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Abstract: Flavonoids are hydroxylated polyphenols that are widely distributed in plants with diverse
health benefits. Despite their popularity, the bioavailability of flavonoids is often overlooked, impact-
ing their efficacy and the comparison of products. The study discusses the bioavailability-related
physicochemical properties of flavonoids, with a focus on the poorly soluble compounds commonly
found in dietary supplements and herbal products. This review sums up the values of pKa, log P, sol-
ubility, permeability, and melting temperature of flavonoids. Experimental and calculated data were
compiled for various flavonoid subclasses, revealing variations in their physicochemical properties.
The investigation highlights the challenges posed by poorly soluble flavonoids and underscores the
need for enabling formulation approaches to enhance their bioavailability and therapeutic potential.
Compared to aglycones, flavonoid glycosides (with sugar moieties) tend to be more hydrophilic.
Most of the reviewed aglycones and glycosides exhibit relatively low log P and high melting points,
making them “brick dust” candidates. To improve solubility and absorption, strategies like size
reduction, the potential use of solid dispersions and carriers, as well as lipid-based formulations have
been discussed.

Keywords: flavonoids; physiochemical properties; solubility; pKa; log P; permeability; solubility
parameters; brick dust; grease balls; developability classification system

1. Introduction

Scientific evidence is necessary to support the importance of the bioavailability of
nutraceutical/pharmaceutical substances, especially those that are poorly soluble, such
as flavonoids. Many flavonoids currently used as dietary supplements or medical de-
vices are poorly soluble and demonstrate poor bioavailability [1]. In 2021, according to
the Nutrition Business Journal, U.S. herbal dietary supplement retail sales were worth
about USD 12.35 billion. That is a 10% increase in total sales compared to the previous
year and is the second highest for these products after 2020’s record increase of 17% from
2019 [2]. Unfortunately, the bioavailability of herbal supplements is often overlooked,
which complicates the assessment of their dose-related effects and the comparison of
marketed products. At the same time, the pharmaceutical industry and regulatory authori-
ties (European Medicines Agency and U.S. Food and Drug Administration) have already
developed approaches to the assessment and classification of poorly soluble drugs (e.g.,
biopharmaceutical classification system), which could be used and applied to flavonoids
with non-medical claims [3,4].

The aim of this investigation is to use a representative list of flavonoids; overview
their bioavailability-related physiochemical properties pKa, log P, solubility, solubility
parameters, melting temperature, and permeability; and discuss the formulation-related
attributes of flavonoids in the context of their bioavailability.
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2. Discussion
2.1. Flavonoids—Classification, Health Effects, Applications

Hydroxylated polyphenols, also called flavonoids, are a group of secondary plant
metabolites that are abundantly present throughout the whole plant kingdom, including
cereals, fruits, vegetables, herbs, seeds, and flowers of numerous plants, which are im-
portant dietary sources. Flavonoids are widely distributed in all plant parts, including
the roots, leaves, and shoots. In the literature, 8000–10,000 compounds of polyphenols
have been identified as flavonoids [5,6]. Numerous studies have revealed that flavonoids
have several biological effects and properties [7–11]. The properties of flavonoids include
antiviral activities, particularly against various types of human herpesviruses such as
tumor herpesviruses. Flavonoids have antiallergenic and anticancer effects, as well as the
potential to aid in the development of personalized, preventive, and predictive medicine.
Thanks to these health benefits, more people are taking flavonoids not only with food
but also as dietary supplements—single purified compounds and/or complex mixtures of
compounds [6,12–14]. It has been reported that the mean intake of flavonoids from different
foods in Europe was 428 ± 49 mg per day. Different food choices by country and, consequently,
different preferences for the primary dietary sources may influence flavonoid consumption.
Plants that contain flavonoids have also been used medicinally for a long time [15].

Regarding the chemistry of these hydroxylated polyphenols, the word “flavonoid” can
be applied to compounds in three cases: (1) compounds with a C15 skeleton (also known
as C6-C3-C6 backbone structure) that are derivatives of phenyl-substituted propylbenzene;
(2) phenyl-substituted propylbenzene derivatives with a C16 backbone (rotenoids, mainly
used as insecticides); (3) compounds with a structure that is based on phenyl-substituted
propylbenzene derivatives condensed with C6-C3 precursors, also known as flavonolig-
nans [16]. Flavonoids consisting of 15 carbon atoms are structured into two 6-carbon rings
(referred to as the A- and B-rings) joined by a heterocyclic benzopyran C-ring that contains
oxygen (Figure 1). Based on the position of the B-ring, as well as saturation and oxidation
of the C-ring, flavonoids are classified into eight subclasses: flavones, isoflavones, flavonols,
chalcones, anthocyanidins, flavanones, flavanols (flavan-3-ols), and flavanonols. Further-
more, flavonoids in natural products exist not only as aglycones (the parent cyclic structures,
free form) but also as β-glycosides (O- and C-glycosylated derivatives) [13,16]. Many studies
conducted previously have focused mostly on compounds with a C15 skeleton and have rarely
included flavonolignans or did not include compounds from all eight subclasses.
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Figure 1. The general skeleton structure of flavonoids.

Flavones, found in the leaves, flowers, and fruits of plants such as mint and chamomile, are
a subgroup of compounds with a ketone in position 4 of the C ring and a double bond between
positions 2 and 3. The main and more commonly described compounds of this subgroup are
apigenin and luteolin (their glycosides, apigetrin and cynaroside) [17]. Additionally, for many
years, there has been interest in baicalin and its aglycone, baicalein, a major flavonoid found in
the rhizomes of the traditional Chinese medicinal herb Scutellaria baicalensis L. [18–20].
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Flavonols are ketone-containing flavonoids found in an assortment of vegetables (e.g.,
onions) and fruits (e.g., apples and berries), as well as in beverages (tea and wine). The
most studied compounds in this group are quercetin, myricetin, fisetin, and kaempferol.
Quercetin should especially be emphasized in this group, as it is at the top of the list
of best-selling dietary supplements [21,22]. Consumption of flavonols has been linked
to a number of health advantages, including antioxidant activity and a decreased risk
of vascular disease. Additionally, a quercetin glycoside called quercetin 3-O-rutinoside
(rutin) is a well-liked flavonoid supplement that is frequently combined with quercetin
dosages [23]. Thus, rutin trihydrate (also known as rutoside trihydrate), in addition to
trypsin and bromelain, is a medication used to relieve musculoskeletal pain in conditions
such as osteoarthritis and rheumatoid arthritis [24,25].

Isoflavones are isomers of flavones that are dominantly found in leguminous plants
and are mostly extracted from soybeans. Commonly found isoflavones are the aglycones
daidzein and genistein and the glycosides daidzin and genistin. Isoflavones are referred
to as phytoestrogens because of their structural and biological similarities to the female
hormone estrogen. It has been discovered that phytoestrogens may be used as an alter-
native therapy for hormone-dependent diseases such as cancer, menopausal syndrome,
cardiovascular disorders, and osteoporosis. By boosting bone density, isoflavones also
contribute to bone health and bone strength [26].

Furthermore, the flavanones have the C-ring saturated and can also be called dihy-
droflavones. Unlike flavones, these compounds have a saturated double bond between
positions 2 and 3. Flavanones are mostly associated with oranges, lemons, and grapefruits,
as they are present in all citrus fruits and are responsible for the bitter taste in juice and peel.
The most known compounds of this subclass are hesperetin and naringerin, but even better
known is a combination of two compounds: hesperidin (hesperetin 7-O-β-rutinoside) and
diosmin (diosmetin 7-O-rutinoside). Although diosmin and its aglycone diosmetin belong
to flavones, this combination is widely presented in supplements and is used in authorized
medicine (Daflon®). Citrus flavonoids have intriguing pharmacological properties such
as antioxidant and anti-inflammatory properties; they can also fulfill the role of blood
lipid-lowering and cholesterol-lowering agents [17,27].

Flavanols, also called as “flavan-3-ols” or “catechins”, have a hydroxyl group at position 3
but lack both the ketone group and the saturated bond between positions 2 and 3. Catechins
are widely found in fruits and berries as well as herbal plants [13,28]. Flavanonols, also
called “dihydroflavonols,” are limitedly distributed in citrus fruits and Glycosmis L. species [29].
Taxifolin, engeletin, and puyanol are the representatives of this class.

Chalcones are characterized by the absence of the so-called “C-ring” of the basic flavonoid
structure. This group can also be referred to as open-chain flavonoids. Representatives of
this group are phloretin, phlorizin, arbutin, and more. Chalcones occur in vegetables, fruits
and berries such as tomatoes, pears, and strawberries [17]. Anthocyanidins are groups of
compounds characterized by the lack of the ketone group and by having two double bonds
between positions 1 and 2, as well as between 3 and 4 (C-ring). Representatives such as
delphinidin, malvidin, and cyanidin are found in flowers and berries [13].

A popular compound among flavonolignans is silibinin. Silibinin is found in sylimarin,
which is a common extract from the seeds of milk thistle (Silybum marianum L.). Currently,
the main uses of milk thistle are for hepatoprotection, the prevention and therapy of liver
disease and hepatic injury [30]. Figure 2 describes the structure and classification of the
monomeric flavonoids and glycosides (reviewed in the paper), utilizing the framework for
flavonoid structural organization [31].
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2.2. Acid-Base Dissociation Constant (pKa)

The pKa of a compound significantly impacts biopharmaceutical attributes such as
solubility, lipophilicity, permeability, and protein binding. Understanding the dissociation
constant of weak acid and base drugs is crucial for determining their ionic state across vari-
ous pH levels [32]. Despite recent attention on flavonoids, there is a lack of comprehensive
knowledge about their experimental pKa values and other physicochemical properties. The
likely reason for this is that they are mostly extracted and used as a sum of compounds but
not as highly purified compounds. The molecular complexity of flavonoids also contributes
to this issue [33]. Computer-aided calculations in cheminformatics and computational
pharmacology are widely used to determine new drug-like molecules, saving time, human
effort, and resources, especially when experimental data are unavailable [34]. However,
these predicted values rarely match the experimentally determined data due to a variety
of factors. Additionally, it is impossible to distinguish the range of acidity of certain -OH
groups in polyhydroxylated phenols using spectrophotometric or potentiometric titrations.
To the best of our knowledge, only a few studies have actually addressed the location of
the main dissociation [35]. Since experimental values are missing for some representatives
of aglycones and several representatives of glycosides, this is an area for potential research.

During the review, experimental data from different sources as well as calculated
values of aglycones (Figure 3) and flavonoid glycosides (Figure 4) were collected. An
analysis of the literature on dissociation constants reveals significant variation among
published values for most flavonoids. Most often, the experimental pKa values of flavonoids
found in the literature are scattered and appear as secondary aspects in broader studies.
One of the exceptions is a recently published paper by Fuguet et al. [33]. Due to this reason,
multiple experimental values were plotted as ranges of values. Only pKa values that are
partially or fully ionized within a physiological pH (approximately up to 7.5) were included
in the plots [36,37]. For many of the chosen flavonoids, dissociation constants exceeded
the pH range mentioned above; thereby, mainly the pKa1 was included, and for individual
compounds, the pKa2 was also included. No experimental values for aglycones, such as
diosmetin and isoliquiritigenin, and glycosides, such as myricitrin, cynaroside, phlorizin,
and apigetrin, were found in the literature.
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Isoflavonones, flavonols, and flavones are all around the same pKa value (6.5) ac-
cording to calculated pKa values. However, experimentally determined pKa1 values for
the same compounds range from 5.30 (baicalein) to 8.54 (apigenin). The largest range
of pKa1 values 5.81–8.45 was observed for quercetin, a flavonol. This is due to the fact
that quercetin and its derivatives are among the most common compounds in a large
number of plants. Quercetin comprises approximately 60–75% of the total intake of di-
etary flavonoids, and many biological studies have been carried out in the last few years
including physical parameters [65,66]. Another reason for such a wide range can be the
variety of determination methods (spectrophotometry, potentiometry, and capillary zone
electrophoresis) and method/working conditions (solvents, concentrations, and compound
solubility) used [33,67,68].

When comparing flavanols to other flavonoid subclasses, the dissociation constants
are higher. The calculated pKa of catechin, epigallocatechin (EGC), and epigallocatechin
gallate (EGCG) is 9.00, 8.73, and 7.99, respectively. The minimal experimental pKa1 values
of the same compounds are 8.60, 8.41, and 7.68, respectively. A drop in pKa values is caused
by the additional OH group that creates the pyrogallol moiety in the EGC structure and the
additional galloyl moiety of the catechin molecule in EGCG [43,57].

The plot of aglycone pKa’s presented also remarks that the experimental values of antho-
cyanidins are in the range from 5.3 (delphinidin) to 6.0 (malvidin). In addition, the values of the
glucosides of the same anthocyanidin aglycones are in a similar range (5.30–6.02).

Regarding the glycosides, it is worth mentioning baicalin, as it is one of the well-described
glycosides in the literature with experimental constant values. Thus, the pKa values for this
compound are also in the largest range with pKa1 in the range from 4.21 to 7.6 and pKa2 in the
range from 8.56 to 10.1 [18,20]. The calculated dissociation constant for this compound is 2.62,
which means that baicalin can be ionized since entering the stomach environment.

Apart from anthocyanidins, it is clear that the experimentally determined pKa1 values
are higher than the calculated values for most glycosides (Figure 4). Only a few glycosides,
notably rutin, baicalin, and diosmin, have ranges, unlike aglycones, where most glycosides’
pKa values are individual values that can be seen on the graph.

Based on the findings on dissociation constant data, it can be concluded that flavonoids
are weak acidic molecules that are nonionized in the stomach under fasted conditions
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(pH 1–2). However, a small fraction of a few compounds including baicalein, cyanidin,
delphinidin and baicalin can be ionized in postprandial conditions (pH up to 4). Moreover,
most of the flavonoids are partially or to a certain extent ionized in the intestines, where
the pH is 6.8–7.4.

2.3. Solubility and Permeability

Since 1995, when Amidon et al. introduced a relationship between human jejunal per-
meability rate measures (Peff) and the fraction of dosage absorbed, the biopharmaceutical
classification system (BCS) has become a useful tool in drug development. According to
their aqueous solubility and intestinal permeability, compounds are categorized into four
classes [69,70]. Whereas compounds of high solubility, such as Class III and Class I, with
low and high permeability, are relatively unproblematic, poorly soluble compounds of
Class II and IV with high and low permeability are challenging cases to be delivered by oral
route. In 2010, Butler and Dressman [71] developed a revised BCS and termed it the devel-
opability classification system (DCS), where Class II was further divided into dissolution
rate-limited (IIa) and solubility-limited (IIb). For more realistic volumes of fluid available in
the gastrointestinal tract and the compensatory nature of permeability on low solubility, the
volume of 500 mL (DCS vs. 250 in BCS) was considered for the dose/solubility ratio [71].
To the best of our knowledge, only a few studies have reported flavonoids in the context of
BCS, but as a sum of components and not as individual flavonoids [72,73].

There have been multiple instances of published measurements for the Peff of the
human intestinal barrier, focusing on various pharmaceuticals. These measurements were
attained by employing a single-pass perfusion method in the proximal jejunum. Due to
the complex nature and significant expenses associated with in situ experiments, ongoing
endeavors are directed toward simulating the in vivo system through in vitro apparent
permeability (Papp) measurements. For instance, Caco-2 cultured cell lines (monolayers) are
utilized to model drug absorption in humans [74–76]. In this review, we used Papp (apical-
basolateral) data obtained experimentally (Figures 5 and 6), as they were available for the
majority of flavonoids of interest, in contrast to Peff data, which were frequently lacking.
It should be noted that Papp data from Caco-2 cell monolayer models have been used
in numerous studies [74–76] to predict oral drug absorption in humans (Peff). Although
in vitro Papp values show a good correlation with in situ Peff values, they cannot be directly
equated due to the list of factors.

Based on the collected data (Figure 5), the reviewed aglycones belong to Classes II and
III with the exception of taxifolin and myricetin. Taxifolin is in Class I but is approaching
Classes II and III, whereas myricetin belongs to Class IV but is on the borderline of Class
II. In addition, all reviewed flavanols belong to Class III, whereas all flavones belong to
Class II. For certain aglycones such as hesperetin and diosmetin, the permeability has been
determined; however, due to missing doses (there is no information on dietary supplements
(DS), as in DS and medicines, the glycosides of these compounds are used), they were not
included in the graph.

Glycosides are mostly in classes II and IV, but only half of all reviewed glycosides were
included in the graph (Figure 6). Myricitrin, astragalin, cynaroside, apigetrin, delphinidin
3-glucoside, and malvidin 3-glucoside lacked permeability and dose data. No permeability
studies were performed for vitexin or phlorizin.
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2.4. Solubility Parameters

Based on the Hansen solubility parameters, calculated with the Fedors and Van
Krevelen/Hoftyzer group contribution method, Breitkreutz [148] proposed a Bagley plot
(δH vs. δV; please see the Section 3). In accordance with the findings, drugs in a circular

region with a center of 1.3 and 20.3, and a radius of 3
√

J
cm3 , had absorption times >10 h
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and were absorbed within the whole gastrointestinal tract. Outside this circular region, at
higher δH and/or δV but below δH of 17, the absorption times were 4–9 h. Drugs above
δH of 17 were absorbed in the upper part of the gastrointestinal tract with an absorption
time ≤3 h. In accordance with the abovementioned findings, none of the flavonoids fell
into the circular region, and almost all flavonoids fell into region with δH > 17 (above
the dotted line; Figures 7 and 8), corresponding to the absorption in the upper parts of
the small intestine and shorter absorption times. It can be observed that aglycones and
glycosides are arranged in two areas that do not overlap.
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Based on the Breitkreutz findings and presented results, an absorption window in the
upper part of the small intestine and a limited (up to 3 h) absorption time of all flavonoids
can be expected.

2.5. The Octanol/Water Partition Coefficient (KO/W) and Melting Point (Tm)

The KO/W and Tm are used for solubility calculation in accordance with the General
Solubility Equation proposed by Jain and Yalkowsky [149]:

log Ssolid
W = 0.5− 0.01 (Tm − 25)− log KO/W

where Ssolid
W is solubility of the compound in water. Upon limited information, this equa-

tion can be used to predict the molar solubility and categorize compounds with poor,
intermediate, or good solubility [150].

KO/W, or its logarithmic expression (log P), is one of the key parameters in drug
discovery, design, and development [150]. Whereas water media can represent aqueous
physiological media, the trivially employed amphiphilic n-octanol is considered to mimic
the characteristics of the phospholipid membrane [151].

To differentiate formulation strategies based on the properties of the poorly solu-
ble compounds such as log P and Tm, the “grease ball/brick dust” classification was
proposed and is currently widely used. The log P and Tm are used to characterize com-
pounds’ lipophilicity and crystal lattice strength, respectively. A relatively low lipophilicity
(log P < 3) and a Tm higher than 100 and 200 ◦C are used to classify the compound as “brick
dust”. Another group, so-called “grease balls”, is characterized by relatively high lipophilic-
ity (log P > 3) and substantially lower melting temperatures [152–155]. For example, while
“grease balls” are more likely to be included in the lipid-based formulation, the “brick dust”
candidates can be considered for polymer-based amorphous solid dispersions [156].

The same as with pKa values, the experimentally determined distribution coeffi-
cients vary between publications, and log P values for flavonoids are quite scattered as
it is one of the parameters that are typically determined as a secondary or additional
parameter [157,158]. In addition, most publications provide log P values for flavonoids,
which have been calculated using one or various of the calculation tools, for example,
SwissADME and ChemBioDraw Ultra 11.0 [34,159].

Plotting the collected log P against the melting point data (Table A1; Figure 9), it can
be concluded that most studied flavonoid aglycones belong to the “brick dust” category,
and only a few compounds (chalcones, phloretin, and isoliquiritigenin; flavone diosmetin)
are moving toward the “grease balls” category. The most hydrophilic compounds (with
relatively low log P) of the aglycones are the representatives of flavanols: catechin, epigallo-
catechin, epigallocatechin gallate, and flavonolignan silibinin. The representatives of each
subclass are spotted in relative proximity to each other and can be circled as areas. For the
compounds isoliquiritigenin, phloretin, and epigallocatechin, the calculated log P values
were used since the experimental values were not available. Phloretin has the widest range
regarding the partition coefficient value. It can be characterized by different calculation
parameters. Additionally, the way the experiment was set up, the substance used, etc., can
help explain why the ranges of values for other compounds, such as kaempferol, apigenin,
and luteolin, whose values are determined experimentally, are so large. The log P values of
the reviewed aglycones are within the range of 0.4–3.2. Regarding the Tm of the aglycones,
the values differ from 141 ◦C to 358 ◦C, and it can be said that each subclass of flavonoids
is characterized by a certain melting temperature range. Flavanols have a lower range of
Tm (141–220 ◦C), while flavanones have a Tm ranging from 227 ◦C to 251 ◦C. The melting
point for isoflavones, flavonols, and flavones is over 250 ◦C.

Because the Tm of anthocyanidins (both aglycones and glycosides) could not be found
or were questionable, they were not included in the graphs. A few sources reported values
that were used as beginning points or comparisons rather than as precise values. For
instance, it was said that cyanidin had a Tm of >300 ◦C (see Table A1). Thus, this subgroup
was not graphically described.
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When the log P values of aglycones and glycosides are compared (Figures 9 and 10),
glycosides have a lower partition coefficient (maximum of 1.3 for baicalin), which means
that aglycones are more lipophilic. The reason behind this is that log P for a sugar moiety
is much lower than for the -OH group. For example, the log P for a glucose substituent is
reported as roughly −2.4 [160], while for the hydroxyl group, it was calculated as −0.27
using the Molinspiration online interactive model. It is worth noting that the presence of a
sugar moiety has a significant impact on the overall structure [157]. The log P values for
naringin, hesperidin, and rutin are all negative. Furthermore, it is evident that in contrast
to aglycones of flavanones, glycosides of the same subclass are distributed around the
plot. Experimental data for glycosides have not been found; therefore, only calculated log
P values were given for several conjugated flavonoids, including myricitrin, astragalin,
cynaroside, apigetrin, vitexin, and naringin.
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To be permeated and consequently absorbed, the poorly soluble flavonoids should
be dissolved and made available in the small intestine where the permeation takes place.
Oral formulation improvement strategies for flavonoids can be handled in numerous ways,
such as structural transformation and chemical modification (glycosylation, metabolic
conjugation, prenylation, “prodrugs”), absorption enhancers, as well as formulation and
technological processing (e.g., cocrystals, nanotechnology) [1,182,183]. From the phar-
maceutical technology side, the BCS/DCS and “brick dust/grease balls” classifications
can help to choose the formulation approach. Most flavonoids were classified as “brick
dust” (relatively high Tm and low log P), while a few were classified as “grease balls.”
Class I and III “brick dust” compounds are relatively unproblematic and can be formu-
lated as immediate- or fast-release dosage forms. For Class IIa “brick dust” flavonoids
whose dissolution rates are limited, such as daidzein, genistein, kaempferol, and rutin, the
simplest way to increase the bioavailability is to increase the dissolution rate via particle
size reduction. Whereas for solubility-limited Class IIb “brick dust” flavonoids, such as
naringenin, apigenin, quercetin, and glycosides, the formulation should consider the in-
creased apparent solubility and can include the solid-state modification (including solid
dispersions and amorphous solid dispersions) [184]. These solid dispersions can be pre-
pared by hot-melt extrusion, spray-drying, or electrospinning, as well as by the loading of
flavonoids onto mesoporous carriers as can be exemplified by silybin (or Silymarin) [185].
For poorly soluble “grease balls” (relatively low Tm and high log P), bioavailability can
be enabled using different techniques. The simplest bioavailability-improving approach
can be considered the co-consumption of fat-containing foods. The other approach is lipid-
based formulations, including self-emulsifying (or self-micro-emulsifying) drug delivery
systems (SEDDS/SMEDDS), micro-/nano-emulsions, and liposomes. Regarding Class IV
compounds flavonoids (such as myricetin and the glycosides genistein, baicalin, and hes-
peridin), the same formulation approaches as for Class IIb “brick dust” and “grease balls”
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may be considered; however, cellular efflux issues should also be brought to attention [186].
For example, while the bioavailability of “brick dust” flavonoid glycoside hesperidin was
improved by micronization [187], at the same time, in accordance with DCS, it is related to
Class IV (on the border between IIb and IV; Figure 6). This means that its bioavailability
could be further improved by enabling formulations.

3. Materials and Methods

The selection of flavonoids for this investigation was performed based on the expert
opinion of the authors to representatively cover the diversity of flavonoids (different sub-
classes of aglycones as well as their glycosides). Based on the selected list of flavonoids, a
targeted search of specific properties (such as pKa, log P, melting point, solubility, permeabil-
ity, minimal and maximal dose) was performed. The collected data were systematized in
the form of tables, including the respective references (Appendix A), which were converted
into graphics and discussed. Wherever it was possible, experimental values (pKa, log P, Tm,
Papp, and solubility) were used; otherwise, calculated values were taken (Tables A1 and A2).
Google Scholar was used for data collection using the following combination of keywords:
“name of the flavonoid and name of the property”, e.g., “apigenin” and “pKa”. Abstracts
were screened for inclusion criteria. Full-text articles were used to extract experimental and
calculated values.

If the maximum and/or minimum daily dose for flavonoids as dietary supplements
was not reported in scientific literature, the U.S. and/or EU currently marketed dietary
supplements were sources for this purpose. The maximum and/or minimum daily dose
and the recommended daily intake were then used to calculate the dose-to-solubility ratio
by dividing the doses by the minimum solubility.

Hansen solubility parameters for flavonoids were calculated using the Van Krevelen
group contribution method. For this purpose, the HSPiP v5.1.03 software [188] was used.
The molecular volume for each flavonoid was calculated using the Y-MB engine within
HSPiP. The symmetry planes of molecules were calculated using the Webmo.net online tool.
Flavonoid solubility parameters δD, δP, and δH were calculated by counting molecular
groups in molecules (Table A3). For the construction of a Bagley plot, δH was plotted
against δV, where the δV values were calculated using the following formula:

δV =
√

δD2 + δP2

4. Conclusions

Based on the dose-to-solubility ratio and Papp values, most flavonoids are classified
as poorly soluble compounds with relatively high and low permeability (Class IIa and IIb
followed by Class IV respectively). Based on their pKa and the fact that they are weakly
acidic, the flavonoids reviewed should be unionized in the stomach under fasted conditions,
while in fed-state (pH up to 4), only a few of them can be partially ionized. The ionization
of flavonoids is expected to occur at intestinal conditions starting from the duodenum
(pH approx. 5.5), following the jejunum and ileum, where the permeation should happen.
In accordance with the Bagley plot, the absorption window is in the upper part of the small
intestine, and a limited (up to 3 h) absorption time of all flavonoids can be expected.

Considering the mentioned absorption window and limited absorption time, formula-
tions with Class I and III flavonoids are expected to provide immediate or fast release. In
general, a lot of dietary supplements with powdered flavonoids and simple formulations
(except Class I and III flavonoids) can be justifiably criticized. Albeit, based on the pKa and
log P of some of them, administration before/after/with a meal or with a fat meal can be
used to increase their bioavailability.

Nevertheless, to decrease inter- and intra-variability, as well as food and food content
effects on bioavailability to achieve more reproducible health effects, enabling formulations
should be considered for Class IIa/IIb and IV flavonoids. For the Class IV flavonoids, the
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same approach can be used as for Class IIb; however, cellular efflux issues and first-pass
metabolism should also be brought to attention.

The current review of selected flavonoids allowed us to describe their diversity, com-
pare their properties, and assess the potential effect of these properties on biopharmaceu-
tical consequences as well as the applicability of possible formulation strategies. A list
of gaps in the flavonoid’s investigation was actualized (pKa, Papp, log P, solubility, and
recommended maximum daily dose), and an enormous potential to improve the health
benefits of flavonoids through improved or enabled formulations was concluded.
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Appendix A

Table A1. Experimental and predicted/calculated values of pKa, log P, and melting point used for comparison of flavonoids.

Flavonoid Subgroup Flavonoid
pKa log P

Melting Point, ◦C (lit.)
pKa1 (exp.) pKa2 (exp.) Chemaxon (pred.) log P (exp.) Chemaxon (pred.) ALOGPS (pred.)

A
gl

yc
on

es

Daidzein
7.01 [38] - 6.48 2.51 [157] 2.73 3.3 323 (dec.) [161]
7.51 [39] 2.73 [38]

Genistein
6.51 [38] 6.55 3.04 [157] 3.08 3.04 301.5 (dec.) [162,163]
7.25 [39] 297–298 (slight decomposition) [161]

Quercetin

5.81 [40] 7.12 [40] 6.38 1.82 [157] 2.16 1.81 313–314 (dec.) [162]
6.74 [41] 1.47 [43] 316.5 [163]
7.03 [41] 1.59 [42]
7.35 [33]
7.52 [42]
7.76 [43]
8.45 [35]

Myricetin
6.63 [44] - 6.37 2.48 [44] 1.85 1.66 357–360 [164]

2.94 [189]
2.76 [190]

Fisetin

7.42 [45] - 6.32 1.78 [165] 1.81 2.03 330 [164]
7.53 [33]
7.57 [33]
7.36 [33]

Kaempherol

6.86 [40] 8.56 [40] 6.38 1.55 [43] 2.46 1.99 276–278 [164]
8.20 [41] 3.11 [157]

7.89 [33,43]
7.49 [46]
7.05 [47]

Taxifolin
6.68 [48] 8.89 [48] 7.74 0.79 [48] 1.82 1.07 240–242 [162]

1.64 [166,167]

Baicalein 5.30 [49] - 6.76 1.79 [20] 2.71 3.19 256–271 [164]

Chrysin

6.44 [42] - 6.58 2.29 [42] 3.01 3.44 285.5 [168]
6.64 [50]
7.41 [33]
7.90 [33]

8.37 [35,51]
8.00 [33]
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Table A1. Cont.

Flavonoid Subgroup Flavonoid
pKa log P

Melting Point, ◦C (lit.)
pKa1 (exp.) pKa2 (exp.) Chemaxon (pred.) log P (exp.) Chemaxon (pred.) ALOGPS (pred.)

Luteolin
5.99 [52] 8.40 [52] 6.57 3.22 [157] 2.40 2.73 328–330 [164]

1.75 [169]

A
gl

yc
on

es

Apigenin
8.54 [41] 9.93 [41] 6.57 1.50 [43] 2.71 3.07 347.5–352 [164]
7.86 [43] 2.92 [157]
7.46 [33]

Diosmetin N/A N/A 6.58 3.10 [170] 2.55 3.06 228–230 [162]

Hesperetin 7.06 [33] 9.92 [33] 7.86 2.60 [170] 2.68 2.52 226–228 [164]
6.67 [43]

Naringenin

7.08 [33,53] 9.81 [33] 7.86 2.52 [170] 2.84 2.47 251 [171]
6.7 [33] 2.60 [157]
6.80 [54]
7.50 [35]

Isoliquiritigenin N/A N/A 7.11 N/A 3.3 3.04 200–204 [162]

Phloretin
7.0 [55] - 7.96 N/A 3.9 2.23 263.5 [164]
7.58 [53]

Silibinin
5.68 [30] - 7.75 1.6 [30] 2.63 2.35 164–174 [172]
6.63 [56] 0.73 [173]

Catechin
8.6 [57] 9.41 [57] 9 0.38 [43] 1.8 1.02 175 [162]
8.64 [43]

Epigallocatechin 8.41 [43] - 8.73 N/A 1.49 0.71 219–221 [171]

Epigallocatechin gallate 7.75 [43] 7.99 1.0 [191] 3.08 2.38 140–142 [171]

Cyanidin 5.48 [58] 6.70 [58] * 6.47 N/A −0.8 2.41 >300 [161]

Delphinidin 5.30 [58] 6.15 [58] * 5.98 N/A 2.77 2.07 250 (as chloride) [162]
>350 [171]

Malvidin 6.02 [58] 7.56 [58] * 5.30 N/A 2.83 1.98 >300 [162]
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Table A1. Cont.

Flavonoid Subgroup Flavonoid
pKa log P

Melting Point, ◦C (lit.)
pKa1 (exp.) pKa2 (exp.) Chemaxon (pred.) log P (exp.) Chemaxon (pred.) ALOGPS (pred.)

G
ly

co
si

de
s

Daidzin 9.55 [59] - 8.96 0.32 [157] 0.46 0.71 233–235 [162]

Genistin 9.20 [59] - 8.36 0.97 [157] 0.81 0.68 254–256 [162]

Rutin 7.21 [40] 7.52 [40] 6.37 −0.64 [157] −0.87 0.15 125 [163]

6.33 [42] −0.47 [42] 214–215 (dec.) [174]

Myricitrin N/A - 6.43 N/A 0.60 1.18 194–197 [162,172]

Astragalin 7.17 [40] 7.99 [40] 6.37 N/A 0.16 0.52 178 [162]

Baicalin
4.21 [18] 8.56 [18] 2.62 1.27 [20] 0.76 1.27 202–205 (dec.) [164]
7.6 [20]

Cynaroside N/A - 7.30 N/A 0.14 0.58 256–258 [164,171]

Apigetrin N/A - 7.30 N/A 0.44 0.68 230–237 [172]

Vitexin 6.76 [60] 8.11 [60] 6.17 N/A 0.051 0.36 256–257 [175]

Diosmin 9.39–10.12 [61] - 7.31 0.14 [170,176] −0.44 0.08 277–278 [161]

Hesperidin 10.0 [62] - 8.61 −0.87 [177] −0.31 −0.27 258–262 [162]
7.75 [50] 250–255 (dec.) [164]

Naringin 10.2 [54] - 8.58 N/A −0.16 −0.24 83 [171]

Phlorizin
7.42 [53] - 7.87 0.94 [179] 0.98 0.44 110 [162]
7.32 [63] 113–114 [164]

Cyanidin-3-glucoside N/A 5.88 [58] 6.39 −1.23 [180] 0.44 0.68 >350 [178]

Delphinidin-3-glucoside N/A 5.35 [58] 6.37 N/A 0.93 0.10 N/A

Malvidin-3-glucoside 1.76 [64] 5.36 [64] 6.38 −1.31 [181] 0.17 1.3 N/A

N/A—not available; exp.—experimentally determined values; pred.—predicted values, determined values by calculation; lit.—value obtained in literature; dec.—decomposition,
*—predicted values.
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Table A2. Experimental and predicted/calculated values of solubility, single dietary abundant doses, and permeability used for the comparison of flavonoids.

Flavonoid
Subgroup Flavonoid

Permeability (Papp), 1 × 10−6 cm per s Solubility, mg/mL Single Dietary Dose, mg

Caco-2 Cells Apical to Basolateral (A to B) (exp.) exp. ALOGPS (pred.) min. Value max. Value

A
gl

yc
on

es

Daidzein
67.97 [38] 0.008215 [72] 0.0849 19.01 [88] 34 [89]

21 [77]
36.8 [78]

Genistein

33.90 [79] 0.015 [90] 0.123 21.02 [88] 250 [91]
22.50 [77]
3.7 [78]

30.9 [80]
52.86 [38]

Quercetin

3.91 [77] 0.0003 [72] 0.261 85 [92] 1600 [93]
3.80 [42]
9.89 [78]
2.55 [79]

0 [81]

Myricetin 1.70 [77] 0.00276 (pH 3) [44] 0.301 N/A 100 [94]
0.29 [79]

Fisetin N/A 0.01045 [95] 0.151 150 [96] 1000 [97]

Kaempherol 10.20 [77] 0.113 [98] 0.178 N/A 100 [99]
6.68 [79]

Taxifolin
0.31 [77] N/A 1.16 60 [100] 160 [101]
6.32 [79]

Baicalein
7.29 [77] 0.00229 (pH 1) [102] 0.153 50 [103] 200 [104]
1.95 [79]
3.51 [82]

Chrysin
16.00 [77] 0.003038 [105] 0.105 500 [106] 1500 [106]
2.60 [42]
6.78 [79]

Luteolin
8.87 [77] 0.0025 [107] 0.138 N/A 100 [108]
10.10 [79]

0 [81]

Apigenin 16.9 [80] 0.00163 [109] 0.118 50 [110] 500 [111]
17.12 [79]
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Table A2. Cont.

Flavonoid
Subgroup Flavonoid

Permeability (Papp), 1 × 10−6 cm per s Solubility, mg/mL Single Dietary Dose, mg

Caco-2 Cells Apical to Basolateral (A to B) (exp.) exp. ALOGPS (pred.) min. Value max. Value

A
gl

yc
on

es

Diosmetin 76.2 [54] N/A 0.0754 N/A N/A

Hesperetin
18.30 [77] N/A 0.138 N/A N/A
47.1 [54]
23.50 [79]

Naringenin
37.8 [54] 0.00438 [112] 0.214 N/A 100 [113]
12.60 [77]
32.13 [79]

Isoliquiritigenin
14.60 [77] 0.035 [114] 0.0551 N/A 25 [115]
13.76 [79]
8.01 [82]

Phloretin 1.06 (10.9 µM); 0.13 (21.9 µM); 0.34 (43.8 µM) [83] N/A 0.132 N/A 10 [116]

Silibinin 3.2 [84] 0.055 [30] 0.0926 53 [117] 180 [118]

Catechin 1.68 [85] 0.45 [119] 0.645 35 (as epicatechin) [120] 500 (as epicatechin) [121]
0.14 [86]

0 [81]

Epigallocatechin 0.15 [86] N/A 0.871 N/A 30 [120]

Epigallocatechin gallate 0.88 [85] 52.37 (pH 5) [122] 0.0728 117 [123] 810 [124]
0.083 [86]
1.35 [87]

Cyanidin N/A N/A 0.071 N/A N/A

Delphinidin N/A N/A 0.071 N/A N/A

Malvidin N/A N/A 0.023 N/A N/A
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Table A2. Cont.

Flavonoid
Subgroup Flavonoid

Permeability (Papp), 1 × 10−6 cm per s Solubility, mg/mL Single Dietary Dose, mg

Caco-2 Cells Apical to Basolateral (A to B) (exp.) exp. ALOGPS (pred.) min. Value max. Value

G
ly

co
si

de
s

Daidzin 0.0574 (detected as daidzein) [78] 0.040 [126] 0.661 3 [127] 19.25 [128]
0.44 [77]

Genistin 0.0910 (detected as genistein) [78] 0.020 [126] 1.01 N/A 25 [128]

Rutin 0 [77]
1.24 [42]

10.32 [86]
4.04 [79]

0.147 [42] 3.54 10 [129] 500 [130]

Myricitrin 0 [77] N/A 2.43 N/A N/A

Astragalin N/A N/A 1.58 N/A N/A

Baicalin 0.17 [77]
0.12 [131]
0.241 [82]

0.052 [131] 1.72 125 [103] 500 [132]

Cynaroside 0.43 [77] N/A 1.08 N/A N/A

Apigetrin N/A N/A 0.97 N/A N/A

Vitexin N/A 0.00762 [133] 1.73 8.75 [134] 24.5 [135]

Diosmin Not detected [54] 0.000019 [136] 1.54 450 [137] 1000 [138]

Hesperidin Not detected [54]
1.11 (in rabbits cornea) [62]

0.00493 [62] 2.69 36 [139] 1000 [140]

Naringin Not detected [54]
3.73 [79]

0 [81]

0.087 [141] 4.06 150 [142] 500 [143]

Phlorizin N/A 1.93 [144] 1.21 N/A 50 [145]

Cyanidin-3-glucoside ~0.01 (determined value from the graph) [78]
0.81 [146]

N/A 0.60 2.2 [147] 600 [147]

Delphinidin-3-glucoside N/A N/A 0.85 N/A N/A

Malvidin-3-glucoside N/A N/A 0.37 N/A N/A

N/A—not available; exp.—experimentally determined values; pred.—predicted values, determined values by calculation.
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Table A3. Calculated flavonoid solubility parameters by group-contribution method.

Flavonoid
Subgroup Flavonoid

Groups’ Contribution Molecular
Volume,
cm3·mol−1

δH,√
J

cm3

δD,√
J

cm3

δP,√
J

cm3

δV,√
J

cm3CH3 -CH2- -CH< =CH- =C< -C6 aromatic -C6-aromatic
o,m,p -OH -O- -CO- -COOH -COO- Ring

A
gl

yc
on

es

Daidzein - - - 1 1 1 1 2 1 1 - - 1 201.40 15.00 21.60 5.40 22.26
Genistein - - - 1 1 1 1 3 1 1 - - 1 211.50 17.60 21.60 5.80 22.37
Quercetin - - - - 2 1 1 5 1 1 - - 1 219.80 21.90 22.10 6.50 21.32
Myricetin - - - - 2 1 1 6 1 1 - - 1 234.90 23.10 21.50 6.40 20.90

Fisetin - - - - 2 1 1 4 1 1 - - 1 204.30 20.40 22.70 6.50 21.89
Kaempherol - - - - 2 1 1 4 1 1 - - 1 211.30 20.10 22.00 6.30 21.16

Taxifolin - - 2 - - 1 1 5 1 1 - - 1 232.20 21.30 21.80 5.90 20.85
Baicalein - - - 1 1 1 1 3 1 1 - - 1 208.90 17.60 21.70 5.60 20.58
Chrysin - - - 1 1 1 1 2 1 1 - - 1 200.50 15.00 21.40 6.00 20.59
Luteolin - - - 1 1 1 1 4 1 1 - - 1 222.40 19.50 21.60 5.80 20.63
Apigenin - - - 1 1 1 1 3 1 1 - - 1 211.50 17.50 20.50 5.70 21.28
Diosmetin 1 - - 1 1 1 1 3 2 1 - - 1 229.60 17.20 22.70 5.40 20.62
Hesperetin 1 1 1 - - 1 1 3 2 1 - - 1 239.70 16.80 20.50 5.20 20.19
Naringenin 2 2 11 - - 1 1 8 6 1 - - 3 220.00 17.20 22.10 6.50 21.32

Isoliquiritigenin - - - 2 - - 2 3 - 1 - - - 197.50 17.70 21.50 5.90 20.37
Phloretin - 2 - - - - 2 4 - 1 - - - 204.30 20.00 22.50 6.20 21.51
Silibinin 1 1 4 - - 2 1 5 4 1 - - 2 367.50 17.60 19.80 4.30 20.26
Catechin - 1 2 - - 1 1 5 1 - - - 1 232.10 21.10 20.60 5.20 19.99

Epigallocatechin - 1 2 - - 1 1 6 1 - - - 1 254.80 22.00 28.80 6.10 19.09
Epigallocatechin gallate - 1 2 - - 1 2 8 1 - - 1 1 324.90 22.90 22.30 4.80 21.35

Cyanidin - - - - - - - - - - - - - N/A N/A N/A N/A N/A
Delphinidin - - - - - - - - - - - - - N/A N/A N/A N/A N/A

Malvidin - - - - - - - - - - - - - N/A N/A N/A N/A N/A

G
ly

co
si

de
s

Daidzin - 1 5 1 1 1 1 5 3 1 - - 2 315.80 18.70 19.10 4.90 18.53
Genistin - 1 5 1 1 1 1 6 3 1 - - 2 350.00 19.30 17.90 4.60 17.42

Rutin - 1 10 - - 1 1 10 5 1 - - 3 520.40 20.40 17.00 3.80 15.18
Myricitrin 1 - 5 - 2 1 1 8 3 1 - - 2 396.50 20.80 17.00 4.60 16.50
Astragalin - - - - 2 1 1 7 3 1 - - 2 360.30 20.50 17.60 4.70 16.10

Baicalin - - 5 1 1 1 1 5 3 1 1 - 2 317.00 19.50 19.40 5.00 19.36
Cynaroside - 1 5 1 1 1 1 7 3 1 - - 2 360.40 20.50 17.90 4.70 17.54
Apigetrin - 1 5 1 1 1 1 6 3 1 - - 2 350.00 19.30 17.90 4.60 17.42

Vitexin - 1 5 1 1 1 1 7 3 1 - - 2 328.10 21.50 19.40 5.00 19.19
Diosmin 2 1 10 1 1 1 1 8 6 1 - - 3 518.50 18.50 15.30 3.60 15.72

Hesperidin 1 3 10 - - 1 1 9 4 1 - - 2 529.90 18.40 15.60 3.60 15.72
Naringin - 2 - - - 2 4 - 1 - - - 508.60 19.50 15.90 3.70 15.55
Phlorizin - 3 5 - - - 2 7 1 1 - - - 360.00 20.10 17.40 4.60 16.21

Cyanidin-3-glucoside - - - - - - - - - - - - - N/A N/A N/A N/A N/A
Delphinidin-3-glucoside - - - - - - - - - - - - - N/A N/A N/A N/A N/A

Malvidin-3-glucoside - - - - - - - - - - - - - N/A N/A N/A N/A N/A

N/A—not applicable because the compound has an ionic nature.
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