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Abstract: Chronic kidney disease (CKD) is directly influenced by the deleterious effects of systemic
inflammation and oxidative stress. The vascular endothelium may transiently respond to aerobic
exercise and improve post-exercise vascular renal function in moderate stages of CKD. Brachial
artery flow-mediated dilation (FMD) is a nitric-oxide-dependent measure of endothelial function
that is transiently potentiated by exercise. The purpose of the study was to determine the acute
influence of a single bout of high-intensity interval exercise (HIIE) or steady-state moderate-intensity
exercise (SSE) on endothelial dysfunction in moderate stages of CKD. Twenty participants (n = 6 men;
n = 14 women) completed 30 min of SSE (65%) and HIIE (90:20%) of VO2reserve in a randomized
crossover design. FMD measurements and blood samples were obtained before, 1 h, and 24 h post-
exercise. FMD responses were augmented 1 h post-exercise in both conditions (p < 0.005). Relative
to pre-exercise measures, total antioxidant capacity increased by 4.3% 24 h post-exercise (p = 0.012),
while paraoxonase-1 was maintained 1 h and elevated by 6.1% 24 h after SSE, but not HIIE (p = 0.035).
In summary, FMD can be augmented by a single episode of either HIIE or SSE in moderate stages of
CKD. Modest improvements were observed in antioxidant analytes, and markers of oxidative stress
were blunted in response to either SSE or HIIE.

Keywords: high-intensity interval exercise; steady-state exercise; flow-mediated dilation; antioxidants

1. Introduction

Chronic kidney disease (CKD) affects an estimated 8 to 16% of the world’s population
and 8% of the US population [1,2]. However, due to the lack of signs and symptoms in
the early stages (I and II) of CKD, this number is believed to be underestimated [3]. Major
risk factors for the premature development of CKD include hypertension (HTN), obesity,
dyslipidemia, diabetes, sedentary lifestyle, smoking, and family history [4–6]. Many of
these CKD risk factors create a chronic state of oxidative and nitrative stress, which can
have a deleterious effect on renal and vascular function [5,7,8].

Individuals with cardiometabolic disease have decreased vascular function when com-
pared to healthy individuals [9–11]. In healthy individuals, the vascular endothelium
secretes many different molecules, such as nitric oxide (NO), endothelin, growth factors,
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adhesion molecules, and regulatory proteins with endocrine, autocrine, and paracrine func-
tions [12]. The most common and diverse of these biomarkers is NO and its wide array of bio-
logical influences [7,8]. In conduit arteries, endothelium-derived NO regulates vasodilation,
vascular tone, and inhibits platelet aggregation and adhesion characteristics [1,4,7,8,13–15].
In moderate stages (IIIa and b) of CKD, the vascular endothelium exhibits characteristics of
endothelial dysfunction due to decrements in NO signaling and overall responsiveness of
the endothelium [7,9,16]. The resulting decline in NO has a significant negative impact on
renal health and function due to the high vascularization of the kidneys and high amounts
of NO production [9,17]. Therefore, NO production in the kidneys decreases as the severity
of the disease progresses [18].

Transient increases in endothelial function occur after acute bouts of aerobic exercise
of varying intensities with similar durations [19–22]. Aerobic exercise modulates oxidative
stress by producing antioxidants to counteract the harmful effects imparted by increased
reactive oxygen species [14,23]. High-intensity interval exercise (HIIE) stimulates greater
amounts of oxidative stress when compared to moderate-intensity exercise [14]. However,
HIIE may also produce a higher post-exercise antioxidant response when compared to
moderate-intensity exercise [23–25]. HIIE can potentially ameliorate oxidative and nitrative
stress in the vascular endothelium in CKD, thus creating a net antioxidant environment
in the hours post-exercise. These transient increases in vascular function are linked to the
increased activation of NO production, stimulated by a higher amount of shear rate from
increased blood flow [1,8,26,27].

Flow-mediated dilation (FMD) is a technique commonly used to assess transient
changes in vascular function [28–31]. FMD is an effective method to discriminate between
vascular endothelial function and dysfunction within multiple populations and study
cohorts [32,33]. In healthy populations, FMD induces an average vessel diameter of
approximately 8.5% [30,34,35] while in clinical populations, FMD induces varying ranges
of endothelial responses, with an average vessel diameter of 4.6% [32,36,37]. Conduit
artery vascular responsiveness is also diminished with chronic morbidities compared to
apparently healthy individuals [38,39]. The reduced responsiveness appears to be related
to the severity of the disease [40].

Currently, the influence of aerobic exercise on vascular endothelial health in moderate
stages (IIIa-b) of CKD is not well studied. Van Craenenbroeck et al., 2015 [41] conducted the
only study involving the use of FMD to assess changes in endothelial function with steady-
state aerobic exercise (SSE) training in those diagnosed with moderate stages of CKD.
Their study was designed to determine if 12 weeks of moderate-intensity home-based
aerobic exercise training improved vascular endothelial function in patients with mid-
spectrum CKD. FMD remained unchanged after the 12-week exercise program (4.0 ± 1.9%
vs. 4.6 ± 3.0%). Currently, there is inadequate research to examine the effect of an acute
bout of aerobic exercise and the transient effect on vascular endothelial function in mid-
spectrum CKD.

The purpose of this investigation was to determine the transient effects of an acute
bout of aerobic exercise on conduit artery vascular endothelial function in individuals
with moderate-stage CKD. We hypothesized that improvements in vascular endothelial
function would be evident via increases in FMD and antioxidants and decreases in markers
of oxidative stress after an acute bout of aerobic exercise. A secondary hypothesis was
that HIIE would have a greater influence on vascular endothelial function when compared
to SSE.

2. Materials and Methods
2.1. Participant Recruitment

Participant recruitment for the study involved collaborating with multiple physicians,
local medical centers, and health clinics. Individuals were contacted via email, phone calls,
or physician referral. Inclusion criteria focused on moderate stages (IIIa and b) CKD and
the following characteristics: (1) eGFR 59–30 mL/min/1.73 m2; (2) between 40 and 75 years
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of age; (3) overweight or moderately obese, BMI between 25 and 35 kg/m2, (4) engaged in
approximately 90 min of leisure and/or work-related physical activity per week during the
last three months; (5) non-smoker, defined as having never smoked or quit for >6 months;
(6) free from uncontrolled hypertension and documented cardiovascular and pulmonary
complications; (7) free from non-cardiac surgical procedures for at least two months;
(8) free from musculoskeletal problems that would preclude treadmill walking/jogging, and
(9) able to maintain regular and stable medication use. Individuals were excluded if (1) CKD
was previously diagnosed as IgA nephropathy; (2) post-infectious glomerulonephritis;
(3) HIV nephropathy; (4) focal stenosis; (5) renal artery stenosis; (6) eGFR > 60 and <30;
and (7) lupus nephritis. The focus of our participant recruitment was to obtain individuals
whose primary development of CKD was due to hypertension and diabetes.

A total of 613 individuals were identified as potential research participants (see
Figure 1). In total, 46 individuals met entry criteria based on the inclusion/exclusion
characteristics and agreed to participate in the study. Each of the 46 participants completed
the initial, preliminary, and physiologic screening sessions. However, during the phys-
iological screening session, 26 were excluded due to higher than desired eGFR (n = 18),
musculoskeletal concerns (n = 7), and positive stress tests (n = 1). The remaining 20 par-
ticipants met all the inclusion criteria, passed the physiological screening session, were
admitted into the study, and completed the study.
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Figure 1. Participant recruitment, screening, and admittance into the study.

2.2. Screening

Every participant in the study signed an informed consent document, and their physi-
cian cleared them prior to their participation. Participants were asked to seek guidance
from their physician regarding the safest, lowest medication dosage that can be achieved
during the experimental conditions. We were particularly interested in limiting or dimin-
ishing the effects of medication classes known to affect endothelial phenotype and vascular
responses, such as lipid-lowering agents, antihypertensive, glycemic control agents, and
hormone replacement therapy [42].

For screening, participants reported to the lab after an 8 to 10 h fast limited to water
ingestion only. Participants brought physician release documentation and a copy of their
prior blood results. Experimental procedures were reviewed again with each participant.
Participants reviewed their health history, physician release and medication guidance, and
prior blood record with one of our physician coinvestigators.
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After the physician screening, a small blood sample was obtained and sent to a CDC-
certified lab. This blood sample was used to clarify the participant’s current kidney function
status via eGFR. Height, weight, and waist circumference were assessed. We also measured
body composition (e.g., lean, fat, and bone tissue) by dual-energy X-ray absorptiometry
(Hologic Inc., Bedford, MA, USA), followed by carotid artery thickness using ultrasound
(Logic S7 Expert/Pro Ultrasound™, General Electric® system (General Electric Company,
Boston, MA, USA)).

Each participant performed a standardized maximal graded exercise test (Bruce Proto-
col) on a treadmill to determine hemodynamic responses to exercise of increasing intensity,
as well as cardiovascular fitness. Heart rate, blood pressure, and rating of perceived ex-
ertion (RPE) were monitored throughout the test. Respiratory gasses (VO2 and VCO2)
were measured continuously using a mouthpiece and headgear connected to an integrated
respiratory gas analysis system (ParvoMedics, Sandy, UT, USA). The exercise test began
with 2 min of warm-up at a walking pace that was comfortable for the participant. The
speed and incline of the treadmill were increased every 3 min until the participant reached
volitional fatigue. Exercise VO2reserve (VO2 R = VO2max − Resting VO2) and heart rate were
used to calculate the appropriate exercise intensities for experimental exercise sessions.

2.3. Exercise Intervention

Experimental conditions included a single acute bout of HIIE and SSE that were
matched for time and average intensity. SSE consisted of treadmill walking at a constant
speed and grade to elicit 60 to 65% of VO2 R for 30 min (i.e., continuous, moderate-intensity
exercise). In the HIIE condition, participants were asked to complete 30 min of exercise
in 5 min intervals. Each interval included 3 min of fast walking/jogging on the treadmill
at submaximal but vigorous exercise at 90% of VO2 R and 2 min of slow walking at 20%
VO2 R (i.e., high-intensity interval exercise). Participants exercised at 60 to 65% VO2 R
for the first and last 2 1

2 minutes of this session with five, 5 min intervals in between. The
high-intensity interval exercise and continuous, moderate-intensity exercise sessions were
similar in duration, average intensity (60 to 65% of VO2 R), and caloric expenditure (HIIE
149.2 ± 43.8 and SSE 139.6 ± 40.7). Exercise conditions had a minimum of a 4-day washout
period between them to prevent a potential compounding effect. Each exercise condition
encompassed a total of 2 days to assess (baseline, 1-HR, and 24-HR).

2.4. Brachial Artery Reactivity Measurement

Ultrasound measurements of the brachial artery were obtained before exercise and
again 1-HR and 24-HR after exercise for each exercise condition. To obtain these mea-
surements, a wireless heart rate monitor (Polar H7) was used to track cardiac cycles. An
automated blood pressure cuff (E 20™, Hokanson®, Hokanson Inc., Bellevue, WA, USA)
was placed around the participant’s forearm with the proximal edge of the cuff just in-
ferior to the medial epicondyle. Participants lay in the supine position and rested for
10 min prior to each measurement in a quiet, temperature-controlled room (20–22 ◦C),
after which resting blood pressure was measured using a stethoscope and inflatable cuff
attached to an aneroid sphygmomanometer. Next, a small amount of gel was placed on
the medial side of the participant’s upper arm, and the brachial artery site was located
using ultrasound (Logic S7 Expert/Pro Ultrasound™, General Electric® system) and a 9 Hz
ultrasound transducer. After obtaining a clear image of the brachial artery in B-mode
grayscale, the ultrasound was switched to Doppler mode to measure blood flow velocity
for 15 s. Next, the ultrasound was returned to B-mode grayscale to record baseline brachial
artery diameter for 1 min. Following baseline measurements, the forearm cuff was inflated
to 250 mmHg of pressure using an automated rapid inflation system. The cuff remained
inflated at 250 mmHg for 5 min to occlude blood flow in the lower arm completely. After
5 min, the cuff was deflated to allow for rapid reactive blood flow through the artery. Blood
flow, measured in Doppler mode, was recorded for 15 s before and after cuff deflation.
Brachial artery diameter changes were recorded continuously for up to 3 min after releasing
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the cuff pressure. Brachial artery diameter changes and shear rates, derived from blood
flow velocity recordings, were quantified offline using automated edge-detection software
(Vascular Research Tools™, Medical Imaging Applications LLC®, Coralville, IA, USA).

2.5. Analysis of FMD Data

Variables from ultrasound measurements included peak changes in brachial artery
diameter, indexed to initial resting vessel diameter from the pre-exercise measurement in
each experimental condition, and blood flow velocity. Video recordings of vessel diameter
changes were imported into analysis format using Vascular Imager software and analyzed
using Brachial Artery Analyzer software (Vascular Research Tools™, Medical Imaging
Applications LLC®, Coralville, IA, USA). Ultrasound video was slowed to six frames per
second, and the diameters of the same vessel segment were quantified in millimeters and
blood flow velocities in cm/s. Changes in vessel diameter were determined using flow-
mediated dilation calculations according to Woodman [43] with modifications described by
Pyke [44] as follows:

% ∆ FMD = (BA post-occlusion − BA pre-occlusion/BA diameter pre-occlusion) × 100

where BA is the brachial artery diameter corrected for shear rate.
Pre- and post-inflation peak shear rates were estimated from blood flow using the

following equation [20,25,45]:

Shear rate = velocity × 8/initial resting vessel diameter

2.6. Blood Sampling

Blood samples were drawn after an 8 to 12 h fast, while participants practiced stable
dietary intake, medication use, and refrained from any moderate or strenuous physical
activity other than the exercise completed for this study. Each experimental condition
required three blood samples surrounding a single exercise session. Samples were obtained
prior to exercise and 1-HR after exercise. Blood samples totaling 2.7 tbsp (40 mL) were
obtained by venipuncture using a venous catheter or needle inserted into the most promi-
nent vein site in the antecubital space (the arm that was not being used for brachial artery
measurements was used to obtain blood samples). A total of two samples were drawn
via the venous catheter during the first day of the experimental protocol. The catheter
was maintained patent by introducing 0.5 mL of 10 USP/mL sodium-heparin flush after
each of the first two samples. The venous catheter was removed after completing the
last blood draw of the day. Another blood sample, equivalent to the other experimental
samples, was obtained 24-HR after the exercise session using a 20- or 22-gauge needle. All
blood samples were collected into red-top (no additive) and purple-top (KEDTA additive)
vacuum-pressured specimen tubes.

A small amount of blood from each sample was immediately drawn into heparinized
capillary tubes for estimating hematocrit [46]. Blood samples were placed on ice immedi-
ately after collection, and red-top specimens were allowed to clot. Samples were centrifuged
at 3500 RPM for 15 min. Serum and plasma were recovered and aliquoted into storage
tubes and stored at −80 ◦C until analysis.

2.7. Biochemical Analysis

Blood variables of interest related to nitrative stress influence on endothelial func-
tion are asymmetric dimethylarginine (ADMA) and 3-nitrotyrosine (3−NT). Paraoxonase-1
(PON1) and total antioxidant capacity (TAC) were measured to determine changes in antiox-
idant capabilities before and after exercise. Humoral epinephrine and norepinephrine were
used to characterize physiological stress incurred during the exercise sessions. Enzyme-
linked immunosorbent assays were performed to estimate changes in serum ADMA (My-
BioSource, Inc., MBS264847, San Diego, CA, USA), 3−NT (abcam®, plc., ab116691, San
Francisco, CA, USA), epinephrine and norepinephrine (R&D Systems, Minneapolis, MN,
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USA), PON1 activity (Zeptometrix, Catalog No. 0801199, Buffalo, NY, USA), and TAC (Cell
Biolabs, Catalog No. STA-360, San Diego, CA, USA).

2.8. Statistics

Group physiological characteristics determined from screening assessments were
summarized as means ± standard deviation. Significant differences in exercise were
determined by two factor repeated measures ANOVA. The first factor, exercise condition,
had two levels, high-intensity interval exercise and steady-state exercise. The second factor,
sampling time, had three levels (pre-exercise, 1-HR, and 24-HR post-exercise) for FMD
measurements and blood. Unadjusted measurements of flow-mediated dilation and those
adjusted for shear rate indexed to pre-exercise resting arterial diameter were analyzed.
Simple main effects were used to follow-up significant interactions.

We estimated the influence of baseline physiological variables, such as cardiovascu-
lar fitness, CKD status, by treating these measurements as covariates in the analysis of
dependent variable changes. Within each condition, response effect sizes were calculated
as mean differences from pre-exercise and using the pooled standard deviation between
measurement points. Differences between changes in HIIE and SSE were calculated. Signif-
icance for all tests was set a priori at the p ≤ 0.05 level. Sample size was based on the FMD
reproducibly paper by Welsch et al. [47]. All statistical procedures were carried out using
SAS software version 9.4.

3. Results
3.1. Baseline Physiological Characteristics

Participant baseline physiological characteristics and blood variables are presented
in Table 1. A total of 20 individuals, 14 females and 6 males, completed the study in a
randomized crossover design. Participants were diagnosed with CKD stage IIIa or IIIb.

Table 1. Baseline physiological characteristics.

Variables (n = 20)

Age (y) 62.0 ± 10
Height (cm) 167.1 ± 8.6
Weight (kg) 80.9 ± 15.8

BMI (kg/m2) 28.8 ± 4.3
Waist (cm) 98.9 ± 12.7

BF (%) 28.8 ± 12.7
Rest SBP (mmHg) 125.4 ± 10.7
Rest DBP (mmHg) 81.4 ± 5.1

Rest HR (bpm) 71.3 ± 11.5
Creatinine (mg/dL) 1.11 ± 0.2

eGFR 51.5 ± 6.5
Glucose (mg/dL) 117 ± 70.2

Total Cholesterol (mg/dL) 173.7 ± 36.3
LDL (mg/dL) 91.9 ± 28.8
HDL (mg/dL) 50.7 ± 15.2

Triglycerides (mg/dL) 155.9 ± 53.2
VO2 max (mL/kg/min) 19.4 ± 4.6

Medications Users (total n = 20)
ARB 3 (20)

ACE Inhibitor 6 (20)
α-Blocker 2 (20)
β-Blocker 4 (20)
Metformin 7 (20)

Statin 10 (20)
Steroids 2 (20)
T3/T4 3 (20)

Note: All values are presented as mean ± standard deviation along with minimum and maximum values, and
ranges. BF % = Body fat percentage; BMI = Body mass index; DBP = Diastolic blood pressure; eGFR = Estimated
glomerular filtration rate; HDL-C = High-density lipoprotein cholesterol; HR = Heart rate; LDL-C = Low-density
lipoprotein cholesterol; SBP = Systolic blood pressure; TC = Total cholesterol; TG = Triglycerides; Waist = Waist
circumference.
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3.2. Flow-Mediated Dilation Outcomes

All participants completed and tolerated each FMD measurement point. There was
no difference in resting vessel diameter pre-occlusion between HIIE and SSE (F1,19 = 0.19,
p = 0.6647). FMD measurements performed after exercise increased in both HIIE and SSE
conditions when compared to baseline measurements (F2,18 = 8.50, p = 0.0009) (Table 2).
There were no significant differences between exercise conditions (F2,18 = 0.11, p = 0.747).
When collapsed across conditions, FMD was significantly increased 1-HR and 24-HR
post-exercise (F2,18 = 6.10, p = 0.005) (see Figure 2). Comparing 1-HR post-exercise to
baseline resulted in a moderate effect size of 0.76. Twenty-four-hour post-exercise also had
a moderate effect size of 0.55 when compared to baseline FMD measurements. Shear rate
was calculated for each condition and reported in Table 3. In absolute terms, the shear rate
remained unchanged when comparing conditions and time. When FMD was normalized
to shear rate, there was a significant change (F2,18 = 8.46, p = 0.0009) at 1-HR post-exercise
with no difference observed between conditions.

Table 2. FMD results.

Pre 1-HR 24-HR

Condition Pre-OCC Post-OCC Pre-OCC Post-OCC Pre-OCC Post-OCC

HIIE (mm) 3.42 ± 0.13 3.83 ± 0.12 3.44 ± 0.13 3.96 ± 0.13 * 3.35 ± 0.12 3.86 ± 0.13 *
SSE (mm) 3.37 ± 0.13 3.75 ± 0.12 3.33 ± 0.13 3.87 ± 0.11 * 3.43 ± 0.13 3.89 ± 0.13 *

Note: Values are presented as mean ± standard error. No significant differences were found between exercise
conditions. Significant differences were observed across time for both conditions. Pre = before exercise; 1-HR = 1 h
after exercise; 24-HR = 24 h after exercise. Pre-OCC = before cuff occlusion; Post-OCC = after cuff occlusion. The
minimum pre-diameter was subtracted from the maximum post-diameter divided by minimum pre- diameter to
calculate the % change in vessel diameter.
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Figure 2. FMD responses to SSE and HIIE. FMD measurements were performed at baseline, 1 h
post-exercise (PE), and 24 h PE. Data are presented as mean ± SE and represent percent change
in vessel diameter. Exercise significantly increased vessel diameter as measured by FMD when
compared to baseline. SSE (pre-exercise = 11.5 ± 1.3; 1 h = 17.2 * ± 1.8; 24 h = 14.0 * ± 1.1%) HIIE
(pre-exercise = 12.5 ± 1.3; 1 h = 15.6 * ± 1.5; 24 h = 15.8 * ± 1.2%) with no statistically significant
difference between exercise conditions (* p < 0.05 compared to baseline measure).

Table 3. Shear rate responses.

Condition Pre 1-HR 24-HR

HIIE
Max Flow (cm−1) 171.9 ± 11.7 173.5 ± 16.8 195.9 ± 14.2
Shear Rate (s−1) 374.7 ± 35.2 370.9 ± 52.2 429.1 ± 41.6

SSE
Max Flow (cm−1) 172.9 ± 10.5 154.3 ± 9.3 165.9 ± 9.3
Shear Rate (s−1) 373.8 ± 22.4 325.5 ± 23.5 351.4 ± 26.6

Note: Values are presented as mean ± standard error. Shear rate = 8 × max diameter/min diameter. No significant
differences were found between exercise conditions or across time.
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3.3. Biochemical Analysis Outcomes

Biochemical analysis responses were analyzed as unadjusted and adjusted for plasma
volume changes. Differences in ADMA, TAC, and PON1 were found between time points
but no difference between conditions. No other differences were observed between the
remaining variables. At 24-HR, ADMA concentrations were significantly reduced below
baseline values in both conditions when correcting for shifts in plasma volume (p = 0.0006)
(Figure 3B). There were no significant changes to 3−NT between conditions or across time
(F2,18 = 1.64, p = 0.207). PON1 was increased across time (F2,18 = 5.24, p = 0.0097) for a
condition by time main effect (F2,18 = 3.67, p = 0.0353) at 1-HR in HIIE and at 24-HR in SSE
(Figure 3C). However, when corrected for shifts in plasma volume, PON1 had no significant
changes between conditions across time (F2,18 = 2.91, p = 0.067). TAC increased in SSE at
1-HR and 24-HR and in HIIE at 24-HR post-exercise (F2,18 = 4.94, p = 0.012) (Figure 3D). TAC
was not corrected to changes in plasma volume due to time-sensitive reagents required to
analyze TAC.
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Figure 3. (A–D) Values are presented as means ± standard error. * = significantly different from Pre-
to 1-HR and 24-HR post-exercise. (A) No significant differences in 3−NT were observed between
conditions or time points. (B) ADMAc is significantly decreased in both conditions at 24-HR. Means
are combined across conditions. ADMAc = Asymmetric dimethylarginine corrected for shifts in
plasma volume. (C) PON1 response by condition and time. PON1 significantly increases at 24 h in
SSE with no significant increases in HIIE. (D) TAC response by condition.

4. Discussion

This study is the first to quantify the influence that an acute bout of aerobic exercise has
on vascular endothelial function in the conduit arteries of individuals with mid-spectrum
CKD. The key findings of the study are the following: (1) aerobic exercise improved
vascular endothelial responsiveness; (2) regardless of exercise condition, the vascular
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endothelium responds positively to exercise as a stimulus; (3) markers of oxidative stress
were decreased or unchanged and all antioxidant markers positively increased following
exercise, regardless of exercise condition. The results support the utilization of aerobic
exercise as a transient protective mechanism of vascular endothelial function in mid-
spectrum CKD.

We hypothesized that a short bout of acute aerobic exercise would increase vascular
endothelial function and that HIIE would have a greater influence on vascular endothelial
function than SSE. Our hypothesis was based on improvements previously reported in vas-
cular endothelial function in cardiometabolic cohorts similar to our participants [19,21,48].
In our study, vascular endothelial function was increased in the hours post-exercise regard-
less of exercise condition. FMD increased in HIIE (15.6% ± 1.5) and SSE (17.2 ± 1.8) at 1-HR
post-exercise when compared to baseline (12%). When FMD means were collapsed across
time, in a comparable amount, the average was 16.4%. Similar improvements in FMD
were also observed at 24-HR with HIIE (15.8 ± 1.2) and SSE (14.0 ± 1.1). Improvements
in vascular endothelial function after acute aerobic exercise are consistent with previously
reported results, with two exceptions. In previous studies, HIIE had greater improvements
in vascular endothelial function when compared to moderate-intensity exercise [19,47].
Both exercise interventions consisted of aerobic exercise on a cycle ergometer with either
HIIE or moderate-intensity continuous exercise. While the individuals in these studies
were diagnosed with CAD and accelerated cardiometabolic disease, the individuals in our
study mainly had controlled hypertension and type II diabetes as their primary disease
and mid-spectrum CKD as a secondary disease and were otherwise healthy. Additionally,
increases in vascular endothelial function are traditionally limited to a transient period
after exercise. Our study observed increases in vascular endothelial function at 24-HR
post-exercise. Thus, the vascular endothelium may have responded differently to HIIE
in our cohort compared to cohorts in previously reported studies. Baseline FMD was
higher when compared to previous studies [41,49,50], which observed an FMD change of
2.5 to 7% at baseline. However, as previously noted, our population was healthier overall
when compared to previous studies. Therefore, our cohort did not exhibit characteris-
tics of endothelial dysfunction at baseline. Additionally, HIIE did not elicit as great of
response in FMD when compared to healthy populations [25,51,52], indicating some level
of endothelial impairment.

Markers of nitrative and oxidative stress and antioxidants were significantly altered
following both HIIE and SSE. ADMA was significantly (p = 0.0006) decreased in both
conditions post-exercise, indicating that the inhibition of eNOS was diminished (Figure 3B).
Our responses in ADMA are similar to previously reported studies focused on acute
bouts of aerobic exercise in healthy and diseased populations [53,54]. Aerobic exercise of
moderate to high intensity has the potential to counter the excessive formation of oxidative
and nitrative stress associated with elevated ADMA concentrations [55]. In previous
studies, ADMA concentrations were reported to be 29% lower after completing 10 to 15 min
of moderate-intensity aerobic exercise and 14% lower after a max exercise test [25,54,55].
Alterations in ADMA for our study appear to be time sensitive, with the most significant
decreases being present at 24-HR.

3−NT concentrations remained significantly unaltered in both HIIE and SSE conditions.
Though, this response was not what we hypothesized. The lack of responsiveness in
3−NT appears to indicate that nitrative and oxidative stress was blunted in both exercise
conditions. When 3−NT responses are coupled with the decrease in ADMA, the results
support an increase in NO production, which was inferred by significant FMD responses
in both HIIE and SSE. Potentially the vascular endothelium was ameliorated in the hours
post-exercise.

Antioxidants PON1 and TAC significantly increased post-exercise (PON1 in SSE only
and TAC in both conditions). PON1 was significantly altered in SSE; though it increased in
HIIE, it was not enough to reach significance. TAC was increased in both HIIE and SSE;
it appears SSE had the most significant influence in altering TAC. The greater increase in
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antioxidant capacity observed with PON1 and TAC with SSE may be the contributing factor
to higher endothelial responsiveness in SSE at 1-HR when compared to HIIE. TAC at 24-HR
post-exercise was comparable in both HIIE and SSE; however, at 1-HR post-exercise, there
was no significant change to TAC in the HIIE condition. Antioxidant responses in our study
are similar to studies reporting changes in PON1 and TAC after an acute bout of aerobic
exercise of varying intensities and modalities in healthy and at-risk populations [56–58].

Limitations to the study include changes in vascular function, which were not assessed
outside of 24-HR. It is possible that different results would have been observed if FMD
had been evaluated at periods greater than 24-HR. However, given peak changes in FMD
usually are not observed after 24-HR post-exercise, we believe our study outcomes were
not affected. Medication timing/usage could have potentially influenced our outcomes
depending on the type of medications that participants were prescribed by their medical
provider. Potentially, sample size may have been a limitation of the project. However,
though our sample size was not large, our numbers reflected the recommended sample
size in clinical populations when utilizing FMD [43,47].

Practical application for the research outcomes addresses the benefit of utilizing HIIE or
SSE to stimulate the vascular endothelium in moderate stages of CKD. The potential benefit
is to prevent the endothelium from progressing in the severity of endothelial dysfunction
by actively promoting the NO pathway via increased shear force on the endothelium.
Potentially this mechanistic pathway could influence the endothelium of the kidneys to
improve or maintain renal decline.

5. Conclusions

Our study is the first to quantify the transient improvements in vascular endothelial
function in mid-spectrum CKD that occur similarly to healthy individuals free of car-
diometabolic diseases. The present study identifies that an acute bout of aerobic exercise
varying in mode and intensity, with an equal amount of work, can provide significant tran-
sient improvements in vascular endothelial function in mid-spectrum CKD. The positive
improvements in antioxidant markers and a reduction in nitrative and oxidative stress
support the benefits of implementing aerobic exercise in mid-spectrum CKD. Our results
suggest that aerobic exercise can be utilized as an additional therapeutic intervention to
attenuate, or potentially reverse endothelial dysfunction associated with mid-spectrum
CKD. Our findings indicate that HIIE appears to be safe and achievable for individuals
with mid-spectrum CKD. Aerobic exercise training of varying modes and intensities in mid-
spectrum CKD may potentially augment the vascular endothelium and its relation to the
prevention and maintenance of vascular renal health and function in mid-spectrum CKD.
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