result in disruptions such as blackouts. 
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consider variables related to agricultural policies, specifically the Conservation Reserve 

Program (CRP). We utilize the enrolled acreage figures associated with the CRP from the 

Farm Service Agency, USDA. 

 

Table 2 Descriptive Statistics  

Parameter Unit Obs. Mean SD Min Max 

Total Primary Crop acreage acres 1,248 6,629,372 7,413,637 7,000 25,020,000 

Target Level of Renewable 

Electricity (RE) 

billion kWh 1,151 2.778 8.028 0 82.56 

Electricity Consumption billion kWh 1,152 74.35 67.76 5.239 429.3 

Electricity Interstate Net Flow billion kWh 1,152 -0.249 22.76 -77.81 89.52 

Electricity Net Supply billion kWh 1,152 74.60 64.56 3.535 419.3 

CRP Enrolled Area million acres 1,248 0.610 0.848 0 4.074 

Composite Price Index  1,247 103.4 24.01 44.43 195.6 

Fertilizer Price Index  1,248 68.55 28.05 31.90 131.4 

Population Density thousand 

residents/mi2 

1,248 0.198 0.264 0.00503 1.261 

Precipitation in Spring cm 1,248 24.98 11.27 1.041 64.21 

Precipitation in Summer cm 1,248 26.99 13.50 0.356 73.13 

Precipitation Fall cm 1,248 23.04 11.48 1.321 62.15 

Precipitation in Winter cm 1,248 21.53 12.55 0.584 70.18 

Hay Stock on Farm on Dec. 1st Tons 1,248 2,009,365 1,946,008 4,000 13,400,000 

 

5. Results 

This section presents the findings derived from the TPCA regression analysis 

employing four distinct model specifications. The models aim to examine the relationship 

between various factors and TPCA (Total Planted Crop Acreage). In Model I, certain 

variables such as the RPS (Renewable Portfolio Standard) electricity supply target, CRP 

(Conservation Reserve Program) enrolled area, electricity consumption, interstate 

electricity net flow, and electricity net supply are excluded. Model II incorporates these 

essential variables along with the RPS electricity supply target and CRP registration area. 

To account for state-specific characteristics of the electricity market, Models III and IV 
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further include electricity consumption and interstate electricity net flow, and electricity 

net supply, respectively. Table 3 provides the results of estimations of all models. 

 

Table 3 The estimated results of the fixed effects models 

Variables Model I Model II Model III Model IV 

Target Level of RE   -0.004*** -0.004*** -0.004*** 

  (0.001) (0.001) (0.001) 

E. Interstate Net Flow-1   -0.000  

   (0.001)  

E. Consumption-1   0.001**  

   (0.001)  

Net E. Supply-1    0.001* 

    (0.000) 

CRP Enrolled Acres  -0.069*** -0.059*** -0.065*** 

  (0.013) (0.012) (0.012) 

Composite Price-1-2 0.003*** 0.003*** 0.003*** 0.003*** 

 (0.001) (0.001) (0.001) (0.001) 

Fertilizer Price Index-1 -0.002*** -0.002*** -0.002*** -0.002*** 

 (0.001) (0.001) (0.001) (0.001) 

Time Trend-1 -0.000 0.001 -0.001 -0.000 

 (0.002) (0.003) (0.003) (0.003) 

Time Trend Squared-1 -0.000* -0.000* -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) 

Population Density 0.046 0.510 0.342 0.422 

 (0.708) (0.695) (0.647) (0.673) 

Precipitation Spring-1 -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) 

Precipitation Summer-1 0.001** 0.001 0.001* 0.001 

 (0.000) (0.000) (0.000) (0.000) 

Precipitation Fall-1 -0.001*** -0.001*** -0.001*** -0.001*** 

 (0.000) (0.000) (0.000) (0.000) 

Precipitation Winter-1 0.000 0.001* 0.000* 0.001* 

 (0.000) (0.000) (0.000) (0.000) 

     

Observations 1,248 1,151 1,151 1,151 

R-squared 0.208 0.263 0.297 0.282 

Number of States 48 48 48 48 

Kleibergen-Paap rk LM statistic 16.545 16.007 16.147 15.977 

Kleibergen-Paap rk Wald F 

statistic 

16.008 13.416 16.709 15.204 

p-value of Hansen J statistic 0.000 0.000 0.000 0.000 

Note: Robust standard errors in parentheses. 

*** 1% level, **   5% level, *   10% level 
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The target level of renewable electricity, which captures the impact of RPS 

policy, demonstrates statistical significance and a negative relationship at the 1% level in 

all models. A 1 billion kWh (= 1 million MWh = 1,000 GWh = 1 TWh) increase in the 

target level of renewable electricity results in a reduction of 1.0% of TPCA in Model II, 

and reduction of 1.1% of TPCS in Model III and IV, respectively.7 To calculate the acres 

change by 1 billion kWh change, a reduction of 24,335.76 acres in Model II. Model III, 

accounting for electricity consumption and interstate net flow to reflect state-specific 

power conditions, indicates a decrease of 26,832.38 acres while the coefficient associated 

with net flow (negative in the case of power exports) is negative but lacks statistical 

significance. Model IV, incorporating net electricity supply (electricity consumption - 

interstate net flow) to address this issue, reveals a decrease of 25,761.74 acres for every 1 

billion kWh increase in the target level of renewable electricity, with net electricity 

supply displaying positive significance at the 10% level. In interpretation, this suggests 

that an abundance of surplus electricity within a state contributes to an increase in TPCA. 

Consequently, inadequate surplus electricity within a state, leading to an influx of 

electricity from other states, results in a reduction in acreage. This observation may 

correspond to scenarios where electricity-dependent facilities are established within the 

TPCA. 

Integrating the CRP enrolled area into the analysis yields statistically significant 

negative coefficients across all models, which are increasing by 1 million acres in CRP 

enrollment reduces TPCA by 5.9%-6.9%. Additionally, the consistent magnitude of 

coefficients for input and output prices reflects a decline in acreage. Enrolling an area of 

 
7 1 billion kWh is equivalent to 94,000 residential utility customers’ annual electricity consumption based 

on the average annual electricity consumption for a U.S. residential utility customer in 2021 (EIA, 2022). 



 

 82 

1 acre in CRP is associated with a reduction ranging from 0.39 to 0.46 acre.8 Given that 

CRP targets objectives beyond TPCA exclusively, a reduction of less than 1 acre can be 

considered a reasonable outcome. 

The outcomes displayed bottom of Table 3 show the test results of the instrument 

variable. Kleibergen-Paap rk LM statistic, Kleibergen-Paap rk Wald F statistic, and 

Hansen J statistic show the results of under-identification test, weak identification test, 

and over-identification test, respectively. The results indicate that using the farm hay 

stock on December 1st is an instrumental variable suitable for mitigating the endogeneity 

of the composite price index.   

The outcomes displayed in Table 3 reveal a statistically significant positive 

response of TPCA to an increase in its output price across all four models, with 

significance observed at the 1% level. In Model I, the estimated acreage elasticity with 

respect to the composite price index is calculated as 0.329 (Table 4). However, upon 

controlling for the RPS electricity supply target and CRP enrolled acres, this acreage 

elasticity diminishes to 0.314. Moreover, incorporating the state-specific characteristics 

of the electricity market further reduces the elasticity to 0.297 and 0.304 in Models III 

and IV, respectively. Compared to other research, our elasticity falls between that of Barr 

et al., which is lower, and that of Huang and Khanna, which is higher. While it is 

challenging to directly compare elasticities across different crops, our findings do not lie 

at the extreme ends of the spectrum. 

The coefficients associated with the fertilizer price index are found to be positive 

and statistically significant at the 1% level in all models. This indicates that higher 

 
8 Divide acres of CRP Enrolled Area in Table 4 by 1 million. 
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fertilizer prices contribute to a decline in planting intensity and a contraction of extensive 

margins (Black, 1929). The positive response to the output price and negative response to 

the input price imply the effective operation of the production function when acreage 

serves as a representative indicator of production levels. 

The coefficients associated with the time trend fail to demonstrate statistical 

significance for linear terms, while quadratic terms display negative coefficients. Models 

excluding control variables for the electricity market yield statistical significance for the 

time trend at the 10% level. The negative coefficients for quadratic terms indicate a 

regression in technology and agricultural practices. Further investigation is required to 

ascertain whether this regression reflects the actual situation or if incorporating power 

market controls would offer a more satisfactory explanation. 

The analysis indicates that fall precipitation has a negative impact on acreage 

across all models. On the other hand, positive summer precipitation shows statistical 

significance at the 5% level in Model I and at the 10% level in Model III. In Models II-

IV, positive coefficients are observed at the 10% level. Given that we focus on primary 

crops, we may not directly identify the specific growing season. However, it is well-

known that crops like corn, soybeans, and rice are typically harvested in the fall. 

Considering that corn and soybeans constitute a significant portion of U.S. agriculture, it 

is reasonable to assume that precipitation during the harvest season might not be 

conducive to production. Thus, a negative impact on previous year’s production could 

lead to adverse effects on acreage. 

Contrary to previous studies, the coefficients of population density exhibit 

positive values but lack statistical significance across all four models. This finding 
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suggests that changes in population density do not exert a statistically significant 

influence on TPCA at the state level, as opposed to the county level, where the 

conversion of cropland to residential areas is more sensitive to population density 

variations. 

 

Table 4 Summary of unit (acre) change and elasticities of key determinants at the means 

Variables change Model I Model II Model III Model IV 

Target Level of RE acres  -24335.76 -26832.38 -25761.74 

 elasticity  -0.010 -0.011  -0.011 

CRP Enrolled Acres acres  -456887.04 -393396.88 -428541.17 

 elasticity  -0.042 -0.036 -0.039 

E, Interstate Net Flow-1 acres   -1167.10  

 elasticity   0.000  

E. Consumption-1 acres   8975.51  

 elasticity   0.101  

Net E. Supply-1 acres    5562.04 

 elasticity    0.063 

Composite Price-1-2 acres 21259.73 20253.39 19172.81 19658.74 

 elasticity 0.329 0.314 0.297 0.304 

Fertilizer Price Index-1 acres -13466.91 -13412.55 -12290.19 -12790.05 

 elasticity -0.209 -0.208 -0.190 -0.198 

Precipitation Fall-1 acres -6732.79 -7794.82 -7520.36 -7739.79 

 elasticity -0.023 -0.027 -0.026 -0.027 

 

Table 5 shows the land requirements (Capacity weighted average land use) for the 

solar PV, CSP and wind power from National Renewable Energy Laboratory (NREL) of 

U.S. Department of Energy (DOE) and STRATA group.9 We can easily find that there 

are huge differences between them. We apply 24.7% and 36% capacity factors for 

average PV and wind power in the U.S. from NREL’s data, respectively. From the 

calculation, we can find that PV requires 2.82 – 20.1 acres and wind power requires 9.51 

 
9 STRATA group did not specify the land requirements by size, and CSP data is from NREL 2013 report. 
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– 22.4 acres to generate 1,000 MWh per year. Crop acreage changes by target level of 

renewable electricity is similar to STRATA’s data, however it can be seen as 

overestimated based on NREL’s data. 

 

Table 5 Land requirement by technology and size 

 NREL STRATA 

Technology Capacity 

weighted average 

land use  

(acres / MW) 

Generation 

weighted average 

land use 

(acres/1 GWh/yr) 

Capacity 

weighted average 

land use  

(acres / MW) 

Generation 

weighted average 

land use 

(acres/1 GWh/yr) 

Solar PV (1-10MW) 6.1 2.82 43.5 20.1 

Solar CSP 10 3.5   

Wind (<1 MW) 30 9.51 70.64 22.4 

Wind (1 – 10 MW) 44.7 14.17   

Source: NREL (2013), NREL (n.d.), STRATA (2017) and authors’ calculation   

 

6. Conclusions 

This research employs an econometric analysis to find the answer of the research 

questions: does the target levels of renewable electricity and CRP enrolled area have 

significant impacts on the total primary crop planted area across 48 states, excluding 

Alaska, Hawaii, and Washington, DC? How much do they impact? The answers are 

“They are not only statistically significant and negative but also important in economic 

point of view.”  

Utilizing state-level data spanning from 1997 to 2022, we examine the 

relationship between acreage and various factors. Drawing upon previous studies, our 

empirical framework is based on the premise that acreage is influenced by climatic 

factors, farmers’ crop management practices, and land allocation decisions, while 

considering input and expected production prices. Additionally, we extend the framework 
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to incorporate the influence of renewable electricity policy (RPS) and other agricultural 

policy (CRP). To address potential endogeneity concerns, we employ an instrumental 

variable (IV) panel data approach, ensuring a robust analysis across the 48 states. 

The most important finding in this analysis is that the coefficient estimates for 

target level of renewable energy are statistically significant and negative. When this is 

calculated as elasticity, it is about -0.011, which does not have a large impact, but it can 

be confirmed that it clearly has a significant impact economically. In the states where the 

policy is in place, the RPS target level of renewable electricity is found to significantly 

reduce acreage, although the actual magnitude of reduction is relatively modest, 

estimated at around 24 to 26 acres per 1000 MWh. Considering that the supply of 

renewable energy will be further expanded in the future, this has an important meaning in 

that the effect of the current relatively small size is likely to be further expanded. 

The findings indicate that both output price and input price are statistically 

significant at the 1% level. The coefficients of the composite price index are positively 

related to acreage, while the coefficients of the fertilizer price index exhibit a negative 

relationship. The estimated output price elasticities range from 0.297 to 0.329, and the 

elasticities from the models considering electricity market characteristics show similar 

magnitudes, approximately 0.30. The analysis reveals a negative impact of fall 

precipitation on acreage.  

It is important to acknowledge certain limitations in our analysis of crop acreage. 

There are a complicated range of factors that influence agricultural land use decision. 

State-level analysis may not fully capture the influence of factors that a more granular 

county-level examination might. Secondly, the study focuses exclusively on the 
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electricity sector within the realm of renewable energies, thus excluding the potential 

impact of policies such as Renewable Fuel Standards (RFS) on primary crop acreage and 

any interaction between policy. 

Overall, the regression analysis provides valuable insights into the factors 

influencing TPCA, including the composite price index, fertilizer price index, population 

density, time trend, seasonal precipitation, CRP enrolled area, and the target level of 

renewable electricity. These findings contribute to a better understanding of the dynamics 

shaping TPCA at the state level and highlight the significance of considering various 

factors within the electricity market context.  
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