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Reliable extraction of energy landscape properties from critical force distributions

Sudeep Adhikari * and K. S. D. Beach †

Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677, USA

(Received 10 January 2020; accepted 31 March 2020; published 3 June 2020)

The structural dynamics of a biopolymer is governed by a process of diffusion through its conformational
energy landscape. In pulling experiments using optical tweezers, features of the energy landscape can be
extracted from the probability distribution of the critical force at which the polymer unfolds. The analysis is
often based on rate equations having Bell-Evans form, although it is understood that this modeling is inadequate
and leads to unreliable landscape parameters in many common situations. Dudko et al. [Phys. Rev. Lett. 96,
108101 (2006)] have emphasized this critique and proposed an alternative form that includes an additional shape
parameter (and that reduces to Bell-Evans as a special case). Their fitting function, however, is pathological in the
tail end of the pulling force distribution, which presents problems of its own. We propose a modified closed-form
expression for the distribution of critical forces that correctly incorporates the next-order correction in pulling
force and is everywhere well behaved. Our claim is that this new expression provides superior parameter
extraction and is valid even up to intermediate pulling rates. We present results based on simulated data that
confirm its utility.

DOI: 10.1103/PhysRevResearch.2.023276

I. INTRODUCTION

The contribution of explicitly quantum processes notwith-
standing [1], classical energy landscape theory [2–5] provides
a useful framework for describing the evolution of biopoly-
mers between various folded and unfolded configurations
through a process of thermally driven escape from local
confining potentials [6]. Developing tools of analysis within
this framework has become ever more pressing, given the
profound developments in single-molecule biophysics [7–22].
One of the key practical problems is how to infer the energy
landscape, or at least a projection of it onto an appropriate
reaction coordinate, from experimentally measured quantities
[23–32]. As is typical of inverse problems, recovery of the
landscape from measured data is ill conditioned: it is highly
sensitive to experimental uncertainties and to any assumptions
that go into the forward model.

In pulling experiments using optical tweezers [33], the de-
termination of landscape features has historically been carried
out based on Bell-Evans phenomenological theory [34–38],
which assumes that the rate constant k(F ) scales up exponen-
tially with applied force from its unperturbed, intrinsic value
k0 according to the Arrhenius law,

kBE(F ) = k0eβFx‡
. (1)

Here, β−1 = kBT is the thermal energy scale set by the aque-
ous environment; x‡ is the minimum-to-barrier distance of the
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effective one-dimensional potential U0(x), a continuous (but
not necessarily smooth) function of the end-to-end extension.

A common experimental situation involves the application
of a pulling force F = KV t that grows linearly in time until
the rupture force Fc is reached. Although other pulling proto-
cols are sometimes employed [39–43], we focus on the case
of constant pulling speed, and we ignore instrument-specific
issues of compliance [44–46].

It is recognized that a description of pulling experiments
based on the Bell-Evans formula for the force-induced rupture
rate is in poor accord with results from numerical simulations
[47]. The naive thermal-activation picture, represented by
Bell-Evans theory, suffers from various inadequacies that are
important to address. To begin, Eq. (1) is strictly applicable
only in the limit of low pulling rate (KV � KVmin = k0/βx‡)
and ultrahigh barrier (�G‡ � Fx‡, kBT ). Even in the mod-
erate pulling regime, it incorrectly predicts the rupture force
distribution. It also ignores self-consistency effects in the
sense that it does not account for the fact that the distance x‡

and the energy barrier �G‡ are themselves force dependent
and both diminish with increasing F as the energy landscape
is tilted. Nor does it properly account for the shape of the
barrier, which plays a vital role in establishing the escape
rate and the nature of the escape trajectory for more modest,
biologically relevant barrier heights.

Consequently, there are many situations in which the
phenomenological theory incorrectly predicts the results of
pulling experiments. It tends to overestimate the rate of
rupture, k(F ), at a given force F and to underestimate
the mean and most-probable rupture forces. Hence, when
the Bell-Evans rate, kBE(F ), is used as the basis for a
fit to experimental data, the extracted parameters, �G‡,
x‡, and k0, may be incorrectly predicted. Our main con-
cern here lies in the reliable extraction of these physical
quantities.
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Attempts have been made to improve on Bell-Evans theory
by introducing additional fitting parameters [48,49], some-
times in an ad hoc way. Dudko and co-workers have tried
to make the analysis more rigorous [50]. They calculated
k(F ) and the corresponding probability density of the rupture
force p(Fc) within the framework of Kramers theory [51] for
two specific free energy surfaces—the cusp surface and the
linear cubic surface—and showed that these two examples
can be subsumed into a single result (appearing as Eq. (3) in
Ref. [50]),

kD(F ) = k0

(
1 − νFx‡

�G‡

)1/ν−1

eβ�G‡[1−(1−νFx‡/�G‡ )1/ν ], (2)

with interpolation provided by a shape parameter ν. This
encompasses the Bell-Evans result, since kD(F ) → kBE(F )
as ν → 1. It is clear, however, that for all ν �= 1 Eq. (2)
has a dangerous point of nonanalyticity. The vanishing of
the rate kD(F ) → 0 as F → �G‡/x‡ν (for shape parameters
in the range 0 < ν < 1) is manifestly unphysical; hence the
Dudko expression is only appropriate for the pulling regime
in which F � �G‡/x‡ν. In fact, the region of validity is
more constrained still, since we should further require that
the escape rate grow with pulling force. As it turns out, the
function kD(F ) is monotonic increasing only for

F <
�G‡

x‡ν

[
1 −

(
1 − ν

β�G‡

)ν]
. (3)

We pursue a different approach that produces no non-
analyticity and no obviously unphysical behavior. We com-
pute log k(F )/k0 order by order in the pulling force. Rather
than truncate the expansion, we approximate the higher-order
terms as a resummation by geometric series—similar in spirit
to the random phase approximation or the infinite summation
of ladder diagrams in many-body theory:

k(F ) = k0 exp

(
βFx‡

1 + F/2κ‡x‡

)
. (4)

Here κ‡ is the reduced curvature of the well and barrier. The
route to Eq. (4) is nothing more than a mathematical trick, but
it rather elegantly cures the ill behavior of a truncated expan-
sion, and it fortuitously leads to a closed-form expression for
the cumulative probability distribution.

Our attempts to benchmark Eq. (4) fall into two categories,
prediction and parameter extraction, which correspond to the
forward and inverse problems. In the forward direction, we
determine the escape rates and the cumulative probability dis-
tribution of the critical force following the numerical method
described in Sec. III. We compare the simulated behavior to
the various analytical predictions. We find that our proposal
outperforms the Bell-Evans and Dudko expressions, across
many different choices of energy landscape and over a broad
range of pulling rates. In the inverse direction, analytical
forms for the cumulative probability distribution P(Fc) are
fit to the simulated data to extract the optimal values of the
intrinsic parameters k0, x‡, and κ‡.

The results we achieve are compelling. The values of the
three parameters that we extract are in excellent agreement
with the actual values that characterize the underlying energy
landscape. Moreover, the agreement appears to hold over an

FIG. 1. Blue curve: The double-well potential has equilibrium
positions at xl and xr , separated by a barrier at xb. A particle escaping
from left to right experiences a barrier of height �G‡ = U0(xb) −
U0(xl ), peaked at a distance x‡ = xb − xl from the bottom of the left
well. Red curve: After application of a pulling force F , the energy
landscape has tilted to favor the destination well on the right. Observe
that the well positions have shifted and that the height of the barrier
holding the particle in the left well has decreased.

unexpectedly large range of pulling rates, with KV/KVmin

spanning six or seven orders of magnitude.
In contrast, fits of simulation data to the Bell-Evans cu-

mulative probability distribution, insofar as they are able to
produce good values of k0 and x‡ at all, only do so at the
very slowest pulling rates. It is difficult to speak definitively
of how well Dudko’s expression performs, since in that
context fits must be carried out in conjunction with a force
cutoff somewhere below the point of nonanalyticity. This is
an unwelcome complication. The cutoff itself introduces a
significant element of uncertainty in the fit, since where best
to put the cutoff cannot be determined if the landscape is not
yet known.

II. FORMAL DEVELOPMENT

Kramers theory tells us that the escape rate depends weakly
(polynomially) on the curvature at the bottom of the well and
the top of the barrier but strongly (exponentially) on the height
of the apparent energy barrier in the direction of travel [51,52].
We consider a double well potential U0(x), with wells at
positions xl and xr separated by a barrier at xb (xl < xb < xr),
as illustrated in Fig. 1. The well escape rate from left to right is
given by k0 ∼ exp(−β�U0), where �U0 = U0(xb) − U0(xl ).

We allow for a pulling force F that tilts the potential
landscape according to

U (x) = U0(x) − Fx. (5)

The corresponding rate equation becomes

k(F ) ∼ exp[−β(U (xb + δxb) − U (xl + δxl ))], (6)

where δxl and δxr denote the shifts in the well positions as a
result of the tilt. Taylor expansions of the extremal conditions
U ′(xl + δxl ) = 0 and U ′(xb + δxb) = 0 around xl and xb up
to first order in δxl and δxb give δxl = F/U ′′

0 (xl ) = F/κl and
δxb = F/U ′′

0 (xb) = −F/κb. A further expansion of U (xb +
δxb) and U (xl + δxl ) around xb and xl , respectively, up to

023276-2
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FIG. 2. The well escape rate k(F ) is plotted against the applied
pulling force F . The upper (dashed blue) curve corresponds to the
Bell-Evans (BE) rate [Eq. (1)], the middle (solid red) to our proposed
infinite-resummation expression [Eq. (4)], and the lower (dot-dashed
green) to an expansion truncated at second order in the pulling force
[Eq. (7)]. The BE result grows exponentially without bound (but
shows as a straight line because of the log-linear scale). The truncated
expression turns over and becomes unphysical around 80 pN. The
resummed form strikes a middle course, growing monotonically but
saturating at a large, finite value, k0 exp[2βκ‡(x‡)2].

second order in F , yields a rate equation of the form

k(F ) = k0 exp

[
βFx‡

(
1 − F

2κ‡x‡

)]
. (7)

Here, x‡ = xb − xl , and

1

κ‡
= 1

U ′′
0 (xl )

− 1

U ′′
0 (xb)

= 1

κl
+ 1

κb
. (8)

Successive terms in the expansion of log k(F )/k0 have
alternating sign, which is important for proper convergence of
the series. Indeed, there is no polynomial expression, arising
as a truncation of the series at finite order, that does not
either substantially over- or undershoot the true rate for large
applied F . The negative-prefactor terms at even powers of
F are particularly troublesome, because they lead to non-
monotonicity. As a workaround, we make use of the idea
of infinite resummation, 1 − ε + ε2 − · · · ≈ 1/(1 + ε), which
transforms Eq. (7) into Eq. (4), at least up to discrepan-
cies at O(F 3). The transformed expression is well behaved
everywhere and displays no obviously unphysical behavior
(see Fig. 2). Moreover, it leads to a closed-form expression
for the cumulative probability distribution (with the correct
normalization P(Fc) → 1 as Fc → ∞; Dudko’s expression, in
contrast, cannot be properly normalized).

In the usual adiabatic limit, the expression for the cumu-
lative probability distribution of the rupture force is given by

P(Fc) = 1 − exp

[
−

∫ Fc

0

dF

Ḟ
k(F )

]
. (9)

Equations (1) and (9) together give the cumulative probability
distribution of the rupture force as predicted by the Bell-Evans

phenomenological model,

PBE(Fc) = 1 − exp

[
k0

KV βx‡
(1 − eβFcx‡

)

]
. (10)

If instead we put Eq. (4) into Eq. (9), we get a more com-
plicated result, but one that is still simple enough to use for
fitting (e.g., via the Marquardt-Levenberg method):

P(Fc) = 1 − exp

[
− k0

KV
(F1 + F2 − 2x‡κ‡)

]
. (11)

The quantities F1 and F2 have units of force and are explicit
functions of the critical value Fc:

F1 = (Fc + 2x‡κ‡) exp

(
2Fcx‡2

βκ‡

Fc + 2x‡κ‡

)
,

F2 = 4x‡3
βκ‡2

exp(2x‡2
βκ‡)

×
[

Ei

(
− 4x‡3

βκ‡2

Fc + 2x‡κ‡

)
− Ei(−2x‡2

βκ‡)

]
. (12)

The exponential integral Ei(x) = − ∫ ∞
−x dt t−1e−t is a standard

special function that is available in most data analysis soft-
ware.

The choice F = KV t is helpful here but not essential. Its
main advantage is that the differential appearing in Eq. (9)
simplifies to dF/Ḟ = (KV )−1dF , and hence the integration
measure is trivial. The closed-form expression that we obtain
in Eqs. (11) and (12) does depend on this choice. But any
pulling schedule F (t ) that is monotonic increasing (so that
Ḟ never vanishes or goes negative) and growing at most as a
polynomial in t can be treated similarly.

We now comment on the connection to the prior work
of Dudko and co-workers. The unperturbed potential U0(x)
can be expanded to quadratic order around the bottom
of the well, U0,l (x) = U0(xl ) + (κl/2)(x − xl )2, and around
the peak of the barrier, U0,b(x) = U0(xb) − (κb/2)(x − xb)2.
We identify the position x∗ = (κbxb + κl xl )/(κl + κb) where
the two approximations take a common slope and match the
functions smoothly there. The resulting piecewise composite
curve has a total rise of

U0,l (x
∗) − U0(xl ) + U0,b(x∗) − U0(xb)

= κlκb(xb − xl )2

2(κl + κb)
= 1

2
κ‡(x‡)2, (13)

which differs from the true barrier height �G‡ = U0(xb) −
U0(xl ) by a factor that Dudko labels 1/ν. That is,

�G‡

ν
= 1

2
κ‡(x‡)2. (14)

The equality ν = 2/3 holds for any degree-three polynomial.
If the energy landscape is represented by a higher-degree
polynomial, then the value of the shape parameter is idiosyn-
cratic and should be viewed as drawn from a distribution
with average 〈1/ν〉 < 3/2. For smooth potentials (no cusps or
discontinuities), typical values of the shape parameter ν range
between 2/3 and ≈1.1. An advantage of working in terms of
ν, rather than the effective curvature κ‡, is that the former can
be defined even if the derivatives U ′′(xl ) and U ′′(xb) vanish

023276-3



SUDEEP ADHIKARI AND K. S. D. BEACH PHYSICAL REVIEW RESEARCH 2, 023276 (2020)

FIG. 3. Numerical measurements of the escape rate (green data points with error bars) are plotted versus the applied pulling force. Also
shown for comparison are the predictions of the Bell-Evans approach [Eq. (1), dashed blue line], Dudko approach [Eq. (2), dot-dashed orange
line], and our renormalized rate equation [Eq. (15) with a common value α = 1/3, solid red line]. The simulations were carried out for
potentials with various values of ν = 2�G‡/κ‡(x‡)2, the shape parameter: (a) ν = 0.66, (b) ν = 0.75, (c) ν = 0.82, (d) ν = 0.9, (e) ν = 1.0,
and (f) ν = 1.1. We note the remarkable agreement between simulation and the renormalized form. No fitting is involved.

(e.g., a quartic well or barrier) or are not well defined (e.g., a
cusp barrier).

With Eq. (14) in mind, matching our resummed rate ex-
pression to that of Dudko order by order in the small-pulling-
force, large-barrier-height limit suggests the form

k(F ) = k0 exp

[
βFx‡

(1 + α/β�G‡)(1 + νFx‡/4�G‡)

]
, (15)

where α > 0 is a pure number with a weak dependence on
the shape parameter. Equation (15) can be understood as a
rewriting of Eq. (1), the Bell-Evans phenomenological rate,
with an upward renormalization of the temperature, β →
β/(1 + α/β�G‡), and a downward renormalization of the
barrier distance x‡ → x‡/(1 + νFx‡/4�G‡). Unlike Eq. (2),
Eq. (15) is well behaved everywhere.

In the case of an ultrahigh barrier, defined by the double
limit β�G‡ � 1 and �G‡ � Fx‡, Eq. (15) reduces to Eq. (1).
For more modest barriers or higher temperatures, one or both
of the factors (1 + α/β�G‡) and (1 + νFx‡/4�G‡) may
differ appreciably from 1; this allows the rate expression to
become aware of the details of the barrier’s height and shape
through the factor �G‡/ν.

The reliability of Eq. (15) was tested for six potential
landscapes with different values of ν using the simulation
scheme described in the next section. In every test example
(see Fig. 3), our renormalized equation closely tracked the
empirical escape rate determined from simulations. It no-
ticeably outperformed the Bell-Evans and Dudko escape rate
equations.

III. NUMERICAL SIMULATIONS

The reaction coordinate x was made to execute Langevin
dynamics according to

mẍ = mv̇ = −∂U

∂x
− γ v + ξ (t ). (16)

This was implemented using a modern reformulation [53]
of the Verlet algorithm [54]. We mimicked the experimental
situation by assuming stochastic motion of a molecule of ef-
fective mass m = 2 pg in a biquadratic potential. The data that
appear in Figs. 4–7 correspond to the choice U0(x) = 4x4 −
32x2 + 64 (with x measured in nm and U0 in pN nm). The
molecule was assumed to be pulled from two ends along the
reaction coordinate x by a laser potential with force constant K
and pulling velocity V , i.e., with an instantaneous force F =
KV t that increases linearly in time. For the given potential,
the energy barrier was �G‡ = 64 pN nm, the minimum-to-
barrier distance x‡ = 2 nm, and the effective curvature κ† =
42.7 pN nm−1. The stochastic forces ξ (t ) on the molecule
were drawn randomly from a Gaussian distribution of width
(2mγ kBT δt )1/2 with kBT = 4.1 pN nm, γ = 7 μs−1, and a
discrete time step δt ranging from 10−2 to 10−6 μs.

Note that, for generality, small inertial effects were in-
cluded in the numerics. The simulations were not run in the
strongly overdamped, diffusion-only limit: parameter values
were chosen to be physically plausible but also to produce
a nonextreme limit (neither γ � ωb nor γ � ωb) of the
prefactor to the exponential in the Kramers rate [which will
appear in Eq. (17)].
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FIG. 4. Plots paired on the left and right show the cumulative
probability distribution P(Fc ) and the corresponding probability den-
sity p(Fc ) = P′(Fc ) of the rupture force. Each row shows results
for successively faster pulling rates: (a, b) KV = 4 × 10−6 pN μs−1,
(c, d) KV = 4 × 10−4 pN μs−1, and (e, f) KV = 4 × 10−2 pN μs−1.

Pulling rates for the force F = KV t are measured with
respect to KVmin = k0/βx‡, which is the minimum rate for
effectual pulling. Below KVmin, the probability density p(Fc)
is peaked at Fc = 0; the particle escapes the well on its own
before the applied force has appreciably modified the energy
landscape. On the other hand, for rates above KV/KVmin ≈
106, the barrier vanishes too quickly, long before the particle
has moved any significant distance. Accordingly, we worked
in the regime of pulling rates between these two extremes.

The simulation was initialized in the left well by drawing
starting values of velocity v and position x from the distri-
butions e−βmv2/2 and e−βU (x)
(xb − x), respectively, so that
the each simulation began fully thermalized. The simulation
flagged the value of pulling force at which x convincingly
crossed the barrier or the barrier vanished; we took this to
be the rupture or critical force Fc. For each value of the
pulling rate KV , the simulation was carried out 2500 times,
each run generating a unique value of the rupture force. The
cumulative probability distribution P(Fc) was constructed in
the standard way—by sorting the measured rupture forces in
ascending order and then pairing them with a uniform grid of
values running from zero to 1. The plot for P(Fc) so obtained
was tested against Eq. (11) and against the Bell-Evans form,
Eq. (10). The process was repeated for pulling rates ranging
from KV = 10−7 to 0.6 pN μs−1 (roughly 1 � KV/KVmin �
107) to determine how these expressions fare in the slow,
intermediate, and fast pulling regimes.

FIG. 5. The average rupture force 〈Fc〉 = ∫
dF FP′(F ), deter-

mined by numerical integration with P(F ) taken from Eqs. (10)
(dashed blue line) and (11) (red line), is compared to the empirical
values from simulation (green crosses).

In order to test parameter extraction, the original P(Fc) data
set for each pulling rate was bootstrapped [55] 100 times to
generate 100 new instantiations. These data were fitted with
Eq. (11) to extract the intrinsic parameters of the potential
landscape: k0, x‡, and κ‡. The spread in fit values was used
to generate error estimates.

The data sets were also fitted to the Bell-Evans form given
by Eq. (10) in order to extract the values of k0 and x‡ (κ‡

does not appear in the Bell-Evans expression). The bootstrap-
average values of the extracted parameters were compared
to their known values. The theoretical intrinsic rate k0 was
computed according to the usual Kramers result,

k0 = ωl

2π

√
γ 2/4 + ω2

b − γ /2

ωb
exp(−β�G‡). (17)

Our test potential corresponded to ωl = √
κl/m = 8 μs−1 and

ωb = √
κb/m = 5.65 μs−1. We verified that the theoretical

value of k0 = 1.192 × 10−7 μs−1 was in agreement with nu-
merical measurements of the escape rate for the nontilted
energy landscape.

IV. RESULTS AND CONCLUSIONS

In the left column of Fig. 4, the rupture force distributions
predicted by Eqs. (10) and (11) are compared to the results
from simulation for three different pulling rates (correspond-
ing to KV/KVmin ≈ 101, 103, and 105). For slow pulling (top
row), the Bell-Evans theory and our resummed expression are
well matched to each other and to the numerics. For inter-
mediate pulling (middle row), the Bell-Evans result begins
to deviate significantly, whereas our proposal continues to
give accurate results (i.e., the solid green and dotted red lines
coincide). Only at the highest pulling rates (bottom row) do
we find significant deviation from the simulated rupture force
distributions for both Eqs. (10) and (11); although, even there,
our expression performs better and is in good agreement up to
∼25 pN.

It is instructive to look at the corresponding probability
density of the rupture force, p(Fc) = P′(Fc), obtained from
Bell-Evans and our resummed form, as shown in the right

023276-5
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FIG. 6. (a) The cumulative probability distribution of the rupture
force, computed from 2500 simulated pulling experiments at rate
KV = 0.04 pN/μs (green line), is plotted alongside the best fits
for Eqs. (10) (dashed blue line) and (11) (dotted red line). The
near indistinguishability of the curves illustrates the strong tendency
toward overfitting. The Bell-Evans expression, though ill suited for
describing the behavior at this high pulling rate, is able to mimic the
numerical data—but at the cost of producing fitting parameters that
have drifted far from their true values. This is in contrast to the poor
agreement in Fig. 4(e), where there is no fitting and the known values
of k0 and x‡ are used. Estimates of (b) the intrinsic escape rate k0 and
(c) the barrier distance x‡, as determined from fits of Eqs. (10) (blue
crosses) and (11) (red diamonds) to simulation data over a range of
pulling rates, are plotted alongside the actual value (green line).

column of Fig. 4. The Bell-Evans result systematically under-
estimates the pulling force required to traverse the barrier—
and increasingly so for faster pulling. One observes that
both its peak (typical rupture force) and its overall weight
(mean rupture force) are positioned too far to the left (toward
low force values). The same information is contained in

FIG. 7. The plotted points (red diamonds) are estimates of the re-
duced curvature κ‡, as determined from fits of Eq. (11) to simulation
data. They compare favorably to the actual value (green line) over a
range of pulling rates spanning many decades.

the average critical force 〈Fc〉, which we obtained from the
cumulative probability distributions, Eqs. (10) and (11), by
numerical integration. Figure 5 shows a plot of 〈Fc〉 as a
function of the relative pulling rate. One can readily identify
an intermediate regime (102 � KV/KVmin � 105) in which
the curve computed from the resummed rate tracks the true,
numerically determined values of the average rupture force. In
that same regime, the Bell-Evans curve deviates significantly.

The second part of the numerical analysis focused on
the inverse problem. Here, the simulated data were fitted
using Eq. (11), and the intrinsic parameters of the energy
landscape, viz., k0, x‡, and κ‡, were determined by minimizing
discrepancies between theory and data in the least-squares
sense. The process was repeated for Eq. (10), but only with
k0 and x‡ (since κ‡ does not appear in the fitting function).
We found unambiguously that the parameter extraction is
much more reliable using our resummed form. Indeed, use
of the Bell-Evans theory was often quite misleading, because
it would produce an apparently good fit that corresponded to
incorrect values of the landscape parameters.

The top panel of Fig. 6, which shows a fast-pulling exam-
ple with KV = 4 × 10−2 pN μs−1, emphasizes this point. The
cumulative probability distribution appears to be equally well
fit by Eqs. (10) and (11). The middle and bottom panels reveal
this to be illusory. In the Bell-Evans analysis, the value of k0 is
systematically overestimated and x‡ underestimated, and both
ever more so as the pulling rate is ramped up. On the other
hand, the analysis based on our resummed form yields values
consistent with the correct landscape parameters. Moreover,
even at low pulling rates, where Bell-Evans performs not too
badly, our proposal is more reliable and produces less scatter
in the parameter values.

We remark that fits of the simulation data to Eq. (11)
yield astonishingly good values of κ‡, the effective curvature
(see Fig. 7). In almost every case, regardless of pulling rate,
the predicted value of κ‡ coincides with the true value. This
suggests to us that our inclusion of higher-order corrections
in the rate equation plays an important role in improving the
overall quality of the parameter extraction.

To conclude, our work highlights the known inadequacies
of the Bell-Evans phenomenological well escape rate. It also
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suggests that the celebrated equation due to Dudko and co-
workers is not an adequate fix. We propose a new expres-
sion, Eq. (4), that improves on the Bell-Evans expression
by including beyond-Arrhenius contributions from the shape
of the energy potential. Equation (4) clearly outperforms the
Bell-Evans and Dudko expressions in terms of predicting the
well escape rate (as is evident from Fig. 3). Crucially, it avoids
the unphysical behavior that plagues Dudko’s rate equation at
large pulling force.

Of particular utility is that Eq. (4) integrates to give
a manageable, closed-form expression for the cumula-
tive probability distribution. The resulting Eq. (11) is

straightforward to implement as a fitting function and can
be incorporated into existing workflows with little addi-
tional effort. Rigorous numerical tests (illustrated in Figs. 6
and 7) confirm that fits to Eq. (11) can be used to reliably
extract the parameters that characterize the underlying energy
landscape.
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