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1. Introduction 
Hybrid Electric Vehicles (HEVs) have become popular these days as they consist of electric drive components and 

Internal Combustion Engines (ICE). The increase and instability of fuel prices today are among the driving factors of 
having more efficient and fuel-saving vehicles. Lebanon, for example, encourages the sale of fuel-efficient cars by 
doubling fuel taxes. These policies and lower fuel consumption are the main factors in increasing the market share of 
HEVs from 9.25% to 9.59%. [1] HEVs also play an essential role when concerned with climate change. Less carbon 
monoxide and carbon dioxide released by vehicles would help reduce the greenhouse effect. Unlike electric vehicles 
(EVs) that need infrastructure to recharge their batteries, HEVs batteries are charged from ICE and kinetic energy when 
the car moves. There are three categories of HEVs: parallel, series HEVs, and power-splits HEVs. These are categories 
concerning the mechanical connection and the vehicle's power flow. Parallel HEVs is classified when ICE and electric 
motor can simultaneously drive the car. Series HEVs are classified when the first power source is the electric motor 
powered by a battery and ICE charges the battery. 

Meanwhile, Power-splits HVEs, also known as series-parallel HEVs is classified when there is isolation between 
ICE and the vehicle powertrain. From all three categories, the main components that exist in all the categories are the 
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engine, electric motor, and powertrain [2]. Proper maintenance of HEVs is essential as it is a complicated system with 
mechanical and electrical drives on one system. One may need, for example, to monitor an electric motor so that it can 
last longer and not affect another component connected to it. There are several issues with electric motors on vibration: 
motor frame, rotor imbalance, motor bearing and stator winding. In focusing on rotor imbalance, N. Wang and Jiang 
(2018) said the main problem is miss alignment which may cause a strong vibration toward the system, which is also 
agreed by  P. Wang et al. (2022), that mention that bearing misalignment significantly influences dynamic 
characteristics in the low-speed range,  while Cao et al. (2018) mention that the unbalanced rotor is due to angular 
speed fluctuation however, Jian et al. (2022) claimed that the rotor unbalances expected to load changes and rust.  

Good monitoring would help reduce undesired problems due to electric motors in HEVs. For example, a self-
sensing piezoelectric actuator was used by Ambur and Rinderknecht (2018) to detect the unbalance on rotor. By having 
images or data from the field, the health of individual machines could be lengthened. Several methods are currently 
used to monitor the health of individual devices, such as vibration, temperature, and an acoustic signal from the 
operating machine. (Mongia et al. 2022) Failure to detect incoming faults would bring catastrophic failure of the 
equipment, more extended downtime, and higher repair costs.  

Thus, having fault data is essential to further study and categorize the problems that may affect the unbalanced 
rotor. Fault data can also be created in the fault simulator machine's test rig machine. N. Wang and Jiang (2018) studied 
the response of a dual rotor system with an unbalanced-misalignment coupling fault using the Runge Kuta method. The 
fault was done by adjusting the height and quantity of gaskets and installing a screw on the disk on the inner rotor. 
While the Gaussian-SVM method was by Lan et al. (2023) to improve sensitivity diagnosis of rotor unbalance faults. 
Nevertheless, there are still analytical methods used as prognostic in rotor bearing condition maintenance strategy. [10] 

The most common analysis methods in machine monitoring are peak, RMS, crest factor, and kurtosis. Ahmad et al. 
(2018) developed tool wear monitoring via I-kazTM statistical signal analysis. The researcher able to monitor tool wear 
efficiently with 1.8 to 15.9 errors. Frequency-based domain, Z-freq was developed by Ngatiman et al. (2018) to 
monitor gasoline engine misfire conditions on a variation of engine speed. The researcher presented the vibration that 
occurred in a 2D graphical representation and the Z-freq coefficient showed an increase in value as the misfire 
happened inside the gasoline engine. This paper aims to evaluate the rotor unbalance fault based on Z-freq coefficient. 
Three faults were created using the machine simulator: static, couple, and dynamic. Z-freq coefficient would give 
significant results as an alternative method in determining the rotor unbalance due to faulty. 
 
2. Methodology 
2.1 Z-Freq Statistical Method 

The Z-freq statistical method was developed by transferring the collected data to the frequency domain using Fast 
Fourier Transform (FFT). The randomly collected data is further classified into moments r-th order of discrete signal in 
the frequency band, which the formula as per below.  
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Where N is the number of data, r is the order of the moment, 

i
f  is i-th frequency and f  is an average frequency. 

Kurtosis, which is the signal 4th statistical moment, is a global signal statistic that is highly sensitive to the spikiness of 
the data. For a Gaussian distribution, the kurtosis value is roughly 3.0. Higher kurtosis values indicated the presence of 
extreme values in a Gaussian distribution. Kurtosis analysis was utilized to identify fault symptoms because of its 
sensitivity to large magnitude. 
The kurtosis value is defined by:  
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Where, σ is the standard deviation, and K is the Kurtosis value. Based on this, the Z-freq approach generates a 2-D 
graphical representation of its coefficient result. The frequency domain signal was split into two frequency groups: the 
x-axis representing low frequency (affix) and the y-axis representing high frequency (annex). Affix mob is made up of 
frequency mobs ranging from 0.5fmax to 1.0fmax.  
Z-freq calculates the data distance to the signal centroid, as shown in the equation below.  
The Z-freq coefficient is defined by: 
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where Kafx is kurtosis and safx is the standard deviation for the low-frequency range and Kanx is kurtosis and sanx is the 
standard deviation for the high-frequency range. 
 
2.2 Experimental Setup  

The experiment was set up using the fault simulator machine brand Spectra Quest. Two 6” aluminum rotor disks 
were attached with the 3 phase 1 HP electric motor to stimulate unbalance of the rotor.  The disk has 36 threaded holes 
at 10-degree intervals and then was inserted with a screw for three types of faults as in Fig. 1.  At the same time, the 
steel rotor shaft with ¾” diameter was given a load of 10Nm at the other end. Then it was then attached with Phantom 
Universal Accelerometer Wireless Adapter (GP8) and Phantom Gateway was setup as per Fig. 2. The GP8 will 
wirelessly connected to Phantom Gateway. Then the Phantom Gateway will be connected to the Wi-Fi, transferring all 
the data to a laptop for further analysis. Each data set was run three times for five different speeds: 400 RPM, 800 
RPM, 1200 RPM, 1600 RPM and 2000 RPM. The fault signal monitoring activity is illustrated in the flowchart as 
shown in Fig. 3. The signal data was then divided into two frequency bands, affix (low frequency) and annex (high 
frequency). The annex frequency band refers to the frequency between half of the maximum frequency and the 
maximum frequency range. In contrast, affix frequency refers to the frequency between half of the maximum and 
minimum frequency ranges. The activity continues with calculating kurtosis values and standard deviation for each 
signal. The derivation of Z-freq coefficient for each fault and speed was then calculated. A classification based on 
machine learning was applied to differentiate each rotor speed. Then, the correlation between signal and fault was 
examined. The training will be repeated until satisfactory results are obtained during verification. Finally, using 
simulation software, the Z-freq value's scattering was represented in a 2-D graphical scattering plot. 
 
 
 
 
 
 
 
 
 
 
 

  

a b c 

Fig. 1 - Unbalance faulty types (a) static; (b) coupled; (c) dynamic 
 

 
Fig. 2 - Experimental setup diagram 

  
3. Result and Discussion 

In this section, all findings are graphically well presented and in coefficient value to be easier to interpret. The 
result will discuss the finding of all rotor speeds and all rotor conditions to check whether the proposed technique can 
be applied significantly in that specific application. During the measurement, five different speeds were acquired: 
400RPM, 800RPM, 1200RPM, 1600RPM and 2000RPM.  Faults set up are Normal condition, Static unbalance 
condition, Coupled unbalance condition and Dynamic unbalance condition. Fig. 4 displays the vibration result in an 
acceleration unit of the rotor under normal conditions for two speeds (a) 400RPM and (b) 2000RPM. For a low-speed 
rotor, the vibration acceleration shows a low value in the time and frequency domains. It proves that the rotor is still in 
good condition and more stable. For high-speed rotation, the time and frequency domain value increased approximately 
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four times compared to low speed. This can be summarized that the vibration of the rotor significantly increased with 
speed and became unstable but acceptable. 
 

 
Fig. 3 - Rotor disk faults diagnostic process flow using Z-freq 

 
Fig. 5 provides the scattering of I-kaz and Z-freq coefficient values for rotor rotates in average conditions. This 

representation also covers two speeds: low speed at 400RPM and high speed at 2000RPM. As presented in the graph, I-
kaz representation becomes scattered as the speed increases, proving this method can differentiate the rotor's speed. To 
distinguish using the Z-freq technique, three colors representation also depicts the pattern of speed increment. A closer 
inspection of the graph shows that the red color scattering representation is wider than the other two colors. It 
concludes that pair of affix and annex frequencies can detect the speed pattern. The Z-freq distribution uses a color-
coding scheme to depict the range of frequencies in the frequency domain. Low-frequency pairs are represented by 
green, medium-frequency by yellow, and high-frequency by red. The color-coding scheme is based on the following 
ranges: Low-frequency pairs: affix frequency 1 to 400 Hz and annex frequency 1201 to 1600 Hz, Medium-frequency 
pairs: affix frequency 401 to 600 Hz and annex frequency 1001 to 1200 Hz, High-frequency pairs: affix frequency 601 
to 800 Hz and annex frequency 801 to 1000 Hz. Each axis (horizontal and vertical) in the figure shows the number of 
frequency pairs that fall within the range for that axis. The color-coding scheme allows for quick and easy visualization 
of the distribution of frequencies in the frequency domain. Three figures from Fig. 6 shows the plot of coefficient 
values of Z-freq, I-kaz and RMS for Normal condition. From these graphs, all patterns of speed increment are the same 
and clear. The coefficient of determination (R2) is also at an acceptable level of more than 90%. The most exciting 
aspect of these graphs is that all techniques are valid for detecting and predicting vibration signals generated over rotor 
speeds. 
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(a) 

 
(b) 

Fig. 4 - Time and frequency domain for rotor equipment at 400RPM and 2000RPM 
 
 

 
Fig. 5 - I-kaz and Z-freq representation for rotor equipment at 400RPM and 2000RPM 
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Fig. 6 - Z-freq, I-kaz and RMS at normal condition for rotor equipment with speed (RPM) 400, 800, 1200, 1600 

and 2000 
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Fig. 7 - I-kaz and Z-freq representation for rotor faults (normal, static, coupled, and dynamic) at 400RPM and 

2000RPM 
 

Fig. 7 was plotted from Table 1. As Fig. 7 shows, there is a summary of Z-freq, I-kaz and RMS coefficient values 
for all speeds calculated and a significant conclusion was obtained. This study proved that a hypothesis of Z-freq and 
the other two techniques could find patterns of data measured. A strong relationship between the speed of the rotor and 
the coefficient value.  The results of a signal analysis conducted on the rotor at various velocities are presented in Table 
1. The Z-freq, I-kaz, and RMS values for each speed provide insightful information regarding the mechanical behavior 
of the rotor instability system. Z-freq increases with increasing speed, indicating that the mechanical characteristics of 
the rotor unbalance system change at higher RPMs. Similarly, I-kaz and RMS values exhibit an upward trend with 
increasing system speed, indicating changes in vibration or mechanical response.  

It can be seen from Table 2, all three types of analysis techniques challenge it capability to detect and predict 
symptoms of rotor fault, such as static unbalance, coupled unbalance, dynamic unbalance and normal condition. From 
the tabulated data, an initial objective has been met, which this new method named Z-freq can differentiate the fault 
pattern. [12], [13] From this observation, there is a little increment for static fault, about 12% from the normal condition 
for Z-freq value, a significant increment of about 43% for coupled fault and 51% for dynamic fault. This little 
percentage difference between coupled and dynamic also occurred in I-kaz and RMS. 

 
Table 1 - Summary of Z-freq, I-kaz and RMS coefficient for all speeds 

Speed Z-freq I-kaz RMS 
400 
800 

1200 
1600 
2000 

0.2568 
3.5946 
4.3321 

10.4388 
25.4989 

0.0000074 
0.0000261 
0.0000429 
0.0001090 
0.0001540 

0.5572 
1.2678 
1.6874 
2.6504 
3.2798 

    
Table 2 - Summary of Z-freq, I-kaz and RMS coefficient for all conditions at 2000RPM 

Condition Z-freq I-kaz RMS 
Normal 

Static Fault 
Coupled Fault 
Dynamic Fault 

25.4989 
28.4721 
36.4186 
38.5483 

0.0001540 
0.000176 
0.000234 
0.000240 

3.2798 
3.4808 
3.9402 
4.0453 

    
4. Conclusion 

This investigation aimed to diagnose a rotor unbalance fault under five different speeds with the application of load 
torque. This goal has been achieved through the result presented in the previous section. The study set out a prediction 
for fault diagnosis with a high coefficient of determination. A successfully strong correlation of every condition 
investigated has been found and can be helpful for future troubleshooting. One of the more significant findings to 
emerge from this study is that wireless monitoring could be the future of vibration analysis and monitoring of 
mechanical machines, which is a potential hazard that can be avoided. 
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