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ABStrACt

Constructive simulations are the applications used by the military for the training of their commanders in 
planning and analysis of various threats and Courses of Action. In the ‘analysis wargames’, there are need to automate 
many of the tasks of the commander which are carried out by subunit commanders on the ground. Deployment of 
defence units is one of such important decision making by commander. Deployments of units (and sub units) is 
dependent on multiple factors which needs to be satisfied/optimised for meeting the given objective of the unit. In 
this paper we have attempted to solve the multi criterion decision problem of optimal deployment of defence units 
in mountainous terrain using Particle Swarm Optimization(PSO) and Adaptive Particle Swarm Optimization(APSO). 
The algorithm has been tested with varied number of decision parameters and their weights using digital elevation 
and vector data of the terrain features. The auto deployment outcomes are found satisfactory. Our solution approach 
has potential in automated planning in constructive simulations. 
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1. IntrOduCtIOn
Constructive simulations are the applications used by 

the military for the training of their commanders in planning 
and analyses of various threats and courses of action. In these 
simulations, depending on the ‘level of operations supported’, 
‘resolution of combat entities’, ‘purpose (training/analysis)’, 
etc., the combat & decision making process of the commanders 
are modelled. In the ‘analysis wargames’, there are need 
to automate many of the tasks of the commander which are 
carried out by subunit commanders on the ground. Deployment 
of defence units is one of the important decisions made by 
commanders. Deployments of units (and subunits) calls for 
consideration of multiple factors like the ‘type of unit’, ‘terrain 
& environmental factors’, threat, ‘operation type (offensive/
defensive’), etc. The final solution has to be optimal for the 
given operational objectives, constraints and relative weights 
to these factors. In our work, we have taken a specific case 
of auto-deployment of subunits (within the unit area) in the 
mountainous terrain. We have attempted to solve this problem 
using particle swarm optimisation. 

Particle Swarm Optimization (PSO) is a bio-inspired 
stochastic evolutionary optimization algorithm of nature, which 
mimics the behaviour of a flock of birds1 or a school of fish. 
PSO shares many similarities with evolutionary computation 
techniques such as Genetic Algorithms (GA)2-4. Like GA, 
PSO5 searches the space globally and simultaneously. It is 

different from other optimization algorithms in a way that only 
the objective function is needed and it is not dependent on the 
gradient or any differential form of the objective. It also has 
very few hyper parameters. It is initialized with a pool/group of 
random solutions and searches for optima by updating through 
iterations. In PSO, the potential solutions, called particles, 
move through the problem search space by following the local 
best (cognition) solution and the current optimum particles 
of the swarm (social behaviour). In each iteration, all particle 
based on the value of individual cognition factor (C1) and 
social influence factor (C2) follows their local best solution 
and iterations global best solution respectively to converge 
quickly to an optimal solution.

The rate of the position change (velocity) is calculated 
with Eqn. (1) and parameters for the Eqn. (1) are described in  
Table 1.
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                                                                                       (1)    
Ming Cao6, et al. in their paper demonstrate that PSO 

is capable of solving large-scale WTA problems efficiently. 
Hassan Haghighi7 in their study used HPSOGA, a hybrid 
form of particle swarm optimization and genetic algorithm 
for optimal path planning in coverage missions by cooperated 
unmanned aerial vehicles. B. Abhisek8 used Hybrid PSO-HSA 
(Harmony search) and PSO-GA algorithm for 3D path planning 
in autonomous UAVs for better exploratory and exploitative 
search. In other Military applications, Xuezhi Lei9 used PSO 
form selecting the distribution centre’s location in military 
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logistics. Can Gao10 use the Hybrid Particle Swarm algorithm 
and hill-climbing method for solving the Location Problem 
of the Distribution Centre. Vinita Jindal11, et al. in their paper 
used pre-emptive hybrid Ant Particle optimisation (HAPO-P) 
algorithm for smart transportation. 

W : Inertia Weight
Vid  : Particle velocity 
c1,c2 : constant  where value of  c1=1.2 and  c2=2.0
rand0,1 : Random number ranging from 0 to 1
Xid  : Current solution from each individuals
Pid  : Personal Best, the best solution from each individuals
Gid  : Global Best, the best solution from the whole population
The new position of the particle would be:
Xid  = Xid  + Vid 
The MOE of the solution is a Fn of Xid
MOE = fn(Xid).
Basic example of PSO application
In  a mountainous terrain since, the Objective is to find the optimal peak of 
greatest height , then there will be two parameter in Objective Fn (Xid, Yid)
where,
Xid : Current Easting posn of each individuals
Yid : Current Northing posn of each individuals
Vidx : Particle velocity in easting direction
Vidy : Particle velocity in northing direction
Pidx :  easting Posn of best solution of each individuals
Pidy :  northing  Posn of best solution of each individuals
Gidx :  easting Posn of the best solution of  the
Gidy :  northing Posn of the best solution of  the whole population
And now in each iteration velocity update for each particle will be as 
follows:   
Vidx=W∗Vidx+c1∗rand0,1∗(Pidx−Xid)+c2∗rand0,1∗(Gidx−Xid)  
Vidy=W∗Vidy+c1∗rand0,1∗(Pidy−Yid)+c2∗rand0,1∗(Gidy−Yid) 
The new position of the particle would be: 
 Xid=Xid+Vidx
 Yid=Yid+Vidy
MOE Fn for this will be written as:
Zid= MOE function (Xid, Yid)

table 1. PSO parameter description

PSO works well in early iterations but has issues in 
reaching the near-optimal solution. To solve this issue  
Y. Sh12-13, et al. have employed methods in improving solutions. 
One of the strategies would be to linearly decrease the inertia 
weight as the generations are increasing. But instead of adjusting 
the PSO parameter as per the increasing generation, this paper 
uses effective adaptive strategies14-15 at the swarm particle‘s 
level, which recommends replacing ineffective particles with 
fresh ones (by again randomizing their positioning in space) 
from the current generation by keeping track of the history of 
the improvement of each swarm particles. In each generation, 
ineffective particles are tracked according to some predefined 
rule for judging the particle’s ineffectiveness in the current 
generation based on the particle’s history of the rate of solution 
improvements. For this, a term (Tc) is used for each particle 
which describes the number of particle non-performance count 
in the past generation below a designated threshold value(e).

Our results suggest that the adaptive Particle swarm 
Optimization (APSO) outperforms standard PSO.

We have attempted here to address the class of problems 
for decision support/ automated planning for application to 
constructive simulation. We have implemented the PSO and 
APSO based algorithm for automated sub-unit deployment and 
compared the performance as MOE (Measure of effectiveness) 
as to how close the deployment is to the ideal. 

The results generated by our algorithm were discussed 
with domain subject matter experts and found to satisfy the 
commander’s intent. 

2.  PrOBlem deSCrIPtIOn
The deployment of units is one of the important factors 

which influence military commanders on the concept of 
operations in different areas. As per the higher commander’s 
intentions and overall plan of operations, the tactical 
commander appreciates the likely deployment areas on the 
map board followed by ground reconnaissance. The process of 
selection of area for deployment is based on the appreciation 
of a particular commander for that scope of operations. It is not 
necessary that the areas identified would be the same for the 
different commanders in time and space for the operations. This 
increases the complexity of ideal locations for deployment. This 
process is tedious and time-consuming wherein the commander 
initially appreciates each location on the map board considering 
the advantages and disadvantages. This process is based on 
certain multi-criteria peculiarities, which need to be balanced 
as per role and tasking (Defensive & Offensive Ops), some of 
the aspects are (Table 2) Extent of area, Orientation towards 
the enemy, Deployment: Linear- Extended, Consideration 
Heights and Spur lines, Slope, gradient, Availability of axis, 
Line of Sight Profile, obstacle check (Rivers/ Streams/ Nallahs, 
along Valleys, Re-entrant/ Dead Ground, Reverse slopes, 
soil condition, vegetation etc. For computerised ‘analysis 
wargames’, rather than a manual selection of each location on 

table 2.  mOe parameters for optimal infantry parent unit 
deployment in mountainous terrain

Parameter 
name

Parameter 
variable description

Sector-
wise area 
representation

WT(1)

Each subunit position of the 
Parent Unit should be occupied 
by at least one subunit position of 
a particle solution

Deployment 
of subunits in 
height

WT(2)

The particle subunit position 
should be at a dominant height 
so that subunit can engage the 
incoming enemy effectively from 
its weapons. Sub position should 
be deployed in  spur Lines of 
Mountain ridges so that they hide 
from enemy line of sight

Minimum 
LOS from 
enemy units 
position

WT(3)
Subunit should be deployed in 
such a way that there should be 
minimum LOS with the enemy

Maximum 
LOS from 
subunit road 
axes

WT(4)

Subunit should be deployed in 
such a way that there should be 
maximum LOS from subunit to 
own road axes to guard logistic 
supplies

Inter sub unit 
gap WT(5)

Inter sub unit Gap of the PSO 
particle solution should be 
maximized so that subunits do 
not overlap boundaries
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table 3. mathematical formulation of objective function (mOe)

mathematical 
formulation

Factors 
considered description remark

Objective 
Fn of 
MOE

u=(wi*F1+w2*F2+
w3*F3+w4*F4+
w5*F5)

Objective Fn
Where, each 
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function. 

wk represent kth parameter initial 
weight given by the player.
k:  Index of parameters 
contributing to MOE

F1
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Area 
representative 
function

Where, m: number of subunit posn in parent unit 
(here m = 3). 
t: number of sub unit posn (Plxi,j,Plyi,j)  actually 
occupied by any of  particle Location (xi,yi) 
where, i ranging from 1.. m (number of sub unit 
posn in parent unit) 

where, roundel (Plxi,j, Plyi,j), 
where i represent ith sub unit posn 
of parent unit  and j represents no 
of peripheral points within ith sub 
units Polygon 

F2

F2 = Hd * SR
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Height 
representative 
function

Where, (xi,yi) : i
th position of particle representing 

a subunit  Posn
hg : global max height of the terrain area under 
study 
hi : height or elevation of  the i location (xi,yi) of 
Particle
Hd : Height Dominance Factor
SR : ratio of the points on a spur line that is at 
a lower elevation than the point (xi,yi) Ex(i,n), 
Ey(i,n) are periphery Location of (ellipse) 
generated by taking i Particle Location as centre 
as subunit frontage as major axes,subunit depth as 
minor axes.

Ω: =1 if Height of any jth 
peripheral point Ex(i,j), Ey(i,j)  
of ellipse of i Particle Posn < 
Height of Particle Posn (xi,yi), 
where j ranges from 1  to n.
n is the total number of 
peripheral points generated for i 
particle position roundel

F3

       1 2* * 0,1 * * 0,1 *id id id id id idV W V c rand P X c rand G X      1 

1

n

k k
k

u w F


   

(0 1)k kw w   

(0 )k kF F  

1
tF
m

  

1

1 m
i

gi
d

hH
m h

 
   

 
  

1 1

1
*

m n

R
i j

S
m n  

    

3 *
WlF

q m
  

1 1

qm

W
i j

l 
 

   

4 *
ElF

q m
  

1 1

qm

E
i j

l 
 

   

    
1 1

, , ,i
i j

i
i

m m

j jP Dist x y x y
  

  

    
1 1

, , ,c
i j i

m m

i ci cj cjS Dist x y x y
  

  

5 min ,1PF
S

   
 

 

1
k

k

n

kw Fu

  

 0 1k kw w   

  representative function 0k kF F  

 0 1u   

         1 2* * 0,1 * , , * 0,1 * . ,idx idxV W V c rand BestPosnX i j X i j c rand GlobalBestParticle GX j X i j            

         1 2* * 0,1 * , , * 0,1 * . ,idy idyV W V c rand BestPosnY i j Y i j c rand GlobalBestParticle GY j Y i j            

   , , idxX i j X i j V   

     , , idyY i j Y i j V   

       1 2* * 0,1 * * 0,1 *id id id id id idV W V c rand P X c rand G X      1 

1

n

k k
k

u w F


   

(0 1)k kw w   

(0 )k kF F  

1
tF
m

  

1

1 m
i

gi
d

hH
m h

 
   

 
  

1 1

1
*

m n

R
i j

S
m n  

    

3 *
WlF

q m
  

1 1

qm

W
i j

l 
 

   

4 *
ElF

q m
  

1 1

qm

E
i j

l 
 

   

    
1 1

, , ,i
i j

i
i

m m

j jP Dist x y x y
  

  

    
1 1

, , ,c
i j i

m m

i ci cj cjS Dist x y x y
  

  

5 min ,1PF
S

   
 

 

1
k

k

n

kw Fu

  

 0 1k kw w   

  representative function 0k kF F  

 0 1u   

         1 2* * 0,1 * , , * 0,1 * . ,idx idxV W V c rand BestPosnX i j X i j c rand GlobalBestParticle GX j X i j            

         1 2* * 0,1 * , , * 0,1 * . ,idy idyV W V c rand BestPosnY i j Y i j c rand GlobalBestParticle GY j Y i j            

   , , idxX i j X i j V   

     , , idyY i j Y i j V   

Rd Axis  
representative 
function

Where, lW : sum of the  existence of LOS of all 
road axes locations Rdx(j), Rdy(j) with respect 
to the particle  ith Location (xi,yi) for all sub 
polygons.
Here  we consider q random points on the own 
road  Axis

where, d = 1 if LOS exists 
between any pair of any jth own 
side Road axes location (Rdx(j), 
Rdy(j))  and ith  particle Posn (xi,yi) of m points otherwise d = 0
where,
Rdxq, Rdyq : represents total q 
Points of  own  road  axes
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Where, lE : sum of the ratio of the non-existence 
of LOS of all enemy axes (Enx(j), Eny(j))  
location  with respect to the point (xi,yi) for all sub 
polygons.

Here  we consider q random points on the Enemy 
Axis

where, w = 1 if No LOS exists 
between any pair of any jth 
Enemy location (Enx(j), Eny(j))  
and ith  particle Posn (xi,yi) of m 
points otherwise d = 0
where,
Enxq, Enyq : represent  total q 
Points of  Enemy  axes
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Inter sub 
unit gap 
representative 
function

where,
P : sum of distance of all distinct pair (xi,yi), (xj,yj) 
(where,  j > i) of the polygon with m points (xi,yi) 
random ith sub unit location generated by PSO. 
S: sum of distance of all distinct pair (xci,yci), 
(xcj,ycj) (where, j > i).
(xci,yci) is actual standard ith sub unit centre 
locations generated by algorithm using parent unit 
periphery polygon.
Where, i ranging from 1..m
m=number of total sub unit locations of parent 
units

the map which is time-consuming, if the system pre-processes 
in auto-selection of optimal deployment areas before the actual 
simulation, this will help in the logical synthesis of data in a 
rationale way which is nearing to the military commander’s way 

of appreciation. The system generated Automatic Deployment 
feature will aid commanders in planning the selection of ideal 
deployable areas in a particular terrain. 
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3.  PrOBlem FOrmulAtIOn
In the following section, we have formulated the problem 

of deployment of unit (subunit) in the mountainous terrain with 
a few set of parameters (and their weights). The problem is 
formulated and solved using PSO and APSO. The solution can 
be extended to include more parameters (Table 2). 

Problem of automated deployment of subunits within the 
unit area is characterised by multi criterion/factors. Relative 
importance of these factors are decided by the unit commander 
as per the operational situation and operational role of the unit. 
Problem addressed in this paper has taken 5 factors (F1-F5) 
in consultation with the military subject matter experts viz. 
Dispersion of subunits within the unit area, Height dominance 
within the given area of deployment, Exposure/visibility with 
own/enemy units, visibility to logistics supply axis and sub-
unit dispersion/spread. These five operational domain factors 
contributing MOE are mathematically represented/formulated 
(Table 3) as F1-Area representative factor, F2-Height 
representative factor, F3-Enemy axis representative factor, 
F4-Road Axis representative factor and F5-Inter sub-unit gap 
representative factor respectively.

These factors (F1-F5) are dynamically evaluated for 
the given scenario. Scenario includes, Terrain Elevation data 
(DEM), Terrain features vector Data-Roads, Track, Spur lines, 
unit deployment area, Friendly/own and enemy units/entities 
with their locations and resources (equipment’s/weapons etc.).

Objective function, MOE (Measure of Effectiveness) is 
taken as weighted sum of the factors (F1-F5). PSO and APSO 
based algorithm is implemented to maximise the MOE for the 
desired operational objective.

Random population of particles is generated. Each 
particle represents the set of locations of sub-units and MOE 
is computed based on the weighted sum of factors (Table 3). 
Factor F1(Sector-wise area representation) represents how 
many particles are within the sub unit area. It is computed by 
ratio of the number of particles within the sub-unit areas and 
the total number of the sub-unit areas. Factor F2 (Deployment 
of subunits in Height) is computed as sum of ratio of height 
of each particle position and maximum possible height in 
the given parent unit region. Factor F3 (minimum LOS from 
enemy) is computed as ratio of number of non-LOS of particle 
with all enemy locations and the total possible particle-enemy 
interactions (m*n, where m=number of sub units and n=no of 
enemy locations) Factor F4 (maximum LOS from own Road 
axes) is computed as ratio of total existence of LOS ( between 
m PSO particle positions and  r  road axes location ) and (m*r). 
Fifth MOE parameter F5 “ Inter sub unit Gap “ was introduced 
so that all PSO particle positions must have minimum sub 
unit inter distance. Although , some PSO solution are having 
high value in first four parameters, but if all PSO sub positions 
might fall on or near same location ,that may not be a good 
solution, therefore minimum inter sub unit distance has to be 
maintained.

4. ImPlementAtIOn
The following section details the implementation of the 

algorithm for automated deployment problem described and 
formulated in the previous section. Algorithm Pseudo code for 

PSO and APSO are placed in Table (4, 5). Input to the algorithm 
includes the scenario as described in previous section. The user 
(Unit commander in our case) assigns weights to the factors 
and marks the unit area polygon (Cx, Cy). Sub-unit areas 
(Plxi,j, Plyi,j) are generated (equal to the number of sub units 
of the parent unit, e.g 3 sub positions in our case of Coy Unit) 
within which the our objective is to automatically generate the 
sub-unit locations. Here i represents sub unit position of parent 
unit and j represents no of peripheral points within the ith sub 
unit area position.

table 4.  Automated deployment algorithm (PSO)
For each particle in Population(Pop) 
Initialize particle with random Posn(X3,Y3) within parent unit  Polygon   
Calculate (MOE) fitness value of each particle 
If the (MOE) fitness value is better than its personal   best
              set current value as the new pBest
Update global best particle  if pBest > global best 
END For
Do for each iteration
For each particle in Population
      Calculate particle velocity according equation (2)
      Update particle position according equation    (3)
      Calculate (MOE) fitness value of each particle
      If the fitness value is better than its personal best
                  set current value as the new pBest
     Update global best  particle if pBest > global best 
    End 
While (maximum iterations  or minimum error criteria is not attained)

table 5.  Automated deployment algorithm (APSO)
Initialize Tc=3
Initialize DelError=.0001
For each ith particle in Population(Pop) 
Initialize particle with random Posn(X3,Y3) within parent unit Polygon   
Initialize particle NonPerformCtr(i)=0
Calculate (MOE) fitness value of each ith particle 
If the (MOE) fitness value is better than its personal   best
              set current value as the new pBest for ith particle
Update global best particle if pBest > global best 
END For
Do for each iteration
For each ith particle in Population
     IF NonPerformCtr(i) > Tc
 NonPerformCtr(i)=0 
Poly area
     End if 
      Calculate particle velocity according equation (2)
      Update particle position according equation    (3)
      Calculate (MOE) fitness value of each ith particle

 Compute Relative Error Fn(REN)= abs( Particle(i).MOE-Global.
MOE) /   abs(min(Particle(i).MOE,Global.MOE))

 If    REN < DelError
  
 NonPerformCtr= NonPerformCtr+1
             End If
             If the fitness value is better than its personal best
                  set current value as the new pBest
     Update global best  particle if pBest > global best 
    End 
While (maximum iterations  or minimum error criteria is not attained)

The problem of optimal deployment of subunits of the 
parent unit is solved by using Particle Swarm Optimisation 
where each solution of PSO is a particle-containing 3 locations 
(xi,yi), i is ranging from 1 to 3. Each swarm contains a population 
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of n particles. PSO randomly initialize all n Particle’s three 
locations within the parents unit’s area polygon (Cx, Cy). In 
every PSO iteration, each particle’s MOE is computed (Table 
3) and the particle’s best cost is updated with the current best 
cost, if current MOE is better the particle Best MOE Cost. Also 
in each iteration if any particle MOE is better than the current 
Global Best, then Global Best is replaced with particle MOE.

Table 3 depicts the mathematical formulation of the MOE 
of each PSO Particle in detail. 

MOE of each particle representing solution as (xi,yi) is 
given as:
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 is the weight for function
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.
This process is repeated until the std deviation of last n 

(say 20) iteration is less than required std error (.0001). Fk is 
value of kth representation Function, k ranging from 1.. n=5, u 
is MOE value ranging between 
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In each iteration velocity update for each particle is:
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              (2)    
The new position of the particle would be:
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where, j varies from 1:n sub unit Posn for each ith Particle 
of swarm, [X(i,j) , Y(i,j)]  represent locations of jth sub unit 
for ith particle of swarm. BestPosnX(i,j), BestPosn(i,j) 
represent so far best location of jth sub unit for ith particle of 

swarm, GlobalBestParticleGX(i,j), GlobalBestParticleGY(i,j) 
represent so far Global best location of jth sub unit for ith particle 
of swarm. Other PSO value taken : W=1.0 , c1=1.5 , c2=2.0 
and Tc=3.

In the APSO algorithm (Table 5), the particles which did 
not performed for Tc times are replaced with the randomly re-
initialised particles within Parent unit. The non performance 
criteria is taken as when the relative error function Fi value 
goes below (e=10^-4).

Relative error function Fi is computed for each i th particle 
in each generation as follows:

Fi= (FgBest -Fi) / Min( Abs(Fi), Abs(FgBest) )
where, Fi is MOE value for ith particle at iteration(it) and 
FgBest is so far best MOE of particle. The APSO algorithm is 
described in Table 5.

5.  exPerImentAl SetuP, reSultS And 
AnAlySIS

5.1  experimental Setup
Algorithm is implemented in MATLAB. Terrain map data 

(vector, raster) and DEM data (Tiff) are loaded and displayed. 
Simulation front end facilitates marking of unit locations, 
roads and other vector features. Two scenarios were created 
with 5 factors to be addressed for deployments. User inputs 
included initial deployment area (unit polygon) of the unit on 
the desired location on the GIS map. User (unit commander) 
gives the weights to each of the five factors (F1-F5) to meet the 
operational objective. Scenario-1 gives equal importance to all 
the factors for the given operational need. In the Scenario-2, 
higher importance is given to few factors (like dominance 
to terrain height and inter subunit gap) as compared to other 
factors (like Line of Sight). System generates three initial sub 

table 6. result analyses 

Scenario 1. equal WtS to all factor 0.20

2. Variable WtS to all with dominent height and inter Pl 
Gap
Wt(1) : Area rep:                                       0.10
Wt(2) : Ht Advantage:                              0.40
Wt(3) : lOS With road axes:                    0.20
Wt(4) : mIn lOS With enemy axes:        0.00
Wt(5) : Inter latoon Gap:                           0.30

PSO APSO
(Tc = 3, Error = .0001) PSO APSO (Tc = 3, Error = .0001)

POP 200 200 200 200

STD error for termination StdDev = 0.0001 StdDev = 0.0001 StdDev = 0.0001 StdDev = 0.0001

Area Rep Val 1 1 1 1

PL HT Val 0.8033 0.8687 0.8386 0.8585

Road LOS Val 0.5833 0.5833 0.4167 0.4167

NO LOS With enemy 1 1 0.9167 1

Inter PL GAP Val 1 1 1 1

MOE Val 0.8773 0.8904 0.9188 0.9434

Iteration terminated 107 127 63 112

Exchange for best SOL 29 22 14 22

No of non performing particles NA 26 NA 41
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Figure 3. Performance graph (Scenario-2).

PSO APSO

Figure 2. Automated deployment output (Scenario 1).

PSO APSO

Figure 1.  Performance graph (Scenario-1).

PSO APSO
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unit position and sub unit polygons, which are the input to 
our algorithm. Optimal population size has been taken as 200 
by experimentation through multiple APSO simulation runs. 
Simulation was executed for both the scenarios with PSO and 
APSO algorithms. Termination criterion of the algorithm is 
when the standard deviation of last n (say 20) iteration goes 
below required std error (0.0001).

5.2  result Analyses
The results of the two scenarios are listed in  

Table 6. Scenario 1 is with equal weights /importance to all 
the 5 multi criterion factors. Scenario 2 where the operational 
need dominated by relatively higher importance to achieve the 
height dominance with minimum from enemy locations and 
also archive the larger inter subunit gap to cover the maximum 
intended unit area. Automated deployment locations are 
computed through our PSO and APSO based algorithms.

Results show that the number of iteration with APSO 
algorithm is higher than PSO, but the MOE improvement is 3 
% higher for scenario and 4 % higher for scenario2. The results 
shows that 13 % (scenario1) and 20 % (scenario2) particles 
outperformed and needed to be re-initialised resulting in 
improved MOE at the cost of increase of number of iteration 
by 18 % and 77 % respectively for scenario1 and scenario2. 
Also performance graph (Fig. 1) we can see that for scenario 
1, PSO almost took 63 iteration to stabilize MOE value , 
where as APSO took almost 54 iteration to stabilize MOE. In 
performance graph (Fig. 4) ,we can see further that for scenario 
2, PSO almost took 47 iteration to stabilize MOE value of  
91 %, where as APSO took only 5 iteration to stabilize MOE 
value of 91 %. In scenario 2 PSO version after 50 iteration is 
almost showing no further improvement in solution , whereas 
in APSO version showing continuous gradual increment in 
MOE of solution. 

6.  COnCluSIOnS
The process of selection of area for deployment of units 

is one of the important factors in a commander’s operational 
planning which is based on the appreciation of a particular 
commander for that scope of operations. It is not necessary 
that the areas identified would be the same for the different 
commanders in time and space for the operations. In the 
constructive simulation applications, there are requirements 
for automating many of the operational decision making to 
abstract the inputs to the desired level to meet the desired 
objective of the training/analysis. Automation of the tasks of 
the commanders below the specific hierarchy is an important 
aspect. Our approach to solving one such problem (deployment 
of subunits) as a case study has shown encouraging results. 
In our experimental set up, with GIS vector DEM data and 5 
factors in two scenarios generated the Optimal different sub 
unit position within parent Unit. The deployments generated 
by our algorithms were discussed with military subject matter 
experts (SMEs) and were satisfactory. 

Results of APSO have shown improvement as compared 
to standard PSO approximately by 3 - 4%. Results of different 
cases/scenarios illustrated in our case study have the potential 
in solving similar automated planning. The solution approach 
has also application in solving more complex nonlinear 
multi-objective planning problems in the military simulation 
domain.
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