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Abstract  The structure of permeable concrete has been 
the primary reason for its use in construction. Permeable 
concrete is composed of water, cement, aggregate, and 
little- to no-fines resulting in the presence of a significant 
number of voids. This makes permeable concrete an ideal 
solution to water accumulation issues as it acts as a 
drainage system. This study employs a feedforward 
backpropagation artificial neural network model that 
combines experimental laboratory data from previous 
studies with appropriate network architectures and training 
techniques. The purpose of the analysis is to develop a 
reliable functional relationship, based on water-cement 
ratio, aggregate-cement ratio, and density parameters, with 
which to estimate the compressive strength, porosity, and 
water permeability of permeable concrete. Multiple linear 
regression correlations are also established to predict and 
correlate these inputs and outputs. The two derived 
methods are then compared and discussed. The results 
reveal that ANN is better to anticipate the permeable 
concrete properties than regression analysis. 

Keywords  Artificial Neural Network, Multiple 
Regression, Permeable Concrete, Compressive Strength, 
Porosity, Water Permeability 

1. Introduction
Permeable concrete has been used as far back as the 

1800s, when it was first used as pavement surfacing and 
load-bearing walls in Europe [1]. Porous concrete, 
pervious concrete, and no-fines concrete are all terms used 
to describe permeable concrete. This form of concrete is 
made up of a single-sized coarse aggregate that fills most 
of its volume [2]. Unlike conventional concrete, permeable 
concrete contains little to no fine aggregates and a lesser 
cement-water mixture that coats the coarse aggregates. As 
a result, significant voids are formed within its structure, 
resulting in a highly porous concrete (15 to 35%) that 
facilitates better air exchange and water infiltration [3, 4]. 
The void content of permeable concrete ranges from 15 to 
25% with a permeability of 2 to 30 mm/s, and density of 
1600 to 2000 Kg/m3 [5]. 

Due to its high water filtration rate, permeable concrete 
has been widely used in a range of applications, such as 
road surfaces, walkways, parking lots, and hydraulic 
structures [6, 7]. Permeable concrete also benefits 
environmental issues by reducing soil erosion and 
recharging groundwater [8]. However, although the 
increasing porosity of permeable concrete enhances its 
permeability, it negatively affects its mechanical 
characteristics [6, 7, 9]. 

Mixing proportions, such as water-cement ratio and 
aggregate-cement ratio, significantly affect the 
compressive strength of permeable concrete. As its cement 
paste layer is very thin, failure occurs at the binder 
interface which joins the aggregate together, resulting in a 
low compressive strength that typically ranges between 5 
and 30 MPa [5, 10, 11]. The compressive strength of 
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permeable concrete was found to increase as the 
water-cement ratio decreased. However, this decreased its 
void ratio and permeability. Conversely, the permeability 
and void ratio were found to decrease as the cement content 
increased [12]. Chen et al. [9] investigated the strength, 
fracture, and fatigue characteristics of permeable concrete 
and found that porosity had a more significant impact on 
flexural strength than compressive strength. Furthermore, 
when permeable concrete and conventional concrete were 
compared, permeable concrete had a larger effect size. At 
all stress levels, polymer-modified pervious concrete 
exhibited significantly higher fracture toughness and 
fatigue life than supplemental cementitious 
material-modified pervious concrete. Doe and Neithalath 
[13] investigated the effect of porosity on the compressive 
behavior of permeable concrete and found that the 
compressive strength reduced by approximately 50% with 
every 10% increment in porosity. 

Kevern et al. [14] investigated the effect of aggregate 
particle size on pervious concrete and found that the use of 
single-size particle aggregates significantly improved 
porosity but lowered strength. Furthermore, the addition of 
fine sand to the aggregate as well as latex to the mixing 
process was found to significantly increase the workability 
and strength of concrete. Aggregate particle size and 
gradation were also found to affect the porosity, 
permeability, and compressive strength of permeable 
concrete. Reducing the aggregate grain size while 
maintaining the same mix proportion was found to reduce 
the permeability parameters of permeable concrete. 
Moreover, the use of additives, such as a water-reducing 
agents, silica fume, and polymer emulsion, significantly 
improved the compressive strength and workability of 
permeable concrete while minimally affecting water 
permeability [10, 15, 16]. 

Multivariable linear regression analysis (MLRA), 
analysis of variance (ANOVA) is the most successful 
parametric method of analyzing experimental data as it is 
elegant, practical, and adaptable [17]. However, it is a 
considerably complex and subtle method to use as there are 
numerous ANOVA variations, each of which corresponds 
to a specific experimental situation. As such, it is possible 
to use the wrong type of ANOVA for a given experimental 
situation and draw incorrect conclusions from the data 
[18]. 

The majority of research on permeable concrete focuses 
on experimental laboratory work and performing linear 
regression analysis [7,19], with little emphasis on 
heuristics methods, particularly artificial neural network 
(ANN), to construct a functional correlation model that can 
provide better estimates when the model has several 
parameters that are correlated and affected by multiple 
variables. 

Machine learning (ML) models study links between 
inputs and outputs using statistical methods that enable 
computer systems to learn from a dataset without being 
explicitly programmed, which could be an effective 

solution to regression issues [20]. Several unique ML 
prediction methods have been used in recent decades. 
Artificial neural networks (ANNs) are one of them. 

ANNs are a type of artificial intelligence that has been 
widely employed in recent times to model human activities 
in a variety of science and engineering fields [21]. As 
traditional prediction models are built based on a 
predefined equation and a small set of data and parameters, 
if new data is slightly different from the original data, the 
model's coefficients as well as the form of its equations 
needs to be updated. ANNs, however, do not require an 
equation to follow a specific form. All it needs is adequate 
input and output data. This is because ANNs are capable of 
continually retraining new data, thereby allowing it to 
adapt to new data in a convenient manner [22]. 
Furthermore, ANNs can also characterize and recognize 
hidden non-linear patterns among large numbers of 
variables in extremely complex datasets by using a 
non-linear activation function. They can also relate and 
correlate distinct factors by storing data according to 
connection weights, thereby overcoming issues that 
normally emerge due to a lack of theoretical concepts 
[23-25]. 

In recent years, ANNs have been successfully 
implemented in a variety of civil engineering domains, 
such as predicting the compressive strength of blended 
cement-based concrete [26-29] and assessing the 
compressive strength of concrete subjected to 
high-temperature levels using destructive and 
non-destructive testing [30]. ANN models have also been 
proved to be a viable design tool for predicting the shear 
strength of steel fiber reinforced concrete (SFRC) beams 
[31] and anticipating the total bond-slip behavior of 
circular and square concrete-filled steel tubes (CFSTs) 
under push-out loading [32]. 

Saridemir et al. [21] developed ANN models to predict 
the compressive strength of metakaolin and silica 
fume-based concretes that had been cured for up to 180 
days. The study found that ANNs could accurately estimate 
the compressive strength of these concretes. Udhayakumar 
et al. [33] stated that a neural network-based strength 
model could be used to successfully predict the strength 
development of fly ash-based concrete over the curing 
period. Shirgir et al. [34] used ANN to predict the 
permeability and compressive strength of permeable 
concrete. The proposed network aimed to depict a valid 
functional correlation between input independent variables 
(fine aggregate content, porosity, coefficient of uniformity, 
water-cement ratio, and specific gravity) and porous 
concrete permeability and compressive strength as output 
variables. Overall, data fit and replication of the proposed 
model were good. As such, the model can estimate 
permeability and compressive strength without costly lab 
work. Meanwhile, Chithra et al. [35] compared the 
performance of ANN and MLRA models in estimating the 
compressive strength of nano-silica and copper slag-based 
concretes. They concluded that ANN models had provided 
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better predictions than MLRA models in terms of 
regression coefficient (R2) and mean square error (MSE).  

Al-Swaidani and Khwies [36] examined the effect of 
volcanic scoria (VS) on concrete characteristics. 
Twenty-one concrete mixes were prepared with three 
water-cement ratios (0.5, 0.6, and 0.7) and seven VS 
replacement levels (0, 10%, 15%, 20%, 25%, 30%, and 
35%). ANN and MLRA were used to predict the 
compressive strength, porosity, and water permeability of 
the concrete mixes. It was found that ANN models 
captured the effects of cement content, VS content, water 
content, superplasticizer content, and curing duration more 
accurately than MLRA analysis. Curing time, cement 
content, VS content, water content, and superplasticizer 
content significantly impact concrete properties when VS 
is used as a cement replacement, with curing time being the 
most influential. 

ANN prediction models were also observed to 
outperform regression methods in several engineering 
applications, including water level predictions [37], steel 
surface roughness and tool wear predictions [38,39], and 
dams deformation predictions under environmental loads 
[40]. 

Recent literature for the permeable concrete indicated 
that ML techniques were used to predict the permeability 
of permeable concrete [41], with authors emphasizing that 
permeability is the most crucial functional performance for 
the permeable concrete. ANN methods were also used to 
evaluate the compressive strength, porosity, and 
permeability of permeable concrete [42]. In addition, 
several correlations were constructed to investigate the 
density, porosity, and permeability of permeable concrete 
[43].  

This study employed ANN and MLRA to develop 
predictive equations for the compressive strength, porosity, 
and water permeability of permeable concrete. The two 
prediction algorithms were then compared to determine 
which algorithm could predict these parameters more 
accurately. Water-cement ratio and aggregate-cement ratio 
were also used as inputs in the developed models due to 
their significant impact on the properties of permeable 
concrete [44-46]. In addition, the density of the concrete 
was inputted into the models instead of aggregate 
characteristics, such as size and gradation, because density 
is easier to measure and more accurately reflects the effect 
aggregate characteristics have on concrete properties [47, 
48]. The analysis was conducted on 409 specimens 
collected from five different studies. 

2. Methodology and Data Collection 
In this study, Multiple linear regression analysis (MLRA) 

and artificial neural network (ANN) were used to predict 
the unconfined compressive strength (CS), porosity (Por), 
and water permeability (Per) of permeable concrete. The 
models were developed to predict these properties with 
concrete mixing proportions, specifically, water-cement 

ratio (W/C) and aggregate-cement ratio (A/C). Concrete 
density (D) was used as an input in the prediction as 
density is easier and more inexpensive to measure. 

2.1. Multiple Linear Regression Analysis (MLRA) 

MLRA is a statistical method used to generate the 
correlation between a dependent or response variable (i.e., 
a desired outcome) and multiple independent regression 
variables. This technique is widely used in material 
modelling, especially of concrete properties [49, 50]. A 
statistical and mathematical methodology as well as 
experimental data is all part of this modelling strategy. In 
research-based studies, MLRA can be utilized for a variety 
of purposes and has been used for a while as it offers the 
benefit of creating simple regression constants and 
assessing the relevance of diverse input variables [51]. The 
general MLRA equation is shown below (Equation 1), with 
the dependent variable being a linear function of multiple 
independent variables. 

𝑌 = 𝛼 + 𝛽1𝑋𝑎 + 𝛽2𝑋𝑏+. . . +𝛽𝑘𝑋𝑘 ± 𝑒     (1) 

Where Y is the dependent variable; α is the Y-intercept; 
𝛽1, 𝛽2, and 𝛽𝑘 are the slopes associated with 𝑋𝑎, 𝑋𝑏, and 
𝑋𝑘 , respectively; 𝑋𝑎 , 𝑋𝑏 , and  𝑋𝑘  are the independent 
variable values; and 𝑒 is the error. 

2.2. Artificial Neural Networks (ANNs) 

ANNs are nonlinear mapping systems that consist of 
basic processors called neurons connected by weighted 
connections. A first wave of interest in neural networks 
arose after the introduction of simpler neurons by 
McCulloch and Pitts [52]. In neural networks, each neuron 
receives inputs and produces an output that can be seen as a 
representation of the local information stored in the 
connections. Interconnections allow the output signal of a 
neuron to be sent to other neurons as input. Complex 
functions can be performed by linking several neurons as 
the capability of a single neuron is limited. The 
effectiveness and performance of trained neural networks 
have been conclusively proven to be influenced by the 
organization of the neural network, data representation, 
input-output normalization, and suitable activation 
function selection [53]. These simple processing units 
(neurons), with dense parallel interconnections, can 
produce meaningful answers even when the input to be 
processed contains errors or is incomplete. It can also 
analyze data exceptionally quickly when used in real-world 
issues [54]. 

This present study used feedforward backpropagation 
(FB) to create the ANN models. The structure of the FB 
network is layered with at least three layers: an input layer, 
an output layer, and one or more hidden layers that allow 
data to flow from input to output and vice versa. The input 
layer has the same number of neurons as the input variables 
of the problem while the output layer has the same number 
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of neurons as the desired number of values derived from 
the inputs [55]. The hidden layers, however, may have a 
significant number of hidden processing units depending 
on the complexity of the phenomenon being modelled. 
Nonetheless, all issues that can be solved by perception, 
can be solved with just one hidden layer [56]. Furthermore, 
the majority of FB-based ANNs have network designs with 
only one hidden layer [57]. 

Increasing the number of training samples provides the 
network with more knowledge on the geometry of the 
solution surface, thereby increasing the potential accuracy 
of the network. Conversely, insufficient data samples cause 
the network to be disorganized. The best data set for 
training is one that fully covers the modelling domain and 
has the fewest number of repeating samples (i.e., identical 
inputs with different outputs). Therefore, 80% of the 
dataset were chosen at random for calibration (training) 

while the remaining 20% was used to test the model. The 
training dataset was used to compute the gradient and 
update the weights and biases while the testing dataset was 
used to test the model and optimize its structure. It is 
noteworthy that ANN is a feasible tool and is widely used 
to estimate the mechanical properties of concrete [58]. 

2.3. Experimental Database 

The database analyzed in this current study was 
collected from previous experimental studies [44, 59-62]. 
Table 1 lists the number of specimens selected from each 
literature as well as the minimum and maximum ranges of 
the studied parameters and the mean and standard 
deviation values of all specimens analyzed. This included 
specimens chosen for both training and validation.
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Table 1.  Test results of specimens obtained from multiple existing studies 

Reference No. of Specimens Range 
Water-Cement Ratio 

(W/C) 
Aggregate-Cement Ratio 

(A/C) 
Density (D) 

(kg/m3) 

Compressive 
Strength 

(CS) (MPa) 

Porosity 
(Por) 
(%) 

Permeability 
(Per) 

(cm/sec) 

Ng et al. (2019) [59] 15 
Min. 0.36 4.46 1455.98 1.71 12.16 0.34 

Max. 1.24 17.56 1767.75 8.81 14.85 0.99 

Thorpe & Zhuge (2010) [60] 5 
Min. 0.28 4.00 1926.00 19.00 7.50 0.40 

Max. 0.36 4.00 2248.00 33.20 16.60 1.26 

Liu et al. (2021) [61] 9 
Min. 0.26 3.17 1957.87 14.30 15.00 1.03 

Max. 0.34 5.40 2178.85 25.60 25.00 1.61 

Joshi & Dave (2016) [44] 9 
Min. 0.30 4.00 2010.47 9.33 19.56 1.21 

Max. 0.40 4.00 2240.99 14.07 25.99 2.09 

Mehrabi et al. (2021) [62] 371 
Min. 0.34 2.25 1577.90 8.00 20.70 2.11 

Max. 0.72 8.58 1883.80 28.60 35.70 3.44 

Min. 0.26 2.25 1455.98 1.71 7.50 0.34 

Max. 1.24 17.56 2248.00 33.20 35.70 3.44 

Mean 0.49 5.30 1750.84 17.16 27.22 2.57 

Standard Deviation 0.15 2.04 120.73 4.98 4.77 0.58 
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3. Analysis and Discussion 

3.1. Multiple Linear Regression Analysis (MLRA) 
Modeling 

In the present study, 369 sets of data were used to 
develop the MLRA models to indicate the effects of W/C, 
A/C, and D on the CS, Por, and Per of permeable concrete 
(Equations 2, 3, and 4). The ANOVA as well as the 
parameter estimates of each model was found to be 
significant, with a 95% confidence level. The developed 
equations were: 

𝐶𝑆 = −15.915 ∗ 𝑊
𝐶

+ 0.397 ∗ 𝐴
𝐶

+ 0.016 ∗ 𝐷 − 4.804 (2) 

𝑃𝑜𝑟 = 24.113 ∗ 𝑊
𝐶
− 2.074 ∗ 𝐴

𝐶
− 0.006 ∗ 𝐷 + 36.572  (3) 

𝑃𝑒𝑟 = 2.635 ∗ 𝑊
𝐶
− 0.236 ∗ 𝐴

𝐶
− 0.0005 ∗ 𝐷 + 3.364  (4) 

Based on the analysis, the coefficient of determination 
(R2) of Equations 2, 3, and 4 were 0.37, 0.42, and 0.32, 
respectively. Figure 1 shows the actual dataset plotted 
against the MLRA prediction values for CS, Por, and Per. 
Clearly, the developed models were not strong enough to 
predict the CS, Por, and Per to a high degree of accuracy. 
This was reflected by the low R2 levels obtained. 

 

(a) Compressive strength 

 

(b) Porosity 
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(c) Permeability 

Figure 1.  Training results of the regression model vs. actual data 

3.2. Artificial Neural Network (ANN) Modeling 

In order to develop an ANN model to predict the CS, Por, 
and Per of permeable concrete, the 369 sets of data were 
divided into 294 training and 75 testing datasets. Training 
dataset was used to optimize the connection link weights of 
the network for different networks with a varying number 
of hidden nodes from 1 to 15. The average squared errors 
(ASE), mean absolute relative error (MARE), and 
coefficient of determination (R2) of each trained network 
were measured and listed to determine statistical accuracy. 
The testing dataset was utilized to test the trained networks. 
The trained network with the lowest ASE for testing 
dataset was defined as the network with the optimum 
number of hidden nodes. After the optimization, both 
training and testing datasets were used to train the optimum 
network to determine the connection link weights of the 
train-all model. As seen in Figure 2, the optimum number 
of hidden nodes to be used in the ANN model was five. 
This was because the network had the lowest ASEtesting 
value at this number of hidden nodes. It is worth 
mentioning that sigmoidal activation function was used in 
the network. 

Figure 3 shows a 3-5-3 (3 inputs, 5 hidden nodes, and 3 
outputs) ANN model schematic. The mathematical 
equations of the 3-5-3 ANN could be written as seen in 
Equations 5 and 6. 

𝑂𝑢𝑡𝑝𝑢𝑡𝑚 = 1

1+𝑒−∑ 𝐻𝑁𝑖∗�𝐻𝑁𝑖−𝑂𝑢𝑡𝑝𝑢𝑡𝑚 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛�+𝐵𝑖𝑎𝑠2𝑚5
𝑖=1

 (5) 

𝐻𝑁𝑖 = 1

1+𝑒
−∑ 𝐼𝑛𝑝𝑢𝑡𝑗∗�𝐼𝑛𝑝𝑢𝑡𝑗−𝐻𝑁𝑖 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛�+𝐵𝑖𝑎𝑠1𝑖

3
𝑗=1

   (6) 

After defining the optimum number of hidden nodes, 
both training and testing datasets were used to train the 
network to develop the final model and obtain the 
connection link weights. Table 2 lists the connection link 
weights of the final model. The statistical accuracy 
measurements of the final model were ASE = 0.002863, 
MARE = 8.826, and R2 = 0.8286. The R2 of the CS, Por, 
and Per were 0.75, 0.82, and 0.91, respectively. Figure 4 
shows the actual dataset vs. the ANN predicted results for 
training and testing specimens used to train the final model. 
Both the statistical accuracy measurements as well as 
Figure 4 show that the developed model was strong enough 
to predict the CS, Por, and Per with an acceptable degree of 
accuracy. 
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Figure 2.  The ASE values of networks with different numbers of hidden nodes 

 

Figure 3.  Schematic of the developed 3 inputs, 5 hidden nodes, and 3 outputs ANN model 
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(a) Compressive strength 

 

(b) Porosity 
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 (c) Permeability 

Figure 4.  Training results of the ANN model vs. actual data 

Table 2.  Connection link weights used in the 3-5-3 ANN model 

Connection link weights between inputs and hidden nodes (Inputj - HNi connection) 

Inputj HN1 HN2 HN3 HN4 HN5 

Water-Cement Ratio (W/C) -28.6010 7.5392 8.4079 -6.7092 -2.8375 

Aggregate-Cement Ratio (A/C) 38.7610 -11.0090 -12.3300 2.1700 -0.3321 

Density (D) -22.9090 -16.0010 -19.4870 7.4561 -7.4188 

Bias1 3.0208 6.7226 12.9170 -4.6617 1.0864 

Connection link weights between hidden nodes and outputs (HNi – Outputm connection) 

Outputm HN1 HN2 HN3 HN4 HN5 Bias2 

Compressive Strength (CS) -2.1851 -1.1844 4.3207 7.7503 4.2481 -4.5073 

Porosity (Por) -2.1059 1.4339 -0.8967 -3.1137 -3.2726 1.4997 

Permeability (Per) -3.4866 1.0364 -0.2567 -3.2185 -1.4674 0.8455 

 
3.3. Discussion 

In order to compare the performances of the ANN and 
MLRA models, 40 sets of data were used to validate the 
models. The validation dataset was not used to create the 
obtained models. Table 3 provides a comparison of the 
mean values (μ), standard deviations (σ), and R2 of the 
developed models based on the prediction results for the 
validation dataset. These results indicated that the ANN 
model was more appropriate to model the aforementioned 
parameters than the MLRA model. Unlike the MLRA 
model, the σ of the ANN model was closer to zero (0.097 - 
0.104) and it had a higher R2 (0.736 - 0.934). 

Figure 5 illustrates the CS, Por, and Per values predicted 
using the MLRA and ANN models versus the actual values 

obtained from the cited literature for the validation dataset. 
The CS, Por, and Per that the ANN model predicted were 
closer to the 45o line than that the MLRA model predicted. 
This indicated that the ANN model had a better 
performance in the validation of specimens. 

After model validation, the developed 3-5-3 ANN model 
is applied to the investigation of the relationships between 
mixing proportions (W/C and A/C) and PC properties (CS, 
Por, and Per). Based on the ANN model prediction results 
of permeable concrete with an average density of 1750 
kN/m3, Figures 6(a), 6(b), and 6(c) are generated to 
illustrate the relationships between the mixing proportions 
and the compressive strength, porosity, and permeability of 
permeable concrete, respectively. 

The results illustrated in Figure 6(a) show that for low 
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A/C ratios (2.5 and 5), increasing the W/C in the permeable 
concrete mix from 0.3 to 1.2 reduces the compressive 
strength by 50%. However, the optimal W/C ratios for 
mixtures with A/C ratios of 7.5 and 10 are 0.6 and 0.9, 
respectively. On the other hand, increasing the W/C while 
keeping the A/C constant will result in an increase in both 
porosity and permeability. The effect of increasing W/C on 
porosity and permeability is greater for mixtures with low 

A/C than those with high A/C. 
For mixes with low W/C, increasing the A/C while 

keeping the W/C constant will increase both porosity and 
permeability. As shown in Figures 6(b) and 6(c), changing 
the A/C has no effect on these properties of mixtures with a 
high W/C. (c). These results are in good agreement with the 
experimental findings of Lian and Zhuge [7]. 

Table 3.  Comparison of the mean values, standard deviations, and coefficient of determination of the proposed MLRA and ANN models for validation 
specimens 

Output 

MLRA results ANN results 

Mean (μ) Standard 
Deviation (σ) 

Coefficient of 
determination (R2) Mean (μ) Standard 

Deviation (σ) 
Coefficient of 

determination (R2) 

Compressive 
Strength (CS) 1.041 0.275 0.301 1.093 0.129 0.736 

Porosity (Por) 1.002 0.151 0.638 0.997 0.097 0.886 

Permeability 
(Per) 1.005 0.230 0.398 0.999 0.104 0.934 

 

(a) Compressive strength 
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(b) Porosity 

 

(c) Permeability 

Figure 5.  Predicted (a) compressive strength, (b) porosity, and (c) permeability parameters of the ANN and MLRA vs. the actual results of the 
validation specimens 
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(a) Compressive strength (CS) 

 

(b) Porosity (Por) 

 

(c) Permeability (Per) 

Figure 6.  Relations between PC mixing proportions (W/C and A/C) and PC properties (CS, Por, and Per) 
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4. Conclusions 
In this study, artificial neural network and Multiple 

linear regression analysis are used to predict compressive 
strength, porosity, and water permeability of permeable 
concrete. Both models are based on experimental data 
collected from different cited literature. Inputs, specifically 
water-to-cement ratio, aggregate-to-cement ratio, and 
density, are used in the models to obtain a reliable 
functional relationship. The results reveal that the ANN 
model is better at predicting the compressive strength, 
porosity, and water permeability of permeable concrete. 
Based on mean values, standard deviation, and coefficient 
of determination of the ANN and MLRA models, the ANN 
model is the more appropriate model to predict the 
properties of permeable concrete. The ANN model also 
provides the lowest σ and the highest R2 of all the 
permeable concrete properties investigated. Based on the 
relations drawn between the different parameters in this 
study, the theoretical outcomes of the ANN model comes 
in a good agreement with the previously published 
experimental studies. Therefore, the developed ANN 
model can be used by practitioners in the field to anticipate 
the properties of permeable concrete without expensive 
and time-consuming experimental laboratory works. On 
the other hand, the results of this study showed that using 
the mixing proportions and density are not enough to give 
high predictability of permeable concrete compressive 
strength. So that, it is recommended to include aggregate 
properties such as maximum aggregate size, uniformity 
coefficient, and coefficient of gradation into the model in 
further studies. 
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