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 Today, integrating wind energy forecasting is an important area of research 

due to the erratic nature of wind. To achieve this goal, we propose a new 

model of wind speed prediction based on graph attention networks (GAT), 

we added a new attention mechanism and a learnable adjacency matrix to the 

GAT structure to obtain attention scores for each weather variable. The 

results of the GAT-based model are merged with the bi-directional deep 

learning long and short-term memory (BiLSTM) layer to take advantage of 

the geographic and temporal properties of historical weather data. The 

experiments and analyzes are carried out using precise meteorological data 

collected from wind farms in the Moroccan city of Tetouan. We show that 

the proposed model can learn complex input-output correlations of 

meteorological data more efficiently than previous wind speed prediction 

algorithms. Due to the resulting attention weights, the model also provides 

more information about the main weather factors for the evaluated forecast 

work. 
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1. INTRODUCTION 

Among the many clean and renewable energy sources, wind energy is significant. Wind energy’s 

stochastic and unpredictable character, however, presents considerable difficulties for the power systems’ 

dependable and secure functioning. Wind energy forecasting that is precise and reliable is essential for the 

integration of wind power into the grid. Numerous atmospheric characteristics are employed in numerical 

weather prediction (NWP) approaches, which are based on mathematical equations, in the study of weather 

forecasting [1]. This technique uses equations drawn from the principles of physics and thermodynamics to 

create predictions. While NWP is an effective solution for many forecasting problems, it still has limitations, 

such as using an excessive amount of computing power [2]. Additionally, forecasting using NWP may be 

susceptible to noise that may be included in the observations of meteorological variables because of the 

assumptions about meteorological variables utilized in this technique [3]. Deep learning machine models can 

now be trained because of advancements in processing capacity, as an alternative to NWP, deep learning-

based models have therefore been utilized more and more lately in weather forecasting tasks [4], [5]. In 

particular, the approaches based on convolutional neural networks have been utilized in the research on 

https://creativecommons.org/licenses/by-sa/4.0/
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weather prediction models [3], In addition, there are graph convolutional neural networks [6], and restricted 

Boltzmann machines [7]. 

Due to the increase in outstanding results obtained using data-driven approaches, the development 

of several deep-learning algorithms for weather forecasting problems has been documented in the literature 

[3], [8]. One way to conceptualize meteorological data is as a time series of successive measurements. The 

challenges of time series forecasting have often been addressed by recurrent neural networks [9]. For these 

tasks, bi-directional deep learning long and short term memory (BiLSTM) models are chosen [10], which 

may impair performance throughout the training period. In contrast, convolutional neural networks (CNNs) 

are popular and particularly effective for computer vision applications [11]. While vanilla CNNs can handle 

the geographic aspects of the data, they cannot effectively exploit the temporal properties that are crucial for 

these weather forecasting applications. Salman et al. [3] have developed a 3D-CNN model for forecasting 

meteorological components. Lara-Benítez et al. [12] used vanilla CNNs in conjunction with temporal 

convolutional networks (TCNs), which is a kind of CNN that utilizes one-dimensional filters to concentrate 

on the temporal component of the data, to undertake prediction work in the field of meteorology. With the 

integration of TCN, CNNs can analyze spatiotemporal data. For evaluating graph data, graph neural networks 

(GNN) [13] have lately grown in prominence. Graph convolutional networks (GCNs ) [14] are a kind of 

GNN that combines the fundamentals of GNNs while maintaining a convolutional architecture by employing 

graph data rather than assuming that the data is Euclidean. There have been GCN adaptations using a 

learnable adjacency matrix in [6], although most GCN implementations focus largely on node classification 

tasks that need knowledge of the graph’s nodes and edges. One benefit of this is that normal data can now be 

represented using an adjacency matrix, which is typically necessary for GNN implementations. However, to 

extract spatial information, it is desirable to learn the adjacency matrix during the training phase. Due to the 

transformer design presented in [15], attention methods have lately become quite popular. GNN frameworks 

have also integrated the attention mechanism. For example, the graph attention networks (GAT) [16] uses a 

self-attention mechanism similar to a transformer model, to determine the attention coefficient between the 

vertices of the graph.  

Researchers often ignore the impact of spatiotemporal connections between wind turbines in favor 

of analyzing and modeling the past data for a wind turbine. Therefore, the development of spatiotemporal 

models with a high prediction of wind energy is crucial. In this article, we propose a novel spatiotemporal 

wind energy prediction model founded on GAT followed by a BiLSTM algorithm to combine temporal and 

geographical information of the data. GAT is a subtype of the GNN created specifically to analyze graphical 

data. It is a model for predicting wind power based on a variety of geographical data. It studies the 

geographical relationships between different nodes in the graph and how the characteristics of one node can 

influence the characteristics of another node. It makes optimal use of the attention mechanism to gather data 

from several nodes, while BiLSTM records temporal correlations between meteorological data collected at 

distinct periods. Our suggestion to improve the GAT-BiLSTM model makes it possible to calculate the 

attention of the nodes which produces GAT form in a more accurate and understandable. In our research, past 

weather data from the wind farm of Tetouan City in Morocco is used to estimate wind speed values for many 

hours into the future. 

This paper is structured as follows: section 2 describes the suggested model. In section 3, you will 

find a description of the numerical experiments, a discussion of the results, and a comparison to other 

models. Section 4 contains the conclusion. 

 

 

2. METHOD  

2.1.  Graph attention networks (GAT) 

The spectral-domain GNN and the spatial-domain GNN are two subcategories of the mainstream 

GNN. The network topology of the spectral domain GNN is defined by filters, and the spatial domain GNN 

analyzes the node correlation to construct the network topology. Currently, the Laplace matrix is the only 

method used by the spectral domain GNN to deconstruct the graph and recover its specific information. 

Since the neural network now only decomposes and extracts the characteristic information of the graph 

using the Laplace matrix, it has disadvantages [17]: i) The noise information in the graph has a simple impact on 

the eigenvalue, ii) It is challenging to extend the network since the filter it uses can only be applied to a certain 

structure, and iii) Both the time and financial costs of feature computation and analysis are very high. 

GAT presented an attention method to solve the difficulty of GCN [18]. As a result, GAT could give 

higher weights to important nodes, as neural network parameters and weights are learned simultaneously 

[19]. At the moment, researchers create the GAT by collecting numerous attention mechanism networks. The 

feature sets and the transformed feature set of the original nodes constitute the network’s input and output for 

the graph’s initial attention layer [20]. The fundamental principle of GAT is to find the spatial link of nodes, 
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by calculating the weight coefficient of neighboring nodes. The model creates a shared weight matrix W [21] 

and uses it to examine and determine the coefficient of attention: 

 

𝑒𝑗
𝑖 = 𝑎(𝑊ℎ𝑖 ,𝑊ℎ𝑗) (1) 

 

or ℎ denotes the input characteristics, 𝑊 denotes the weight matrix, and 𝑎 denotes the attention mechanism. 

 

2.2.  Bi-directional deep learning long and short-term memory (BiLSTM) 

Hochreiter and Schmidhuber [22] proposed the long-short term memory (LSTM) form of the 

recurrent neural network (RNN) in 1997, to improve the ability of temporal sequence data to capture long-

term connections. It can get around the drawbacks of the vanishing/exploding gradient that standard RNNs 

experience. Recurrent networks may easily learn across many past time steps without gradient difficulties 

since the memory of the LSTM helps to maintain the mistake that will be back-propagated via the layers 

[23]. Blocks are used to store values with varied durations in the LSTM's structure. Each block has two parts 

that allude to memories: the “Cell state” noted ct, which is notable for being able to recall prior information 

and displays long-term memory, and the “Hidden state,” which only transmits information for the subsequent 

time step and displays short-term memory. 

In contrast, BiLSTM, which consists of two LSTM models, is a powerful and enhanced version of 

the LSTM processing network. As it comes to the first one, the signal spreads ahead. Whereas in the second, 

it spreads oppositely. This implies that when processing the material, it concurrently considers both past and 

future context information [24]. Figure 1 illustrates the construction of the BiLSTM network and 

demonstrates that each memory block has two LSTM layers. In other words, the output 𝑦𝑡 can be determined 

by adding the values of two opposite hidden (ℎ⃗ 𝑡 and ℎ⃖⃗𝑡) as you move forward and backward through the 

layers. The corresponding formulas are provided as [25]: 

 

ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃗ 𝑡−1) (2) 

 

ℎ⃖⃗𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃖⃗𝑡+1) (3) 

 

𝑦𝑡 = 𝑊ℎ⃗⃗ 𝑦
ℎ⃗ 𝑡 + 𝑊ℎ⃗⃗⃖𝑡

ℎ⃖⃗𝑡 + 𝑏𝑦  (4) 

 

where, 𝐿𝑆𝑇𝑀(. ) displays the LSTM function, 𝑏𝑦 is the output layer bias, 𝑦𝑡  is the final output of the 

BiLSTM network, 𝑊ℎ⃗⃗ 𝑦
 and 𝑊ℎ⃗⃗⃖𝑡

 are, respectively, the weights of the front and reverse LSTM. 

The amount of information sent across the network increases when LSTM is applied twice in each 

of the two directions. As a result, learning twice as much long-term correlation information in the 

fundamental architecture of LSTM improves prediction performance [10]. As a result, BiLSTM with dual 

formation capability vastly outperforms uni-LSTM in a variety of areas. 

 

 

 
 

Figure 1. The BiLSTM network structure diagram 

 

 

2.3.  Proposed method 

Due to the growing global energy demand, renewable energies are becoming more widespread, 

especially wind energy. And due to the large instability and fluctuation of wind data, the wind farm is forced 

to implement practical procedures to manage the wind rotor and increase energy efficiency. Since wind 
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power forecasting is the basic technique to control and distribute the energy of wind farms, it is more 

complicated due to the unpredictable and non-linear variation of wind power data. In this article, therefore, 

we will study wind energy forecasting in detail. The graphical predictor, which is shown in Figure 2, makes 

up the majority of the GAT set that has been provided. 

 

 

 
 

Figure 1. Graph attention network layer 

 

 

Spatial and temporal wind turbine datasets are pre-processed. The raw wind power data was split 

between the training set and the testing set. The spatiotemporal wind power prediction model is integrated 

using GAT followed by BiLSTM as the main predictor, thus, all fundamental weight parameters were 

defined using the training set. Spatial node feature data from unprocessed datasets are compiled using GAT. 

An adjacency matrix is a common way to represent a graph. On the other hand, if the architecture of 

the graph is unknown, it is possible to determine the weights of the edges of the graph. It has been made 

learnable in previous works [6], and this has been demonstrated to enhance the capacity of the prediction 

model. It may also shed light on how the characteristics of one node may be modified by those of other 

nodes. The typical GAT model requires knowledge of the adjacency matrix of the graph to work [26]. 

Comparing this model to the one in [26], we make the adjacency matrix learnable. So, we give the network 

the freedom to fully understand the spatial relationships that exist between the nodes in the graph. To 

calculate the attention scores for the GAT, this newly acquired information is later utilized. When learning is 

underway, the adjacency matrix is subjected to the same processes as in (5) [6]. 

 

{
Â = 𝐴 + 𝐼    ,

Â =
Â−Â𝑚𝑖𝑛

Â𝑚𝑎𝑥−Â𝑚𝑖𝑛

  .          (5) 

 

The identity matrix is therefore added to the adjacency matrix 𝐴 to take into account the potential 

self-loop link at each vertex. The updated adjacency matrix 𝐴 is then normalized using the min-max method. 

Vertex feature values in the traditional GAT formulation [26] are thought of as being one-dimensional. GAT 

computes attention ratings based on the vertices and their one-dimensional properties, which are then used to 

create a fresh depiction of each network node [26]. We presume that the collection of node characteristics is 

given as ℎ = {ℎ1, ℎ2, . . . , ℎ𝑁}, or 𝑁 is the number of nodes. ℎ𝑖 ∈ ℝ𝑑 where 𝑑 is the total number of 

characteristics found in each node. By using a shared weight matrix, initially, a linear conversion of the 

attribute values to a specified 𝑑′ number of attributes. A self-attention approach is then used to calculate the 

attention scores of each vertex relative to the others, and add to the transformation of the feature values as a 

dot product. More exactly, the attention score 𝛼𝑖,𝑗 is calculated in the following manner with the 𝑖−𝑡ℎ and 

𝑗−𝑡ℎ vertex combination. 

 

𝛼𝑖,𝑗 =
𝑒𝑥𝑝 ( 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑗]))

∑ 𝑒𝑥𝑝 ( 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑘]))𝑘∈𝒩
 (1) 
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In (6) demonstrates the transformation of the characteristics of the 𝑖−𝑡ℎ and 𝑗−𝑡ℎ pair of vertex properties are 

transformed into 𝑑’ dimensions and concatenated, i.e [𝑊ℎ𝑖||𝑊ℎ𝑗] ∈ ℝ2𝑑’. Here, ℎ𝑖 ∈ ℝ𝑑 and ℎ𝑗 ∈ ℝ𝑑 

consider the feature vectors of the 𝑖−𝑡ℎ and 𝑗−𝑡ℎ vertex respectively. 𝑊 ∈ ℝ𝑑×𝑑’ is the associated weight 

matrix that modifies the properties of each vertex linearly. In GAT, a parameterized single-layer feed-

forward neural network models the self-attention process 𝑎 ∈ ℝ2𝑑’. A scalar is created by the attention 

process. The LeakyReLU nonlinearity is then used, with a 0.2 negative slope. The attention score is then 

normalized with a softmax. The network adjacency matrix determines the neighborhood of the 𝑗−𝑡ℎ vertex, 

where all other vertices are taken into account while applying the softmax. In contrast, in our case, the 

adjacency matrix is learned throughout the learning phase without restricting the connections between the 

graph's vertices. As a result, in our example, all of the nodes are linked and the adjacency matrix components 

are used to determine the strength of connections between nodes. The attention scores are multiplied by the 

linearly changed features of the vertices, and the sum is then calculated over adjacent vertices. Thus, as 

opposed to the traditional GAT formulation, the combination of the self-attention coefficients 𝑎 and the 

concatenated nodes feature [𝑊ℎ𝑖||𝑊ℎ𝑗] will produce a vector of size 𝑑, or the number of weather variables, 

as opposed to a scalar as it does in the traditional GAT formulation [26]. Subsequently, the following is done 

to compute the new representation of the 𝑖−𝑡ℎ vertex: 

 

ĥ𝑖 = 𝜎(∑ 𝑊𝑗∈𝒩 ℎ𝑗  𝑑𝑖𝑎𝑔(𝛼𝑖𝑗
1 , … , 𝛼𝑖𝑗

𝑑 )) (2) 

 

where 𝛼𝑖𝑗
𝑑  is the difference in attention ratings between the 𝑖−𝑡ℎ and 𝑗−𝑡ℎ nodes. The final representation of 

the nodes that we obtain after applying K-independent attention techniques and concatenating their outcomes 

is as (8). 

 

ĥ𝑖 = ‖𝑘=1
𝐾  𝜎(∑ 𝑊𝑘

𝑗∈𝒩 ℎ𝑗  [𝑑𝑖𝑎𝑔(𝛼𝑖𝑗
1 , … , 𝛼𝑖𝑗

𝑑 )]𝑘) (3) 

 

The final representation of the 𝑖−𝑡ℎ node is then determined as (9). 

 

{
�̂�𝑖𝑖 = ∑ Â𝑖𝑗 ,𝑗

ℎ̃𝑖 = ĥ𝑖 (�̂�
−1

2
 �̂��̂�

−1

2
 )
    (4) 

 

The diagonal matrix D is computed here according to the results of the acquired Â in (5). The 

symmetric normalization i.e., �̂�
−1

2
 �̂��̂�

−1

2
 
, is then done after this. To determine the new feature representation 

ℎ̃𝑖 the characteristics of the 𝑖−𝑡ℎ node given by ĥ𝑖 is multiplied by the modified matrix that results. After 

traversing a spatial layer composed of a flow GAT layer, the output is modified and routed into a BiLSTM 

network. The GAT layers have been described extract spatial information from meteorological data, 

Although the BiLSTM is used to enhance the model’s capacity to identify temporal correlations in the data 

and how distinct observations at different time steps impact one another. 

 

 

3. RESULTS AND DISCUSSION  

In this section, we will provide the findings and talk about the numerical analysis. We used 

information from the wind farm in Tetouan, Morocco, which was gathered on each wind turbine and 

primarily included the following elements: wind power, wind turbine status, and weather. The original 

meteorological data used to create this article has been pre-processed, mostly adding the contents of wind 

speed, wind direction, and ambient temperature. These three categories of meteorological data are essential 

for creating a very precise spatiotemporal wind power prediction using the proposed GAT-BiLSTM wind 

forecast model. 

Our simulation dataset was divided into training and test sets. As a result, we used 70% of the 

training phase to introduce the model and 30% of the testing procedure to assess its effectiveness. The 

suggested approach is put into practice using Python. 

To improve and measure the efficiency of the forecasting model during a winter month, we 

conducted comparative research using the three fundamental algorithms: back-propagation (BP) [27], support 

vector machine (SVM) [28], and extreme learning machine (ELM) [29], which are the most often used in 

wind energy forecasting. We included comparison research for a winter month, to investigate the 

effectiveness of the suggested model and its capacity to perform better throughout the crucial season. We 

contrasted the results of the BP, SVM, and ELM algorithms, respectively, and the models’ investigated 

observations for a month in the winter, and the prediction results are shown in Figures 3 to 6. 
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Figure 3. Wind power predicted by BP Figure 4. Wind power predicted by SVM 

 

 

  
  

Figure 5. Wind power predicted by ELM Figure 6. Wind power predicted by GAT-BiLSTM 

 

 

According to these data, the GAT model provides accurate prediction measures for a month of 

winter because its curve closely resembles that which was measured. Table 1 lists all forecasting outcomes 

for a month of winter, based on the four models. The table displays the time convergence of each approach in 

seconds as well as the MSE score, which can be calculated as (10): 

 

𝑀𝑆𝐸 =
1

𝑛
∑  (𝑦𝑖

𝑛
𝑖=1 − �̂�𝑖)

2 (5) 

 

where the number of instances in the test set is 𝑛, the predicted output is �̂�𝑖, and the measured output is 𝑦𝑖 .  

 

 

Table 1. Comparison between models for a month in winter 
Prediction method MSE Time convergence(s) 

GAT-BiLSTM 0.1483 0.6582 

ELM 0.2267 0.6416 
SVM 0.8007 5.7495 

BP 0.9135 6.1578 

 

 

The results are displayed in Table 1 highlighting the execution of the proposed GAT-BiLSTM 

algorithm concerning the MSE error. Due to their ability to significantly distinguish between test values and 

projected results of other models, BP and SVM produced the largest MSE. For BP and SVM, the MSEs are 

0.9251 and 0.8689 respectively. Also, the ELM error is about 0.3486. All these models have errors greater 

than 0.1573 produced by GAT-BiLSTM. 

In addition, the biggest time convergence value is reached by BP and SVM, which take a long time 

to compute and need several iterations. On the other hand, ELM and the proposed model give the lowest 

values, but it still gives a smaller convergence time. Although the suggested GAT-BiLSTM method produced 

comparatively better predictions than the persistent models and converged quickly, all of these results 

demonstrated the reliability of the approach. 
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4. CONCLUSION  

The most common renewable energy source must be wind energy for the power system to operate 

safely, but this is still exceedingly challenging given the volatility of wind speeds and their frequent 

interruptions. Because of this, predicting wind speed has become crucial for the efficient use of energy. In 

light of this, we have included a power forecasting model for the production of wind energy in this post. The 

proposed model attempted to predict the subsequent wind energy generated by the wind turbines using the 

GAT and BiLSTM deep leaning, the so-called GAT-BiLSTM to benefit from historical weather data’s spatial 

and temporal characteristics. The execution of the recommended GAT-BiLSTM algorithm was emphasized 

by the simulation results since it generated comparatively better predictions than the other examined 

algorithms. It is an extremely quick, potent, and dynamic learning algorithm. As a consequence, we can 

conclude that the GAT-BiLSTM may be used quite flexibly in the field of wind power forecasting. However, 

this model can give more accurate results if we optimize the hyperparameters of the whole model. For this 

reason, in future works, we think to use an optimization algorithm like a genetic algorithm to improve the 

prediction precision. Moreover, we also think to enhance our model by using several wind farms in different 

cities. 
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