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Abstract: Geotechnical investigation plays an indispensable role in site characterization and provides
necessary data for various construction projects. However, geotechnical measurements are time-
consuming, point-based, and invasive. Non-destructive geophysical measurements (seismic wave
velocity) can complement geotechnical measurements to save project money and time. However,
correlations between geotechnical and seismic wave velocity are crucial in order to maximize the
benefit of geophysical information. In this work, artificial neural networks (ANNs) models are
developed to forecast geotechnical parameters from seismic wave velocity. Specifically, published
seismic wave velocity, liquid limit, plastic limit, water content, and dry density from field and
laboratory measurements are used to develop ANN models. Due to the small number of data, models
are developed with and without the validation step in order to use more data for training. The
results indicate that the performance of the models is improved by using more data for training. For
example, predicting seismic wave velocity using more data for training improves the R2 value from
0.50 to 0.78 and reduces the ASE from 0.0174 to 0.0075, and MARE from 30.75 to 18.53. The benefit of
adding velocity as an input parameter for predicting water content and dry density is assessed by
comparing models with and without velocity. Models incorporating the velocity information show
better predictability in most cases. For example, predicting water content using field data including
the velocity improves the R2 from 0.75 to 0.85 and reduces the ASE from 0.0087 to 0.0051, and MARE
from 10.68 to 7.78. A comparison indicates that ANN models outperformed multilinear regression
models. For example, predicting seismic wave velocity using field plus lab data has an ANN derived
R2 value that is 81.39% higher than regression model.

Keywords: field measurement; laboratory measurement; multilinear regression analysis; artificial
neural networks

1. Introduction

Seismic wave velocity is a practical, non-destructive, non-invasive, cost-effective mea-
surement related to the inherent mechanical properties of geomaterials [1]. However,
seismic wave velocity is not used directly in most designs of engineering structures. Devel-
oping correlations between seismic wave velocity and different engineering soil properties
could facilitate the use of seismic information for designing engineering structures.

Researchers have extensively studied the correlation between seismic wave velocity
and different soil properties. Dikmen developed correlations between shear wave velocity
(Vs) and uncorrected Standard Penetration Test (SPT-N) values for sandy, silty, and clayey
soils [2]. It was shown that SPT-N and shear wave velocity were strongly correlated but
the type of soil had no significant effect on the estimation of Vs. Gautam established corre-
lations between shear wave velocity and uncorrected standard penetration resistance [3].
This study used 500 measurements on various sand and silt soils. The coefficient of de-
termination for silty and sandy soils was relatively low in comparison to using all soils
together. He also compared his results with existing correlations from the literature and
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showed significant similarities with existing correlations. Hasancebi developed correla-
tions between shear wave velocity and penetration resistance for sandy, clayey, and all
soil (i.e., sandy and clay) using regression analysis [4]. Correlations between shear wave
velocity and SPT-N were found to be significant. For sandy soil, the R-value was 0.65, for
clayey soil the R-value was 0.75, and the combined data had an R-value of 0.73. Hasancebi
also concluded that the blow count was a significant parameter for the correlation, but
the soil type had no significant influence. A good correlation was established between
S-wave velocity and the degradation factor (GPMT/Go), where GPMT is intermediate strain
shear modulus from the PMT and Go is low strain modulus from S-wave velocity. How-
ever, the correlations between SPT-N and field measured S-wave velocity and P-wave
velocity were poor. Correlations were also developed between shear wave velocity and
cone penetration resistance. Mayne and Rix worked on field clay soil and found empirical
correlations between shear wave velocity (Vs) and cone penetration tip resistance (qc) [5].
An increasing trend in shear wave velocities with cone penetration resistance was observed
with consistency from soft to stiff to hard clay materials. Log regression analysis returned a
coefficient of regression of 0.736. Inazaki established correlations between S-wave velocity
and SPT-N, bulk density, solidities as the complement of porosity, and mean grain size
of surficial unconsolidated sediments [6]. S-wave velocities were measured in boreholes
using the PS suspension logging tool. The results showed that it is possible to express
N-values in terms of S-wave when N-value data have good accuracy. The correlation
between S-wave velocities and solidities was good but was dependent on lithofacies and
depositional age. The data also showed a good relationship between S-wave velocity and
density but a weak relation between S-wave velocity and mean grain size. Even though
most of the researchers found good correlations between S-wave velocity and N-values,
studies by some researchers could not find out good correlations between S-wave velocity
and N-values. A large number of researchers worked on developing correlation between
shear wave velocity and SPT-N [7–21].

Some other researchers attempted to develop correlation between seismic wave veloc-
ity and other geotechnical parameters. Evans worked with sand and clay soils to establish
correlations between geophysical and geotechnical parameters [22]. Seismic refraction
surveys were performed to collect S-wave and P-wave velocities. Pressure Meter Test
(PMT), SPT, Atterberg limit tests, and dry unit weight data were also collected from the
Salt River Project (SRP) [23,24]. Heureux and Long developed correlations between S-wave
velocity, cone penetration parameters, undrained shear strength, and 1-D compression
parameters for Norwegian clay [25]. Data used for this research was collected from 29 sites;
in south-eastern and mid-Norway. Regression analyses were performed to establish the
correlation between in situ S-wave velocity (Vs) and cone net resistance (qnet), collected
from the cone penetration test. The coefficient of determination R2 was 0.73. The undrained
shear strength values obtained from direct shear tests were correlated with Vs. with a
regression coefficient (R2) of 0.91. Their analysis also showed a good correlation between
pre-consolidation stress (Pc

’) and Vs with an R2 value of 0.81. Johora developed ANN
models to predict geotechnical parameters from S-wave and P-wave velocity separately
using laboratory data for compacted clay and sandy clay soil [26]. The results indicated
that P-wave velocity and S-wave velocity were more sensitive to dry density and void
ratio than to saturation and water content. The performance of the ANN models to predict
geotechnical parameters from soil mix proportion and either P-wave or S-wave velocity
was better when multiple geotechnical parameters were predicted at a time. Empirical
correlations were developed by Imai et al. between index properties and seismic veloc-
ities [27]. Foti and Lancellotta used velocity data published by Hunter and showed the
dependency of porosity with S-wave and P-wave velocity [28,29]. Alshameri and Madun
showed a direct positive linear correlation exists between seismic wave velocity and co-
hesion and shear strength for compacted sand-kaolin mixtures. They also attempted to
establish correlation between seismic wave velocity and friction angle but found that it is
insignificant [30]. Duan et al. developed correlations between shear wave velocity with
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vertical effective stress, unit weight, preconsolidation stress and undrained shear strength
for clay type soil [31].

ANN is gaining popularity as a problem-solving tool in the field of civil engineering.
Researchers are using ANN to predict concrete compressive strength [32–34], ultrasonic
pulse velocity [35], slump of concrete [36–38]. Zeh showed the application of ANN to
assess the nonlinear behavior of steel structures [39]. ANN was used to forecast flexure
and initial stiffness of beam column joints [40]. In geotechnical engineering ANN was used
to study slope stability [41], pile analysis [42,43], developing correlation between ER and
geotechnical parameters [44], analysis of liquefaction potential [45,46]. In transportation
engineering researchers applied ANN to develop transportation systems [47].

ANN can solve complex problems, but the performance depends on the size and
accuracy of the data set. Using a big data set can help to train the network efficiently.
In many fields big data sets are not always easily available. Researchers are working
on developing ANN models using small data sets. Pasini described a particular neural
network tool which is capable of handling small data sets and its application to a specific
case study [48]. Feng et al. used deep neural network to predict material defects using
small data set [49].

Literature contains a good number of correlations between seismic wave velocity and
blow counts. There are fewer correlations with other important geotechnical parameters,
such as water content, dry density, cohesion, angle of friction, saturation, void ratio,
etc. More study is necessary to establish the correlation between seismic wave velocity
and different types of geotechnical parameters. Many of the existing studies employ
conventional regression methods to develop the correlations between geotechnical and
seismic wave velocity, even though ANN was used in many fields of civil engineering In
this study, multi regression analysis and the ANNs approach were used to develop the
relationships between seismic wave velocity and geotechnical parameters or, conversely,
to predict geotechnical parameters from seismic wave velocity and other geotechnical
parameters using data from the literature. The performance of the ANN and regression
analysis was compared. Two different ANN approaches with and without validations were
also discussed to handle the small size data set.

2. Seismic Wave Velocity

Soil allows for the propagation of different types of seismic waves. Waves that deform
the material through shear are referred to as shear waves, and those that produce volumetric
deformations are referred to as compressional waves. These are often referred to as S-wave
and P-wave, respectively. Seismic wave velocity is related to the maximum shear modulus,
bulk modulus, Young’s modulus, bulk density, and Poisson’s ratio of the soil [50].

The longitudinal P-wave and the transverse S-wave velocity in an infinite elastic
continuum are related to the elastic properties by

Vp =

√
M
ρ

=

√
B + 4

3 G
ρ

P-waves (1)

Vs =

√
G
ρ

S-waves (2)

where M (Pa) is the constraint modulus, B (Pa) is the bulk modulus, G (Pa) is the shear
modulus, and ρ (kg/m3) is the mass density of the medium. Hence, the propagation
velocity increases with the material stiffness and decreases with its mass density (inertia).
Velocity of S-waves is always smaller than the velocity of P-waves [50].
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For fluid-filled porous media, the effective bulk modulus is provided by Gassmann [50].

Beff = BSK +

(
1 − BSK

Bg

)2

ϕ
Bf
+ 1−ϕ

Bg
− BSK

B2
g

(3)

where BSK (Pa) is the bulk modulus of the skeleton, Bg (Pa) is the bulk modulus of the
grains, Bf (Pa) is the bulk modulus of the fluid phase, andϕ is the porosity. In the Gassmann
model, the shear modulus of the soil, Geff, (Pa) remains unaffected by the presence of the
fluid at low excitation frequencies:

Geff = GSK. (4)

For partially saturated soils, the mass density of the mixture ρmix, changes due to the
different densities of the saturating fluids. By ignoring granular effects, fluid substitution
can be used to modify the expression for the effective bulk modulus of the soil. For soil
with water saturation of Sw, the fluid bulk modulus in Equation (5) given by

1
Bf

=
Sw

Bw
+

1 − Sw

Ba
(5)

where Bw (Pa) is the bulk modulus of the liquid phase and Ba (Pa) is the bulk modulus of
the air phase. Small volumes of air produce a large decrease in the modulus of the fluid
phase. However, under dynamic loading, differences in inertia, shear stiffness, and bulk
compressibility can add further complexity to the analysis.

Seismic wave propagation in granular soil materials is more complicated due to the
complex behavior of the solid skeleton and the influence of capillary forces. The skeletons
BSK and GSK depend on the “strength” of the grain contacts and are therefore dependent
upon the applied effective stress. The concept of effective stress for soils at low saturation
is still an area of active research because internal forces associated with capillary forces
and electrical forces at the grain surface play an important role [50]. That is why empirical
relationships are often necessary to predict seismic wave propagation in the partially
saturated particulate medium.

There are numerous methods for measuring seismic wave velocity in the field and the
laboratory. In the laboratory, the “time of flight” approach is common. A seismic wave is
generated using a source in contact with one end of the sample, the disturbance passes
through the soil and is detected by a receiver at the opposite end of the sample. Velocity is
calculated by dividing the distance (sample length) by the measured travel time. The soil
samples usually consist of remolded soil or a field sample with some degree of disturbance.
The frequency of the seismic wave is usually in the 10–100 kHz range. Field measurements
of seismic velocity can be performed using surface surveys such as refraction surveys or
surface wave analysis. These approaches mitigate the problem of soil disturbance since
no samples are required. However, they are less repeatable and have larger uncertainty
in measure values. The frequency of the seismic wave is in the 10 Hz to several 100 Hz
ranges. It should be noted that field-measured seismic velocities are usually lower than
laboratory-measured velocities.

3. Data Collections

This study uses data from a report on seismic wave velocity (P wave) published
by the Engineering Research Institute of Iowa State University, Ames, Iowa [51]. Field
measurement of seismic wave velocity was conducted on highway embankments. The
embankments were constructed with three types of soil namely, clay loam, silty clay (two
weathering variations, gray and brown), and silty loam. For laboratory measurements,
samples were collected from the side slope of the highway embankment adjacent to the field
measurement location. One additional soil type was used for the laboratory measurements
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defined as loess. The types of soils investigated, and their liquid limit and plasticity index
are shown in Table 1.

Table 1. Type of soil used for the tests.

Soil Type Liquid Limit Plasticity Index

Clay loam 23 9
Silty clay (gray) 30 13

Silty clay (brown) 40 18
Silty loam 32 6

Loess 32 6

Micro-seismic refraction tests were conducted at 34 different locations to measure
seismic velocities in the field. The equipment consists of three components: an impact
source, a receiving transducer, and a seismic timer. A model 217 Micro-Seismic Timer and a
transducer were used for these micro-seismic refraction tests. A tack hammer was used as
the impact source on a 5/8-inch diameter steel ball-bearing to transmit the energy into the
ground. Seismic measurements were taken along a 2 ft line by moving the receiver in 3-in
intervals. A total of 10 first-arrival measurements were collected at each station. The seismic
wave velocities were calculated from slope of the distance-time plots. At the midpoint of
the seismic line, a standard rubber balloon volumetric density measurement and an in situ
water content measurement were performed [52]. The range of values associated with the
field measurements is listed in Table 2.

Table 2. Parameters and ranges.

Type of Data Parameters
Ranges

Max Min

General
Plasticity Index 21.87 2.03

LL (%) 45.43 17.39

Field
Dry density (kg/m3) 2240.58 1465.69

Water content (%) 18 3.87
Velocity (m/s) 1128.99 67.12

Lab
Dry density (kg/m3) 2240.58 1465.69

Water content (%) 20.53 4.74
Velocity (m/s) 1675.07 57.48

Field plus Lab
Dry density (kg/m3) 2246.59 1484.71

Water content (%) 20.96 3.13
Velocity (m/s) 1705.07 7.23

In the laboratory, 35 different soils samples were compacted in 4-inch diameter by
4.58 inch high molds. Standard and modified AASHO compaction tests procedures were
followed to prepare the samples. Water content, dry density of all the samples (total 35)
were determined in lab. Liquid limit (LL), plasticity index (total 5 samples) were determined
on for the different soil types. Seismic velocities were measured on all samples (total 35)
using the pulse-transmission method.

4. Artificial Neural Networks Approach

During the past few years, artificial neural networks (ANNs) based modeling has been
gaining popularity in the field of geotechnical engineering [53]. ANNs can learn complex
nonlinear relationships between parameters from many data [54]. The methodology of
ANN is based on the human brain activity of processing data. Much like the human brain,
ANN has a large number of interconnected cells called neurons [55]. There are connection
links between the neurons to transfer signals from one neuron to the other. ANN consists
of three different layers (i.e., input layer, hidden layers, and output layer). Information
is passed from the input layer through hidden layers to the output layer. The hidden
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layers process the received signals from the input layer then transmit the information to
the output layer. The output layer receives the processed information from the hidden
layer and executes the outputs. ANN is capable of learning highly complex relationships
which are difficult to solve by traditional computational techniques. The performance of an
ANN model depends on the quality and the size of the database. Erroneous and too small
databases affect the accuracy of the model performance. ANN can be of different types,
i.e., feed-forward neural networks, recurrent networks, and stochastic neural networks
depending on the number of layers, the activation function and training algorithm [55].
The vital part of ANNs approach is the activation function, which introduces nonlinearity
to the network to solve complex problems. Examples of different activation functions that
can be used are linear, binary step, sigmoidal, and hyperbolic tangent sigmoid.

5. ANN Model Development

The architecture of an ANN model is determined based on the characteristics of
the problem and knowledge of ANN. In this study, the feed-forward back propagation
technique is used, and the nonlinear sigmoid function is chosen as the activation function.
ANN models are usually developed following four different steps. In the first step, a
database is divided into three different classes namely training, testing, and validation.
Training sets include around 50% of the total data and are selected randomly, including
minimum and maximum values of the input data. Testing and validation sets are also
selected randomly and contain about 25% of the data in each set. In the second step, the
optimum number of hidden nodes and iteration of the network is determined by training
and testing the network. The three best-performing networks are chosen based on their
statistics for comparison. In the third step, the three best networks are validated using a
validation data set. For the final step, the selected three networks are re-trained using all
the data to increase the prediction accuracy on the network structure that was determined
in the previous step. The performance of the selected three networks is evaluated based on
Mean Absolute Relative Error (MARE), Coefficient of Determination (R2), and normalized
Average Squared Error (ASE) and calculated using the following equations.

MARE =
∑N

i=1(

∣∣∣ XP
i − XA

i

∣∣∣)/XA
i

N
∗ 100 (6)

R2 = 1 −
∑N

i=1

(
XA

i − Xp
i

)2

∑N
i=1

(
XA

i − Xi

)2 (7)

ASE =
∑N

i=1

(
XA

i − Xp
i

)2

N
(8)

where, XA
i = Actual value, XP

i = Predicted value, Xi = Mean of XA
i , N = Total number of data.

6. ANN Models

ANN models are developed to predict seismic wave velocity, water content, and dry
density using the data from the lab and field experiments. Separate ANN models are
developed using lab data, field data, and lab and field data combined. Since the number
of data is limited, two different ANN approaches are used for predicting seismic wave
velocity. The first approach is the typical approach, where the data is used for training,
testing, and validation. Around 50% of data is used for training, 25% for testing, and 25%
for validation. In the second approach, the validation stage is excluded so that 75% data
is used for training and 25% for testing. The parameters used for developing models are
shown in Table 2, along with their ranges.
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6.1. ANN Models for Predicting Seismic Wave Velocity

Six different models are developed to predict seismic wave velocity. Models are using
lab data, field data and both lab and field data together following the two approaches, with
validation and without validation. Correlation matrix analysis was used before selecting
the input and output parameters for prediction model development.

The best three networks selected based on the statistical measures and optimal hidden
nodes to predict seismic velocity using field data from LL, plasticity index, water content,
and dry density are presented in Table 3. The best model is the model which has lower
the ASE, MARE and higher the R2. The statistics show that ASE, MARE and R2 of all
three networks are very close to each other in training, testing, and all-trained. From these
three networks, network 4_ (4_4_3100) _1 (where network structure is denoted as input_
(initial hidden nodes_final hidden nodes_iteration) _output) is chosen as the best model
depending on the best statistics in testing. The predicted versus actual graph is shown
in Figure 1a. The statistics and predicted versus actual graph indicate that the accuracy
of predicting velocity is marginal. The best model for predicting velocity using field data
without the validation stage is network 4_ (2_4_2900) _1. The predicted versus actual graph
for network 4_ (2_4_2900) _1 is shown in Figure 1b. The statistics are presented in Table 4.
The accuracy of predicting velocity is increased after omitting validation, but the overall
performance is still marginal.

Table 3. Statistical accuracy measures of model for predicting seismic wave velocity using field data,
with validation).

Model Architecture 4_ (1_1_2100) _1 4_ (2_2_2100) _1 4_ (4_4_3100) _1

Training
ASE 0.0151 0.0152 0.0152

MARE 19.61 19.87 19.75
R2 0.30 0.30 0.30

Testing
ASE 0.0122 0.0121 0.0121

MARE 21.72 21.70 21.56
R2 0.26 0.28 0.27

Validation
ASE 0.0153 0.0149 0.0147

MARE 18.54 18.63 18.49
R2 0.25 0.28 0.29
All

ASE 0.0132 0.0132 0.0133
MARE 18.87 19.01 19.04

R2 0.34 0.34 0.34

The best model using lab data to predict velocity is network 4_ (2_2_200) _1. The
statistics in Table 4 and predicted versus actual graph shown in Figure 1c indicate that the
accuracy of the velocity prediction is good. The best model to predict velocity without
validation is network 4_ (1_5_100) _1. The predicted versus actual graph shown in Figure 1d
and the statistics presented in Table 4 indicate that the accuracy of the velocity predictions
is good. Again, excluding the validation helps to slightly minimize the errors and increases
the R2 values. The results also show that the errors are much lower, and the R2 values are
much higher for the networks trained using lab data in comparison to the network trained
using field data.
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Table 4. Comparing ANN models (predicting seismic wave velocity).

Source of Data Model Model Structure ASE MARE R2

Field
with

validation 4_ (4_4_3100) _1 0.0133 19.04 0.34

without
validation 4_ (2_4_2900) _1 0.0128 19.34 0.37

Lab
with

validation 4_ (2_2_200) _1 0.0079 14.86 0.71

without
validation 4_ (1_5_100) _1 0.0058 13.33 0.80

Field plus Lab
with

validation 4_ (1_2_2900) _1 0.0174 30.75 0.50

without
validation 4_ (5_10_20000) _1 0.0075 18.53 0.78

The best model using field and lab data together to predict the seismic wave velocity is
network 4_ (1_2_2900). The statistics are shown in Table 4. and the predicted versus actual
graphs for the best network shown in Figure 1e. indicates that the accuracy is marginal.
The ASE and MARE are higher after combining lab and field data in comparison to the
models trained with lab and field data separately. The R2 values are improve. The model
developed without the validation stage is network 4_ (5_10_20000) _1 The statistics are
shown in Table 4. and the predicted versus actual graphs for the best network shown in
Figure 1f. indicates that the accuracy is good This model has significantly smaller errors
and increased R2 values compared to the model with validation.

In summary, of the results in Table 4 indicates that developing models without the
validation stage in order to have more data for training results in slightly better models.
The errors are lower and the R2 values are higher for the network trained using lab data
than using field data. The models using field data and lab data together perform in between
models based solely on lab data or field data.

6.2. ANN Models for Predicting Water Content

Water content is an important index property of soil. The amount of water gives an
indication of grading of soil and porosity. Soil compaction and strength is highly affected
by water content. ANN models are developed to predict water content using lab and field
data independently and in combination. Based on the previous models for velocity this
analysis is developed without validation. Models are developed with and without velocity
as input to evaluate if velocity helps in predicting water content. The statistics for the six
different models are presented in Table 5.

Table 5. Comparing ANN models (predicting water content).

Source of Data Model Model Structure ASE MARE R2

Field
without
velocity 3_ (2_3_1000) _1 0.0087 10.68 0.75

with velocity 4_ (1_5_100) _1 0.0051 7.78 0.85

Lab
without
velocity 3_ (4_4_100) _1 0.0051 7.69 0.82

with velocity 4_ (3_3_100) _1 0.0043 6.63 0.89

Field plus Lab
without
velocity 3_ (5_12_100) _1 0.006 10.69 0.74

with velocity 4_ (3_3_1000) _1 0.0083 11.61 0.67

The best model to predict water content from LL, plasticity index, and dry density
using field data is Network 3_ (2_3_1000) _1. The predicted versus actual graph for the
best network is shown in Figure 2a indicates that the accuracy of predicting water content
is good. Predicting water content from field data by including seismic wave velocity
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into the input parameters is Network 4_ (1_5_100). The predicted versus actual graph is
shown in Figure 2b and the statistics indicate better accuracy in predicting water content.
So, the results indicate that including seismic wave velocity improves the prediction of
water content.
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Using lab data to predict water content from LL, plasticity index, and dry density is
best for network 3_ (3_3_100) _1 The predicted versus actual graphs are shown in Figure 2c
and statistics indicate that the accuracy of predicting moisture content is higher than the
model derived from field data. Adding the velocity as additional input to traditional lab
data results in network 4_ (3_3_100) _1 with even better accuracy. The predicted versus
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actual graph for this network is shown in Figure 2d and the statistics shown in Table 5
indicate this is the best model for predicting moisture content. In summary, the models
for predicting moisture content are better using laboratory data than field data and the
addition of seismic velocity information enhances the models

Combining lab and field data to develop ANN models to predict water content reduces
the performance of the models. Network 3_ (5_12_100) _1 is the best network without the
velocity. The predicted versus actual graph, is shown in Figure 2e. The statistics indicate
that the errors are higher and the R2 values are lower for the network built using field data
and lab data together in comparison to the network built using lab data and field data
separately. So combining field and lab data together lowers the performance of the model.
The predicted versus actual graph for the best network 4_ (3_3_100) _1 including seismic
wave velocity into the input parameters is shown in Figure 2f. Contrary to the previous
models, based on solely lab or field data, the addition of velocity as input causes the ASE,
MARE to increase and the R2 to decrease. In summary, models for predicting water content
are more accurate when using lab data than field data. Combining the data results in much
poorer models. The addition of velocity as an input to either the lab or field data results
in more accurate models. Adding velocity as in input to the combined lab and field data
results in poorer models.

6.3. ANN Models for Predicting Dry Density

Soil dry density is used to determine the degree of compaction. The maximum dry
density is very important to increase the soil ability to support the structure and to avoid
excessive settlements. ANN models are developed to predict dry density using lab and
field data independently and in combination. Based on the previous models for velocity
this analysis is developed without validation. Models are developed with and without
velocity as input to evaluate if velocity helps in predicting dry density. The statistics for the
six different models are presented in Table 6.

Table 6. Comparing ANN models (predicting dry density).

Source of Data Model Model Structure ASE MARE R2

Field
without
velocity 3_ (4_4_2000) _1 0.0068 2.90 0.80

with velocity 4_ (3_5_100) _1 0.0032 1.81 0.91

Lab
without
velocity 3_ (4_4_500) _1 0.0051 2.42 0.86

with velocity 4_ (4_4_100) _1 0.0056 2.52 0.85

Field plus Lab
without
velocity 3_ (3_11_19800) _1 0.0087 2.94 0.75

with velocity 4_ (9_9_400) _1 0.0077 3.00 0.78

The best model to predict dry density from LL, plasticity index and water content
using field data is Network 3_ (4_4_2000) _1. The predicted versus actual graph for the
best network shown in Figure 3a indicates that the accuracy of predicting dry density is
good. The best ANN model developed to predict dry density with the same number of
classified data and ranges but including seismic wave velocity into the input parameters
is network 4_ (3_5_100) _1. The predicted versus actual graph is shown in Figure 3b and
the statistics indicate better accuracy in predicting dry density So, the results indicate that
including seismic wave velocity improves the prediction of dry density. The best network
using lab data to predict dry density from LL, plasticity index, and dry density is network
3_ (4_4_500) _1. The predicted versus actual graphs are shown in Figure 3c and statistics
indicate that the accuracy of predicting dry density is lower than the model derived from
similar field data. Adding the velocity as additional input to traditional lab data results in
network 4_ (4_4_100) _1.
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The predicted versus actual graph for this network is shown in Figure 3d and the
statistics shown in Table 6 indicate the addition of velocity in the lab data did not help to
improve the results.

The models for predicting dry density are better using field data than laboratory data.
This is in contrast to the results for water content shown previously. Combining lab and
field data to develop ANN models to predict dry density reduces the performance of the
models. Network 3_ (3_11_19800) _1 is for without the velocity. The predicted versus
actual graph is shown in Figure 3e. The statistics indicate that the errors are higher and
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the R2 values are lower for this network in comparison to the networks built using lab
data or field data. The predicted versus actual graph for the best network 4_ (9_9_400) _1
including seismic wave velocity into the input parameters is shown in Figure 3f. The
addition of velocity as input causes the MARE to increase but the R2 is higher, and ASE
is lower. This suggests a slight to insignificant improvement of the model after adding
velocity as an input.

In summary, models for predicting dry density are more accurate when using field
data with velocity as an input. The model based on lab data is comparable to field data-
based models without the additional of velocity. Combining the lab and field data results
in much poorer models. The addition of velocity as an input to either field data and lab
plus field data results in more accurate models but did not help to improve the accuracy of
the model build using lab data.

7. Comparison between ANN and Regression Models

Regression analysis is a conventional way to determine the relationship between inde-
pendent and dependent variables. It determines how strongly the independent variables
affect the depended variables. Multiple-linear regression analyses are performed using the
same databases used for the ANN models. The performance of the models is determined
based on RMSE, MARE, unnormalized ASE and R2. For predicting seismic wave velocity
three different data set: lab data, field data and both lab and field data are used. Input
parameters for predicting seismic wave velocity models are LL, plasticity index, water
content and dry density.

For predicting water content LL, plasticity index, dry density and velocity are used
as input parameters. Models are developed for lab, field and both lab and field data sets.
For predicting dry density same type of data set and approach are used except the input
parameters are LL, plasticity index, water content and seismic wave velocity. The results of
regression analysis are shown in Table 7.

Table 7. Comparison of ANN and regression models.

Model Source of Data
ANN Regression

RMSE ASE MARE R2 RMSE ASE MARE R2

Predicting velocity
F 394 155,616 19.3 0.37 403 162,712 18.8 0.34
L 403 162,650 13.3 0.80 465 216,368 15.4 0.72

F + L 483 233,701 18.5 0.78 772 596,434 30.8 0.43

Predicting water content
F 1.0 1.0 7.7 0.85 1.5 2.3 12 0.66
L 1.0 1.0 6.6 0.89 0.9 0.9 6.5 0.88

F + L 1.6 2.6 11.6 0.67 1.6 2.7 12 0.66

Predicting dry density
F 2.7 7.5 1.8 0.91 4.9 24.2 3.3 0.69
L 3.4 11.6 2.5 0.85 3.3 11.0 2.4 0.85

F + L 4.1 17.5 3 0.78 4.4 19.5 3.1 0.75

Note: Field (F), Lab (L).

Table 7 presents the statistics for ANN (without validation) and regression models.
To compare ANN models with regression models the unnormalized ASE is calculated
using the unnormalized actual and predicted values. Additionally, root mean squared error
(RMSE) is also calculated using.

RMSE =

√√√√∑N
i=1

(
XA

i − Xp
i

)2

N
(9)

For predicting seismic wave velocity, the regression model using laboratory data
showed the higher R2 value and lower MARE but higher. ASE and RMSE than field data
models. Combining the field and lab data increased errors and a R2 value in between the
models using individual lab and field data. For predicting water content, the regression
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models based on lab data also showed the best performance The performance of field data
and field plus lab data are very close to each other. For predicting dry density, the best
performance is also observed for the lab data model. The second-best model is field plus
lab data and lowest performance is observed for the field data.

For all the cases, ANN models resulted in better R2 values in comparison to regression
analysis. Significant improvements are observed for the case of field data for predicting
water content, the R2 increases 22.35%, using field data for predicting dry density the
R2 increase 24.18% and for using field & lab data for predicting seismic wave velocity
the R2 increase 44.87%. Errors are lower for ANN models in comparison to regression
models with some minor exceptions. ANN models showed significantly reduced errors
than regression models using with field data for predicting water content RMSE decreases
50%, ASE decreases 130%, MARE decreases 55.84%, for predicting dry density the RMSE
decreases 81.48%, ASE decreases 222.67%, 83.33%. The model build with field and lab data
for predicting velocity the RMSE decreases 59.83%, ASE decreases 155.21% and MARE
decreases 66.49%. So, it appears that ANN shows better accuracy in prediction when
compared to regression analysis.

8. Conclusions

This study used ANN and regression analysis to predict geotechnical parameters from
seismic wave velocity and other geotechnical parameters using a published data. The
geotechnical parameters used here are plasticity index, LL, dry dry density, and water
content. The aim was to evaluate the use of seismic wave velocity to predict geotechnical
parameters so that it can save time and cost by minimizing the number of geotechnical tests.

From the analysis this can be concluded that seismic wave velocity helps to predict
water content and dry density. This validates that seismic wave velocity is sensitive to
change in water content and dry density. Combination of other geophysical parameters
may increase the accuracy of the prediction model. The study shows that the performance
of the prediction models is better when lab and filed data are used separately. However,
combining lab and field data resulted in poorer models and requires further investigation.
From the comparison of ANN and regression models it is proved that ANN can predict
better with more accuracy than traditional regression analysis. This study showed the
correlation between seismic wave velocity and water content, dry density for four types
of soil using field and lab data. Other geotechnical parameters such as angle of friction,
cohesion, saturation, void ratio can be considered for developing correlations. Correlations
can also be developed for other soil types.
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