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Abstract: Many researchers have introduced blockchain into the Internet of Vehicles (IoV) to support
trading or other authentication applications between vehicles. However, the traditional blockchain
cannot well support the query of transactions that occur in a specified area which is important for
vehicle users since they are bound to the geolocations. Therefore, the querying efficiency of the
geolocation attribute of transactions is vital for blockchain-based applications. Existing work does
not well handle the geolocation of vehicles in the blockchain, and thus the querying efficiency is
questionable. In this paper, we design a rapid query method of regional transactions in blockchain
for IoV, including data structures and query algorithms. The main idea is to utilize the Geohash
code to represent the area and serve as the key for transaction indexing and querying, and the
geolocation is marked as one of the attributes of transactions in the blockchain. To further verify and
evaluate the proposed design, on the basis of the implementation of Ethereum, which is a well-known
blockchain, the results show that the proposed design achieves significantly better-querying speed
than Ethereum.

Keywords: query; blockchain; Geohash; Internet of Vehicles

1. Introduction

Recently, data authentication in the Internet of Vehicles (IoV) has attracted a lot of
attention from researchers [1], e.g., malicious vehicles can seriously impact the usefulness
of IoV information by sending fake locations [2–6]. To solve that, many works have
introduced blockchain technology into IoV [7–13]. The blockchain is a distributed ledger
technology that links the blocks storing transactions by hash, and supporting data integrity
and traceability in the decentralization network environment [14]. A typical blockchain
structure is Ethereum [15], which is open-sourced blockchain implementation. The main
feature of Ethereum is that it uses the Merkle Patricia Tree (MPT) to build tree structures for
storing account and trading information. The transaction information of the whole network
is constructed into a chain structure, and any user can query all historical transactions
that occurred.

In the scenario of IoV, vehicles are bonded to the geolocations, and they usually only
focus on local information [10,16,17]. Compared with the information of the whole network,
the transaction in the local area around the vehicle is more important to the user. However,
the traditional blockchain structure cannot well support the query of transactions occurring
in a specific area: users need to backtrack all transactions on the chain structure and then
match the location where the transaction occurred. Moreover, the storage and access of
geolocation data of transactions on the traditional blockchain need to be realized by external
applications such as smart contracts [7–9,18–21], which further take up extra storage space.

Sensors 2022, 22, 8885. https://doi.org/10.3390/s22228885 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228885
https://doi.org/10.3390/s22228885
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6701-6619
https://orcid.org/0000-0003-1092-2183
https://orcid.org/0000-0002-1394-5631
https://doi.org/10.3390/s22228885
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228885?type=check_update&version=1


Sensors 2022, 22, 8885 2 of 21

Because of the high dynamics of the vehicles, the duration of the data link between
vehicles is short, and the data querying efficiency of regional information is vital for the
applications [22–31]. Therefore, how to improve the querying speed of information in
a region is a key issue. There are some works that attempt to combine geolocation and
blockchain in IoV by utilizing the out-chain structure such as the smart contract to maintain
the geolocation data [7,9,18,32], however, they did not propose a satisfactory query method
for regional information. We notice that in electronic maps, geographic regions are usually
composed of map tile data of variable size [33,34]. On top of that, Our solution is to use
geographic tiles as data indexes to improve the query speed of regional data. To achieve
this goal, we utilize the Geohash code [35], which is a one-dimensional coding system
and can efficiently represent a grid with arbitrary precision. In this case, the geolocation-
related data stored in the chain is indexed by Geohash code, which can be easily queried
by geolocations. Our previous study [33] also showed that the vector map data structure
encoded by the Geohash code has good performance in terms of data storage and data
compression. Moreover, To better evaluate the data structure and algorithm proposed in
this paper, we modify the core structure of Ethereum to adopt the Geohash coding index.

In this paper, we propose a blockchain-based data structure for rapid querying of
transactions that occurred in a specific region. Our main contributions are as follows:

1. Based on the Merkle-Patricia Trie (MPT) [15] structure, we design a region state trie
(RST), which uses Geohash code to index geolocations of the hierarchical region as an
attribute of trading.

2. On top of the proposed RST, we design a branch query method to efficiently query the
geolocations of the hierarchical region. Furthermore, we design an account location
trie (ALT) storing the location changes of each vehicle account, to support the querying
of the historical trading location of each vehicle.

The rest of the paper is organized as follows. Related works are described in Section 2.
Section 3 presents an overview of the geolocation blockchain structure, whose schematic
design is then described in detail in Section 4. Section 5 discusses the experiment and
evaluation. Finally, we conclude our paper in Section 6.

2. Related Works

Several works have been proposed for improving the efficiency of blockchain data
queries [22–25]. In general, they can be divided into four categories. One is the off-chain
query. The blockchain is only used to maintain data security, and an independent data
query method is built off the blockchain, e.g., IBM [23] established four different databases
for ledger index, status data, historical data, and block index to achieve separating query.
Oracle [25] used CouchDB, which supports rich SQL queries, as the storage database
to create indexes for both keys and values to improve query efficiency. The data of the
blockchain is stored in the database of SAP [26] in the form of a virtual table to realize the
off-chain query of the blockchain data. This method is mainly used for database suppliers.
Although the query efficiency is improved, the data is transferred outside the blockchain,
and its security depends on trusted entities very much. The second category is application
query, which realizes different query functions by building different applications on the
blockchain. Along this line, FlureeDB [27] is a graph database with blockchain core and
ACID standard, which established a data snapshot related to the block or time point for
each query to improve query efficiency. Swarm [28] is a blockchain system built to handle
high-level files or layered collections of various types of metadata, using the form of the
hierarchical set to improve the query efficiency. BigchainDB [24] added blockchain features
based on big data distributed database. Nodes establish different indexes and query APIs
according to query requirements to realize different application queries and improve query
efficiency. The third category is contract query, which uses a smart contract of blockchain to
optimize the query function. One example is vChain [22], which used the smart contract to
simulate the underlying storage structure of blockchain and then established the inter-block
index and intra-block index of simulated blocks. Blocks and indexes are reconstructed in
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the smart contract to achieve storage and query on-chain, but compared with being directly
stored in the blockchain, the data amount reconstructed in the blockchain is much larger,
and the internal query method of the blockchain is not improved. Different from vChain,
G Gürsoy et al. [29] did not reconstruct the block structure, but only established an index
structure for the stored content in the smart contract. The fourth category is sharding query,
which divides the large-scale blockchain into multiple independent parts by sharding,
to improve the query efficiency by reducing the amount of data accessed. For instance,
chainSQL [30] divided the blockchain into a fixed number of shards, and improves data
query efficiency by dispersing transactions into different shards. Monoxide [31] divided
the user address space into multiple zones, and each zone established an independent
blockchain, thereby reducing the amount of data in each zone. This method improves
the query efficiency within the shard by reducing the amount of data in the shard, but
its regional division does not consider the actual geolocation characteristics, and it is not
suitable for the regional queries of geolocation-related information. In general, the methods
mentioned above are dependent on credit entities, fail to improve the internal query method
of the blockchain, and fail to consider the actual geographical location.

Several works have attempted to combine geolocation and blockchain in IoV through
high-level structures such as smart contracts [7,9,18]. Table 1 is a comparison between our
scheme and the technical schemes related to geolocation and blockchain. Those works have
made contributions to improving the efficiency of blockchain data queries and combining
geolocation and blockchain IoV applications. However, they did not well utilize geolocation
and thus the region query efficiency is questionable.

Table 1. Comparison between our scheme and the technical schemes related to geolocation and
blockchain.

Literature Storage
Location Coding Scheme Indexes Mode Function

[7] smart contract longitude and
latitude - cooperative

positioning

[8] smart contract hops between
vehicles - credibility

[36] smart contract longitude and
latitude

horizontal
inspection and

vertical
inspection

privacy location
queries

[9] smart contract longitude and
latitude -

improve the
consensus
efficiency

[17] transaction longitude and
latitude - reliability

verification

our scheme transaction Geohash region state
trie(RST)

regional
information

query

In [7], the authors realized vehicle location sharing through the smart contracts, to
improve the accuracy of cooperative positioning. Chukwuocha et al. [8] used the distance
between the vehicle node and the event location to measure the message credibility, and
divided multiple overlapping regions according to the road network to limit the credibility
of cross-regional messages. Kudva et al. [9] read the geolocation and driving distance
in the blockchain transaction simulated by the smart contract, and proposed the proof
of driving consensus mechanism to improve the consensus efficiency, which shows that
geolocation has great value in the application of IoV in the blockchain. Zhang et al. [36]
implemented blockchain-based privacy location queries, designed location-based matching
smart contracts, and returned matching results based on a horizontal and vertical grid
coordinate checks. This is less efficient than the one-dimensional Geohash query method
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due to querying from two dimensions. These aforementioned studies store geolocations
in the user data layer, and cannot use the blockchain’s security mechanism to ensure
the security of location data, and thus there is no guarantee for the authenticity of the
geolocation in blockchain transactions. Shrestha et al. [17] split the global blockchain
into multiple independent blockchains according to location, where each independent
blockchain receives messages only within its region, thereby improving message reliability
and facilitating vehicle reliability verification. However, the article does not cover the work
of querying regional information.

3. Structure Overview

As shown in Figure 1, the structure of Ethereum consists of three tries: receipts trie,
world state trie, and transactions trie. On top of that, we add a region state trie (RST)
to support the rapid querying of hierarchical geolocation-related (regional) data, and
an account location trie (ALT) to support querying of the historical trading location of
each vehicle.

Ethereum adopts the account-based data model. The block also contains the root hash
of the receipt trie for the transaction execution log and the root hash of the state trie for the
account state data, as shown in the block and blockchain structure in Figure 1.

As shown in Figure 1, we add the Geohash-encoded geolocation in the block attributes
respectively: accounts, transactions, and receipts. We add the root hash of the index
structure of the geolocation attribute (account location trie and region state trie) to the
block to maintain the consistency and traceability of geolocations, which is convenient for
geographic information querying and data credible verification. For other parts, including
the consensus mechanism, our structure follows the existing settings of Ethereum.

1. Geolocation attributes are shown by blue location in Figure 1. Each vehicle is asso-
ciated with blockchain accounts. We add the geolocation attributes named location
to the account to meet the mobility of vehicles, where vehicle locations are recorded
in chronological order to facilitate historical location queries. The geolocation is
added in the transaction to achieve the purpose of adding geolocation attributes to
the blockchain, which is also used to verify and update the account location of the
transaction sender. The geolocation needs to be kept in the receipt as part of the
transaction state information.

2. The root hash of the index structure of the geolocation attribute. Like the account
balance, the account location trie reflects the change of account state. Therefore, its
root hash does not need to be written into the block header, but to the account state.
As shown by ALTRoot in Header of Figure 1. The region state trie records the global
changes within the geographic region, which has the same status as the global changes
of account state. Its root hash needs to be written into the block header, as shown by
regionRoot of Header in Figure 1.

To facilitate the querying of geolocation-related attributes, we build an index structure
for them and design a branch query method according to the query requirements in
different geographical regions.

If there is no index structure for the account location in the blockchain yet, vehicles
need to go through two cyclic processes of traversing the block and traversing the trans-
actions in the block when performing location verification or historical trading location
querying. Therefore, an account location trie should be established for each account. Since
vehicles in different regions pay more attention to the information of their geographical
regions, the proposed RST store the geographical information according to the query
requirements of geographical regions. And we further design a branch region informa-
tion query method to reduce the overhead and improve the efficiency of branch region
information querying.
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Figure 1. The proposed structural model. Where miner is used to packing the block, VN is a vehicle
node, QN is a query node, RST-query means that the query node queries the regional information
according to the RST method, BR-query means that the query node queries the regional information
according to the branch query method.

In the proposed ALT, a MPT structure with a time as key and geolocation as value
is established for each account to realize the function of supporting geographic region
information query within the blockchain (See details in Section 4.1). In the proposed RST, a
MPT structure of a region state with Geohash code features and hierarchical relationship of
geographic regions, which is represented by the amount of transactions within the specified
geographic region. We use the Geohash encoding of the geolocation as key, and the region
elements list in the current region (including account list (Account), transaction list (TXID),
and receipt list (RPID)) as the value in this structure (See Section 4.2 for details).
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The branch query method we designed requires that the branch index structure of
the region state trie corresponding to the geographic region be saved according to the
geolocation of the node, to narrow the query scope and improve the query efficiency (See
Section 4.2.4 for details).

4. Design of the Proposed Structure
4.1. Account Location Trie (ALT)

To support the querying of the historical trading location of each vehicle, the trading
location is treated as the attribute of the corresponding account in the blockchain. Like the
balance of the account, all account locations are also written into the independent state
database of each account as state information.

1. Structure of ALT.
As the core data structure of Ethereum, MPT is a tree structure of single value iden-
tification key/value pairs formed by the combination of Merkle Tree and Patricia
Tree. The advantages of the MPT structure are the query efficiency brought by the
compressed prefix and the fast location of differences brought by hash merging.
Therefore, we use the MPT structure to build ALT to achieve fast query of geographic
information.
When a transaction happened, ALT takes the record time of the account geolocation
as the index, where the account geolocation of the transaction sender verified by the
miner node is stored in the leaf node of the trie. It then combines the hash values of
two adjacent leaves into a string and stores the hash value of the string in the parent
node of the trie. The adjacent parent node repeats the above hash calculation process
until the root hash value is obtained. To this end, the change of the entire ALT can be
identified by the root node.
As shown in Figure 2, the storage of ALT consists of on-chain storage and index
structure storage. The on-chain storage part is the hash value Root of the root node of
the state trie in the block header. The dashed box is the index structure, and the node
of the blockchain will maintain the latest index structure of ALT locally. The change of
the account location will cause the change of the hash value of the root node of ALT in
the account state ALTRoot, which will lead to the change of the hash value Root in the
block header. It’s still shown in Figure 2, the blockchain adds a new block numbered
N + 1. Since a new location record with a new time of 105 and a location of wx4er5
is added to ALT, the hash value of the root node of ALT changes from ALTRoot to
ALTRoot′, and the hash value of state tree root node changes from Root to Root′.

Block N Header

Prev Hash
...

Root

Block N+1 Header

Prev Hash
...

Root’

104

wx4er4

100

wx4er5
ALT for 

block N

ALT for 

block N+1

4 5

ALTRoot’

State(ai)’
...

ALTRoot

State(ai)
...

Figure 2. Schematic Diagram of ALT Storage Changing.
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2. Querying of the account location.
The account location query can be divided into two types: the latest location query
and the historical location query. Since the latest location of the account is an attribute
of the account, it can be obtained directly. The historical location needs to be queried
based on the specific time. First, it queries the latest account state, reads the root node
of ALT from the account state, then queries ALT with the specified time as the index,
and finally returns the index.

4.2. Region State Trie (RST)

The purpose of the ALT is to implement a location query related to the specified
account. It can also be used to query the region state without an independent query
function for the region state. However, it is not efficient for querying regional information
due to the querying process based on two dimensions of account and geographic region.
We design the region state trie (RST), which uses the Geohash encoding as the index of
MPT, to support the rapid querying of the hierarchical geolocations (region) state. RST
records the region state information within a certain geographic region, optimizes the MPT
indexing method, and makes it efficiently support the prefix query, the latest regional
information query and the branch query in the core of the blockchain. Furthermore, we
reduce the impact of external operations on the security of the blockchain by providing an
interface for external access to facilitate application calls.

4.2.1. Structural Design

Figure 3 shows a schematic diagram of the RST structure. In general, we use the
Geohash code to index the geographic region, branch node of RST and the geolocation
attribute of each block. We further design a region elements list (REL) by using the bucket
of MBT (Merkle Bucket Tree) [23] to store multiple region state information in the same leaf
node of the trie. RELs are arranged in chronological order, which is convenient to query the
latest information. We design a prefix query method to query the information of multiple
leaf regions in the RST. We design the branch query method to improve query efficiency of
the region state in the specified branch region.

AccList
acc1

acc2

tx1
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1002

1001
TxList

RpList

1002

1001

tx2

rp1

1002rp2

ListName ID Time

Extension Node

Shared next node

6e

EN2

Branch Node

... valuer ...q

BN2

Leaf Node

key-end value

5 REL2

LN2 Leaf Node

key-end value

4 REL1

LN1

REL4w39m12 ①

②

③ ④

⑤
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... value9 ...5...
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Region State
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0 1 2 3 4 5 6 7 8 9 b c d e f h j k l m n p q r s t u vg w x y z value
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w
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Leaf Node

key-end value

m12 REL4

LN4

Leaf Node

key-end value

5fs3 REL3

LN3

Figure 3. Schematic diagram of the region state trie structure.
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The key in RST is encoded with a 14-byte Geohash since the 14-byte Geohash code
can meet the centimeter-level accuracy requirements for geolocations at all latitudes on the
Earth [33]. We adopt the recursive length prefix [15] storage method in RST to facilitate the
storage requirements of different data amount.

The RST takes the REL of the state information in the region as value. There are three
types of nodes in RST, as detailed below.

Extension Node: Record the common prefix (shared) and followed branch node index
(next node) of all unwritten nodes when traversing from the root node to this node. As
part of the key, the common prefix also uses Geohash code. The purpose of constructing
extension node is to expand the branches of the tree structure, and thus each extension
node will follow a branch node.

Branch Node: Record the branch path traversed by different keys to this node. Ac-
cording to the Geohash encoding rules, the first 32 items of this node record the branch,
and the 33rd item records the key end flag. It is worth noting that if there is no combined
common prefix before the branch junction, there is no extended node before the branch
node. As shown in the branch node BN3 in Figure 3, the previous node is the branch node
BN1.

Leaf Node: Record the remaining key encoding value with no branch and the corre-
sponding REL. An RST with only one item is a leaf node. When the RST has only one item,
it is a leaf node.

4.2.2. Construction and Update of RST

As we mentioned before, the region state information is stored in the RST in the form
of REL. REL consists of the account list, transaction list and receipt list. The region element
contains two attributes: ID and time. ID refers to the account ID, transaction ID and receipt
ID in the account list, transaction list and receipt list respectively. REL contains all region
elements in the geographic region, and there is no duplicate data in any two RELs. For
the account list in the REL, only the latest transaction time of the account is retained in the
same account list to indicate the activity of the account.

Construction of RST. The construction of RST includes two parts of top-down storage
path planning and bottom-up node value hash merging.

1. Storage path planning. The storage path planning refers to the construction process
of all branch nodes starting from the root node to the final leaf node of the RST in
accordance with the geolocation encoding REL. The initial state of the RST is empty,
and the first data is written to the root node. When there is an REL in the region to be
planned, this REL is updated; otherwise, the geographic region encoding where the
current blockchain is located is used as the common prefix to plan the storage path.
The storage path planning process of the RST is summarized in Algorithm 1.

2. The node hash value merging process of the RST is consistent with that of ALT. Both
of them need to start from the leaf node and combine the adjacent nodes to calculate
the merging hash and pass it up until the root hash value is obtained.

Update of RST. The RST update process includes three parts: storage path update,
update of REL and update of the node hash value. When the storage path of the RST
generated by the key to be updated does not overlap with the existing path in the tree, a
new branch of the RST needs to be established, which is the storage path update. When the
storage path of the RST generated by the key to be updated is the same as the existing path
in the tree, the new REL needs to be updated to the original REL, which is the REL update.
The above two update processes need to be accompanied by the update process of node
hash value.

Take the item to be updated (step 1©) where key is w39m12 and value is REL4 in
Figure 3 as an example to illustrate the update process of the RST. When querying the
branch 3 of branch node BN1, the record is not empty, one needs to compare the key-end of
the leaf node. Since the key encoding of REL4 is read to 9m12, the key of the original leaf
node LN3 is 5 f s3, and the first encoding is different, it will enter the storage path update
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process, that is, a branch node is established (step 2©), and then leaf nodes LN3 and LN4
with keys of f s3 and m12 are created respectively (steps 3© and 4©). Then, it enters the node
value hash update process, that is, the hash values of leaf nodes LN3 and LN4 are written
into the 5 and 9 branches of branch node BN3 respectively. Finally, the original leaf node
LN3 is deleted (step 5©), and the update process is done.

Algorithm 1 Storage path planning algorithm of RST

Require: R, w
1: function STORAGE_PATH_PLANNING(R,w)
2: //w is the Geohash region encoding that R belongs to
3: //cur_ Node is the node with the longest prefix of w
4: //sub_region is w removing the prefix of cur_node and w
5: if sub_region.len > 0 then
6: LeafNode[sub_region(1:end)]=R
7: BranchNode[sub_region(0)]=

LeafNode[cur_node.key(1:end)]
8: if cur_node.type 6= BranchNode then
9: LeafNode[cur_node.key(1:end)]=cur_node

10: BranchNode[cur_node.key(0)]=
LeafNode[cur_node.key(1:end)]

11: end if
12: else
13: if cur_node.type == BranchNode then
14: BranchNode.value=R
15: else
16: R is stored into REL
17: end if
18: end if
19: end function

4.2.3. Prefix Query

The RST supports MPT query and prefix query. MPT query requires the same length
of encoding bytes of the query region and the number of encoding bytes of the key of the
construction tree. And the query result is empty or the value of the leaf node. To query
different levels of regional information according to the prefix of the geolocation encoding,
we design a prefix query method. Prefix query requires the Geohash encoding of the region
to be queried as the prefix of the key of RST. And the query result is empty or the combined
value of all leaf node values of the branch where the prefix is located, as shown in the pink
part in Figure 4. Prefix query includes two parts: RST query and query state cache.

1. RST query. A prefix matching method is designed to implement the prefix region
query of the RST. We use input to represent the encoding of the region to be queried,
and cur_key to represent the encoding of the current key to be queried in the prefix
matching process. The entire prefix matching process is a byte by byte comparison
process from the first byte of the input encoding and then getting the cur_key. When
comparing with the root node of RST for the first time, input is the cur_key. When
the key of parent node is the prefix of cur_key, cur_key is the remainder of the parent
node without prefix. If the leaf node is not reached after traversing input, we take the
key of the child node of parent node as cur_key, and traverse the child nodes one by
one until all the leaf nodes of parent node are traversed.

2. Query state cache. Obtaining the regional geographic information of the IoV ulti-
mately requires querying the REL. When the REL to be queried has not changed,
caching the query state can improve the query efficiency of the REL. We design a
query state cache method to temporarily save the query results of the REL. As shown
in the blue part in Figure 4, we use QSC to represent the query state cache list, region
is used as the key of region state cache to record the region encoding of the query
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request, RELs stores the REL corresponding to the region. query_hash is the hash
value of the query state cache. When the region information is queried, we check
whether the element exists in the query state cache list firstly. If not empty, the hash
value of the query state cache is compared with the node of RST. If the hash value
of the corresponding element of the RST is consistent with the hash value of the
corresponding element in the query state cache list, the query state cache result is
returned directly. If the element does not exist in the query state cache list or the
element exists but is not the latest state, the query process of the RST needs to be
completed, and then the hash value of the query state cache list and the query state
cache in the cache should be updated.

region

QSC[region]!=null&&

RST[region].root_hash==

QSC[region].query_hash?

RELs=QSC[region].RELs

Y

N

QSC[region]=RELs;

QSC[region].query_has

h=hash_of RELs

Return RELs

cur_key=cur_key

[(cur_node.key).length:];

cur_node=cur_node.next

YN

Y

cur_key=region;

cur_node=RST.root

cur_node.key==

cur_key[:(cur_node.key)

.length]?

cur_key=cur_node.key;

cur_node=cur_node.next;

all_leaf=all_leaf+all LN of cur_node

ln∈all_leaf?

RELs=RELs+ln.value

N

Figure 4. Flow chart for prefix query of RST.

4.2.4. Branch Query

Compared with geographic information outside the region, vehicles need geographic
information of their own regions provided by blockchain nodes to meet the requirements of
IoV services. We propose the branch query method, where the blockchain node caches the
region state data of their own geographic region so as to improve the efficiency of branch
query.

1. Branch region cache. The contents of the branch region cache include the root node,
the RST branch of the geographic region where the node is located, and the branch
node prefix. In this paper, we define the branch node prefix as the encoding length of
all parent node keys of the RST branch which is cached by the node in the global RST.
Figure 5 shows a schematic diagram of the establishment and update of the branch
query method. In the figure, the node whose geographic region encoding regionID
is empty adopts the global RST query method, and the node whose regionID is wm1
adopts the branch query method. A blue dashed box in the figure is the storage state
of the blockchain node at some point, including two parts: the orange box represents
the state cache of the branch region of the current node, and the lower part represents
the chain link relationship of the blockchain. The process of establishing branch
region cache for node wm1 in Figure 5 is as follows: 1© read the root node of the
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global RST from the latest block B3; 2© query the branch of wm1 in the global RST; 3©
obtain the root node of current region, namely b_reg_root(wm1) with key 11; 4© get
the prefix-encoded bytes of the branch region node pre_num(wm1); and 5© calculate
the hash value Hash(wm1) of the root node of the branch of RST.

w

m

11

n

B1 B2 B3...

RST RST

B1 B2 B3 B4...

w
m

1
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③  b_reg_root(wm1)
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m n

1

21
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⑥

Figure 5. Schematic diagram of branch query method.

After the node using the branch query method exits, its branch region cache is invalid,
and the cache needs to be re-established when starting again. The algorithm for
finding the root node of the branch region state and the prefix of the branch node is
shown in Algorithm 2.

Algorithm 2 Branch Region State Cache
Input: RST.root,regionID
Output: b_reg_root,pre_num
1: v_reg = regionID
2: pre_num=0
3: b_reg_root = RST.root
4: while v_Reg is not the prefix of b_reg_root.key do
5: pre_num = pre_num + len(b_reg_root.key)
6: v_reg = v_reg remove the prefix of b_reg_root.key
7: b_reg_root = b_reg_root.next
8: end while
9: return b_reg_root,pre_num

2. Branch region update. When the region state branch corresponding to regionID of
the node using the branch query method changes, the local branch region state cache
needs to be updated. As the structure of the RST will be changed, the hash value and
prefix of the branch corresponding to regionID will be changed, too. Therefore, both
the hash value of the branch and the prefix of branch node need to be updated. As
shown in Figure 5, after the node wm1 completes the synchronization process of the
block B4, a new RST is generated (step 6©), and then the root node hash of the branch
of RST Hash(wm1′) needs to be calculated (step 7©). Hash(wm1′) 6= Hash(wm1)
indicates that the branch has changed, re-search the branch of RST of the node (step
8©) and update the branch region state cache to b_reg_root(wm1′) and pre_num(wm1′)

(step 9© and 10©, respectively).
3. Branch query. If the Geohash encoding of the branch region and the Geohash encoding

prefix of the region to be queried are the same, the fast query of the state of the branch
region can be achieved by using the locally cached RST branch of the region. It is not
necessary to start the query from the root node of the RST, but only from the branch
node of the cache. As shown in Figure 5, the node of wm1 queries the region state
of the range of wm1 or wm11, which is the branch query. When the node does not
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set the region to be queried, or when the actual query region is the upper region of
the node’s region or other regions that are not prefixed by the node’s current branch
region, (because there is no corresponding region state cache), it needs to be queried
in the global RST of the corresponding region state.

4.3. Discussion on Data Security

We analyze the storage security and query security of the geolocation blockchain in
this section.

Storage security.

1. The blockchain adopts asymmetric encryption algorithm, which can resist many
traditional security attacks, and its distributed storage structure ensures storage
security [7–12].

2. Locations are written into blocks through transactions, which can achieve consis-
tency and tamper-resistance according to the distributed consensus mechanism and
synchronization mechanism.

3. The geolocation attribute is added in the core of the blockchain. Although there is a
risk of exposing the location, the authenticity of the transaction is increased by adding
the location attribute to the transaction, which provides security guarantee on the
other hand.

Query security.

1. Privacy. The original blockchain does not provide location information and there is
no risk of exposing the location. We add location attributes inside the geolocation
blockchain. Although the authenticity of the transaction can be proved by the location,
if the location access is unrestricted, there is a risk of privacy leakage. Therefore,
according to the application scenarios of location information, we divide location
access rights into internal index usage and external usage depending on whether
it is one of the two parties in the transaction. During the internal indexing of the
blockchain, the access to location information is unlimited. In other cases, only the
both parties can access the specific location information, so as to achieve the purpose
of restricting the use of location information.

2. The input is non-repeatable. This is because only one transaction and one input of
location can occur in the same account at one time, especially ALT takes time as
the key, and the key is not repeated. That is, there will be no case that one time
corresponds to two locations in ALT.

3. Query reliability. When querying the state of the same region, any two nodes return
the same query results. Assume that there are two nodes that query the same region
state information with different results. Since the honest nodes in the whole network
account for the majority, the root node hash of the RST of all nodes are the same, so
there will be no different branches. This contradicts with the assumption, which also
proves the query reliability.

It can be seen through the above security analysis that our solution has no impact
on the security of the blockchain, and the reliability of the query can also be guaranteed.
Although there is a risk of exposing account privacy, it can be improved by adding simple
query restrictions.

4.4. Discussion on Query Time

We analyze and discuss the query time of querying region state information in the
no-location index method, ALT method, the global RST method, and the branch query
method in this subsection.

1. No-location index method.
Existing blockchains such as Ethereum have no indexing method for geolocation,
which we refer to as a no-location index. There are two ways to add location in-
formation to Ethereum. One is to use smart contracts to store locations, but they
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cannot be associated with ordinary transactions. If smart contracts are used to achieve
storage and access data on-chain, the amount of data storage and storage cost will
be increased. The other way is to store location information in the transaction in
the form of extra data. The location data needs to be stored in the recursive length
prefix encoding format and then written into ordinary transaction. The query process
mainly includes a cyclic search process of block query and transaction query. When
obtaining the transaction location, the recursive length prefix decoding process needs
to be completed, and then compared with the range to be queried. We select the latter
one for comparative analysis.
Assuming the number of blocks is m, the transaction amount is n, the average
transaction amount packaged in each block is n

m , then the query time complexity
is O(m× n

m ) = O(n).
2. ALT method.

The steps to query the region state with the help of ALT are as follows: First, get all
account IDs. To get the state of the entire region from the perspective of ALT (mainly
refers to the number of transactions), we first need to count all historical account
information in the region. Second, get all transactions of the account. We need to get
the start and end time of the query. The start time is when the account sends the first
transaction, and the end time is when the account sends the latest transaction. Due to
the randomness of the transaction, we can determine it from the block generation time.
We choose block 0, i.e., the timestamp of the genesis block as the start time, because
genesis block does not contain any transactions. We choose the timestamp of the
latest block in the current blockchain as the end time to achieve full coverage in time.
Third, transaction location filtering. In the process of step 2, it is also necessary to filter
transactions according to the query region. According to Geohash encoding rules, it
is only necessary to check whether the query region is the prefix of the transaction
location.
Assuming the number of blocks is m, the transaction amount is n, the number of
accounts is a, then the average transaction amount of each account is n

a . ALT is a
Merkle tree, which has the query time complexity of O(log N), with N being the
number of leaf nodes [37]. ALT takes time as the key, and each account has an
independent ALT. Therefore, the number of leaf nodes is the transaction quantity of
the account, so the query time complexity of each account is log n

a , and the overall
query time complexity is O(a log n

a ) ≈ O(log n). Thus, the query time complexity of
ALT method is less than that of the no-location index method.

3. Global RST method.
Since there is no loop process in the process of storage path planning process of
the RST which is summarized in Algorithm 1, its time complexity is O(1). The
planning process is independent of the query process and will not affect the query
time complexity of the Global RST method.
The RST is also a Merkle tree, and the Merkle tree has the query time complexity of
O(log N), where N is the number of leaf nodes. Since the RST is stored in bucket
structure at the leaf node, we suppose the number of transactions stored in the REL
at the leaf node in the RST is S. Then the number of leaf nodes in the RST is N/S,
and the query time complexity of the global RST is O(log(N/S)). Therefore the query
time complexity of the global RST method is less than that of ALT method.

4. Branch query method.
The time complexity of the algorithm for finding the root node of the branch region
state and the prefix of the branch node which is summarized in Algorithm 2 depends
on the encoding length of the branch region to be queried and the length of the
common prefix in RST. In the worst case, if the coding length of each branch in RST
is 1, the time complexity of Algorithm 2 is O(n). Since this process is an action
that can be completed when the node is started, it does not need to wait until the
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region information is queried, and it will not increase the query time of the region
information.
Supposing the number of leaf nodes of the Global RST method is N/S, and there are
at most L branches in each layer of RST. According to Algorithm 2, we assume that
the length of the prefix region code cached in the branch region query method is P.
Then the number of leaf nodes of the RST cached in the branch region query method
is 1

Lp ∗ N
S , which is less than that of the Global RST method. We can conclude that the

query time complexity of the branch query method is O
(

log
(

1
Lp ∗ N

S

))
, which is less

than that of the Global RST method.

In the case of the region state query with the same transaction content and the same
amount of data, the order of query time is no-location index method > ALT method >
global RST method > branch query method. Compared with the query time complexity of
the Merkle tree in literature [37], our query method is in the same order of magnitude as
literature [37], which shows that our query method has no impact on the query advantages
of the original Merkle tree although it adds location information.

5. Experiments and Evaluation

We have implemented the proposed data structure based on the Ethereum. In this
section, we first introduce the experimental environment and experimental data used in
this work. Then, we evaluate the performance of the geolocation blockchain structure with
the region state query function.

5.1. Experimental Setup

1. Experimental environment. Our prototype framework is implemented on the basis
of Ethereum version 1.9.12 (16 March 2020) which is written in Go language. The
physical environment of the experiment is a desktop computer with 4-core Intel Core
i5-4690k 3.5 GHz processor and 7.7 GB memory, running on Ubuntu 14.04.

2. Data generation. It is set that the vehicle sends a position transaction every 200 ms,
and the speed limit of the general urban road is 30–50 km/h [7], so we set the average
speed of 40 km/h as the vehicle speed. The vehicle trajectory is the position sequence
represented by the 14-byte Geohash encoding continuously generated in the specified
region according to the specified speed. The vehicle node writes the vehicle location
into the transaction to record the movement of the vehicle. The no-location index
blockchain stores location data into the blockchain in the form of additional data of
ordinary transaction, and the geolocation blockchain structure stores it in the form
of location attributes of the transaction. Each vehicle node sends a transaction to the
blockchain every 200 ms.

3. Data acquisition. To evaluate the performance of the prototype framework, we mainly
use three metrics: (1) Taking the time when the same content and the same number
of transactions are written into the blockchain as the build time to compare the time
cost when building different blockchains. (2) Taking the amount of on-chain data
and local-data which are written into the blockchain with the same content and the
same number of transactions as the data amount to compare the space cost when
building different blockchains. Since the data content stored by different blockchain
nodes is different, we make statistics from the data amount on-chain and the local
data amount, respectively. Data amount on-chain: only the data amount of the block
itself is counted. Local data amount: count the complete data amount saved locally,
including state data. (3) Taking the query time of the amount of transactions in the
same region as the query time to express the query efficiency of different types of
query methods on regional information. For the statistics of the build time and the
data amount, we calculate the situation separately when the amount of transactions is
8000, 16,000, 24,000, 32,000, 40,000. For the statistics of query time, we set the query
node to complete the regional information query every 10 s, and take the average
value for 200 consecutive queries.
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4. Experimental scenario. Four vehicle nodes represent vehicles in four different regions,
which generate vehicle location in their respective regions (the movement range of
each node’s location is four 5-byte Geohash encoding regions, with a region of about
80 km2), and send a transaction every 200 ms. One fixed node acts as a miner and
is responsible for packaging transactions. One query node is responsible for the
query work.

5. Comparison protocol. As in the previous section, our comparison protocol includes
the original no index method, ALT method, global RST index method and branch
region query method.
Original no index method (ORG) is as discussed in the first paragraph of Section 4.4.
In the original Ethereum, the location data of the transaction is stored in the form
of additional information. Since there is no index for additional information in the
blockchain, the query needs to be completed with blocks and intra-block transac-
tions. This method with no dedicated location query is referred to as the original no
index method.
ALT index method (ALT) is as discussed in second paragraph of Section 4.4. In the
geolocation blockchain, ALT is used to query the region state from the perspective of
the account. This method is called ALT index method.
Global RST index method (RST) is as discussed in Sections 4.2.1–4.2.3. In the geoloca-
tion blockchain structure with RST, the nodes use a global query method to complete
the region state query work, which is called the global RST index method.
Branch region query method (BR) is as discussed in Section 4.2.4. In the geolocation
blockchain structure with branch query method, the nodes use the branch query
method to complete the query work for the cache of the current branch region state.

5.2. Experimental Results

In this section, we evaluate the performance of the geolocation blockchain structure
prototype supporting region state query from different aspects. First, we measure the two
performance indicators of build time and data amount of the no-location index blockchain
and the geolocation blockchain. Then we perform a quantitative analysis of the query time
of the original no index method (ORG), ALT index method (ALT), global RST index method
(RST) and branch region query method (BR) when querying different geographic regions
under different transaction amount. Finally, we further analyze the impact of node region
range and query range on branch region query method.

1. Build time. We take the successful packaging time of the same number and the same
content of transactions as the build time, and make statistics on the build time of five
cases, such as 8000, 16,000, 24,000, 32,000, 40,000 transactions separately. Figure 6
shows the comparison of build time. The build time and time growth trend of the
geolocation blockchain structure and the no-location index blockchain are basically
the same, which both increase with the increase of the transaction amount on the
whole. The build time of the geolocation blockchain structure increases about 0.31%
on average compared with the no-location index blockchain, indicating that although
the index structure is added to the geolocation blockchain structure, the build time
does not increase significantly.
Since our research did not modify the consensus mechanism, one miner and multiple
miners had little impact on the test of construction time when the sending transaction
speed was consistent, so we did not involve the multi miner experiment in this article.
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Figure 6. Build time with different amount of transactions.

2. Data amount. The experimental settings of data amount statistics are the same as
that of building time statistics. The comparison results of data amount are shown in
Figure 7.
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Figure 7. Data amount with different amount of transactions.

In terms of the data amount on-chain, as shown in Figure 7, the amount of on-chain
data increases as the number of transactions increases in both cases. Compared
with the no-location index blockchain, the on-chain data amount of the geolocation
blockchain structure is slightly increased, with an average increase of about 0.27%.
This is because the geolocation blockchain structure only adds the root nodes of ALT
and RST in the block header, and the amount of data contained in the transactions
included in the block body keeps the same. Therefore, the geolocation blockchain
structure has no significant impact on the data on-chain.
From the perspective of local data amount, roughly speaking, the data amount of
the two methods increases with the increase of the number of transactions. The
data amount of geolocation blockchain structure has increased significantly, which
is about 3.2 times more than that of the no-location index blockchain on average,
indicating that the data amount of database of the geolocation blockchain structure
is significantly higher than that of the no-location index blockchain. The reasons are
as follows: (1) the storage of ALT built for each account will continue to expand as
the number of account transactions increases; and (2) the storage of RST will continue
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to expand according to the increase of the number of transactions in the region. The
statistical results of the database data amount show that the index structure of the
geolocation blockchain structure trades off space for time.

3. Query time. Query time refers to the time spent by different index methods to query
the amount of transactions within the same geographic region when the amount
of transactions on-chain is the same. Here we count the cumulative average value
according to the fixed interval amount of transactions and count the query time of
the transaction quantity in the geographic region with the query range of 3–6 byte
Geohash encoding respectively. The statistical results are shown in Figure 8. The
branch region selected by the region node of the branch query index in Figure 8 is
the same as the Geohash range selected by the query region. And, in the four query
result diagrams in Figure 8a–d, the query range of nodes corresponding to the branch
region index is also different.

(a) (b)

(c) (d)

Figure 8. Query Time with Different Amount of Transactions in Various Geographic Regions. (a) The
query range is geographic region of the 3-byte Geohash encoding. (b) The query range is geographic
region of the 4-byte Geohash encoding. (c) The query range is geographic region of the 5-byte
Geohash encoding. (d) The query range is geographic region of the 6-byte Geohash encoding.

Overall, when the query range is a 3-byte Geohash range, the amount of transactions
contained in the region grows fast due to the large size of the region. Therefore, the
query time of the four query methods increases greatly with the increase of the amount
of transactions in this range. When the query range is a 6-byte Geohash range, the
query time increases, but at a small rate, because the region is small and the amount
of transactions contained within the region grows slowly.
Comparing ALT index and original no index methods, when the query region is in the
range of 3–6-byte Geohash, the average query time of original no index is 19 s–306 s,
while the average query time of ALT index is 0.3 s–17 s. The average query time of
ALT index is about 5.3% of original no index, which shows that ALT index has greatly
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improved the query efficiency compared with original no index on querying region
state.
Comparing global RST index and ALT index, when the query region is in the range of
3–6-byte Geohash, the query time of global RST index is 1.4 ms–9.2 ms on average,
which is at least 99.8% less than that of ALT index, indicating that the global RST
index of RST has better region query efficiency.
Comparing branch region index and global RST index, when the query region is in
the range of 3–6-byte Geohash and the query range of region index is also in the
corresponding range of 3–6-byte Geohash, the average query time of branch region
index is 1 ms–8.4 ms, which is about 21.7% less than that of global RST index, showing
that the branch region index also improves the efficiency of RST.
These experimental results have validated the discussion on query time in Section 4.4.

4. Analysis of branch region query method.
We further evaluate the branch region index query method under the geographic
region of different region nodes in the same query range. The statistical results are
shown in Figure 9. The BR3–BR6 in Figure 9 denote the length of Geohash encoding
used to represent different regions during the region state information query process.
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Figure 9. Query time of the amount of branch region query method with different amount of
transactions in specified geographic region. (a) The query range is geographic region of the 3-byte
Geohash encoding. (b) The query range is geographic region of the 4-byte Geohash encoding. (c) The
query range is geographic region of the 5-byte Geohash encoding. (d) The query range is geographic
region of the 6-byte Geohash encoding.

When the amount of transactions is small (about 1200), the region query time of global
RST index is the same as that of branch region index when the range is 3-byte Geohash
encoding. With the increase of the amount of transactions, the query advantages of
the branch region query method are gradually improved. It can also be seen from the
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results that the query time is greatly affected by the amount of transactions within the
query range. When the amount of transactions within the query range changes little,
the query time is almost the same. For example, when the amount of transactions
in Figure 9b is 5600–10,400, the query time of BR4 is basically the same. Also, in
Figure 9d, because of the small query range, the amount of transactions in the region
is small and changes little, making the query time not change much.
When the region of node is consistent with the query range, the query time of branch
region query method is reduced by about 21.7% compared with that of the global RST
index on average. When the query range is in the 4–6-byte Geohash encoding range
and the range of region index is three byte, the query time of branch region query
method is about 7.6% less than that of the global RST index on average. When the
query region is in the range of 5–6-byte Geohash encoding and the range of branch
region query method is four byte, the query time of region query method is about
16.2% less than that of the global RST index on average. When the query region is
in the 6-byte Geohash encoding range and the range of branch region query method
is in the 5-byte, the query time of region query method is reduced by about 21% on
average compared with that of the global RST index. It shows that when the range
of region query method is consistent, the branch region query method has higher
query efficiency than global RST index and when the query range is about the same
as the region range, the branch region query method efficiency is higher. This plays a
guiding role in region state query and the region selection of the region node.

5.3. Discussion

The experimental results above show that in terms of construction time and the
amount of data on-chain, the geolocation blockchain only has marginal growth of 0.31%
and 0.27% on average compared with the no-location index blockchain. In terms of the
local data amount, due to the additional index structure of the geolocation, the data amount
of the geolocation blockchain is 3.2 times that of the no-location index blockchain on
average, indicating that the geolocation blockchain uses storage space in exchange for
query efficiency. For query time, the query efficiency of the ALT index of the geolocation
blockchain is 5.3% of the original no index query. Compared with the ALT index, the query
time of the global RST index is reduced by 99.8%. Compared with the global RST index, the
query time of the branch region index is reduced by 21.7%, indicating that the geolocation
blockchain has observable advantages in region state query. In addition, we have further
concluded that the more consistent the geolocation range of the node is with the branch
query range, the better the query efficiency is. The effectiveness of geographical location
blockchain in regional information query is validated by the discussion of data security,
query time, and experimental results.

6. Conclusions

In this paper, in order to quickly obtain region state information in IoV, we design a
region state trie based on the Geohash coding system to index the hierarchical geolocation
attributes in blocks. We further design an account location trie to support the querying of
historical trading locations. Furthermore, we proposed a branch query method to improve
the efficiency of region query. Our design is implemented on the basis of the open-sourced
Ethereum, instead of using logical structures such as establishing smart contracts on the
upper layer, which is more convenient for future development and application.

At present, the query of the region state only involves a full-time query, and no
further research has been done on the query by period. And it does not consider issues
such as physical storage and dynamic structure adjustment of blockchain and partitioned
consensus. These are interesting research directions toward realizing physical multi-chains
suitable for IoV.
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