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Weak spatial-genetic structure in a
native invasive, the southern pine beetle
(Dendroctonus frontalis), across the
eastern United States
Ryan C. Garrick1, Ísis C. Arantes1, Megan B. Stubbs1 and Nathan P. Havill2

1Department of Biology, University of Mississippi, Oxford, MS, United States of America
2Northern Research Station, USDA Forest Service, Hamden, CT, United States of America

ABSTRACT
The southern pine beetle, Dendroctonus frontalis, is a native pest of pine trees that
has recently expanded its range into the northeastern United States. Understanding
its colonization, dispersal, and connectivity will be critical for mitigating negative
economic and ecological impacts in the newly invaded areas. Characterization of
spatial-genetic structure can contribute to this; however, previous studies have reached
different conclusions about regional population genetic structure, with one study
reporting a weak east-west pattern, and the most recent reporting an absence of
structure. Here we systematically assessed several explanations for the absence of
spatial-genetic structure. To do this, we developed nine new microsatellite markers
and combined them with an existing 24-locus data matrix for the same individuals. We
then reanalyzed this full dataset alongside datasets in which certain loci were omitted
with the goal of creating more favorable signal to noise ratios. We also partitioned the
data based on the sex of D. frontalis individuals, and then employed a broad suite of
genotypic clustering and isolation-by-distance (IBD) analyses. We found that neither
inadequate information content in the molecular marker set, nor unfavorable signal-
to-noise ratio, nor insensitivity of the analytical approaches could explain the absence
of structure. Regardless of dataset composition, there was little evidence for clusters
(i.e., distinct geo-genetic groups) or clines (i.e., gradients of increasing allele frequency
differences over larger geographic distances), with one exception: significant IBD was
repeatedly detected using an individual-basedmeasure of relatedness whenever datasets
included males (but not for female-only datasets). This is strongly indicative of broad-
scale female-biased dispersal, which has not previously been reported forD. frontalis, in
part owing to logistical limitations of direct approaches (e.g., capture-mark-recapture).
Weak spatial-genetic structure suggests long-distance connectivity and that gene flow
is high, but additional research is needed to understand range expansion and outbreak
dynamics in this species using alternate approaches.

Subjects Entomology, Genetics, Zoology, Forestry, Population Biology
Keywords Coleoptera, Genotypic cluster, Isolation by distance, Microsatellites, Range expansion,
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INTRODUCTION
The southern pine beetle, Dendroctonus frontalis (Zimmermann, 1868), is an economically
important pest of pine trees across easternNorth America. Outbreaks have been particularly
devastating to hard pines (Gernandt et al., 2018), and multimillion-dollar losses in timber
and pulpwood have been recorded (Price et al., 1997; Pye et al., 2011). The species’ impacts
are now moving north, with pitch pine ecosystems in northeastern North America newly
at risk (Lesk et al., 2017; Dodds et al., 2018). Given the destruction that can be caused by
D. frontalis, and the potential for this species to continue extending its range northward
owing to a warming climate, a deeper understanding of the population biology of this
beetle, including development and application of molecular tools that can provide insights
into dispersal, connectivity, and local mating dynamics, is of immediate importance.

Owing to the pest status of Dendroctonus frontalis, its natural history and population
ecology are relatively well understood. All life stages are either fully or partly dependent
on the inner bark or phloem of the host tree (Hain et al., 2011). Initially, adult pioneer
female beetles are attracted to odors from stressed host trees (e.g., owing to crowding,
drought, disease, lightning strikes, or other storm damage), and upon arrival by flight,
they initiate an attack and release aggregation pheromones that attract males (Sullivan,
2011). Monogamous reproduction typically occurs in nuptial chambers within a newly
attacked tree, although some females arrive already gravid. Up to 30 eggs are deposited in
serpentine galleries that are excavated by the female parent, who also deposits mycangial
fungal spores in the galleries, leading to fungal growth that provides nutritional sustenance
to the early stage larval offspring. After developing to the adult stage, offspring emerge
from the outer bark of the tree, and then disperse to nearby hosts, which they attack (Hain
et al., 2011). The combination of tree odors and aggregation pheromones can stimulate a
mass attack that results in ‘‘infestation spots’’ that enlarge within a forest (Sullivan, 2011).
Such large-scale irruptions cause widespread pine tree morality among healthy trees. These
epidemic outbreak years have occurred at irregular intervals ranging from every 5–10 years
from the early 1970s to 2000s in the species’ native range in the south, where as many as
nine overlapping generations per year can be completed. Historically, climatic conditions
in the northern regions prevent more than just a few generations per year, with the species’
latitudinal range limit thought to be constrained by winter lows, where temperatures of
−16 ◦C cause almost 100% mortality (Hain et al., 2011).

There are several reasons to expect spatial-genetic structure across the range of
D. frontalis in the eastern United States. For example, its distribution spans the southern
Appalachian Mountains—a well-known biogeographic and population genetic barrier for
diverse species (Soltis et al., 2006), including arthropods (Garrick, 2011). Also, given that
D. frontalis is native to the southern United States, with a broad geographic range that
extends south to Honduras and west to Arizona, there should have been ample time for
such structure to evolve. Capture-mark-recapture and flight mill studies have estimated
mean dispersal distances of 0.5 km to 3.4 km (Turchin & Thoeny, 1993; Kinn et al., 1994).
While this is considered quite a long distance because of the species’ small size (≤ three
mm), given its expansion into the northeastern United States over the past decade or more
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via source–sink stepping-stone dynamics, genetic isolation-by-distance (IBD) might be
detectable. Indeed, earlier work by Schrey et al. (2011) identified a weak east–west division
roughly coinciding with the southern Appalachian Mountains, as well as IBD across the
eastern United States, using eight microsatellite loci.

Somewhat surprisingly, a recent investigation of spatial-genetic structure in D. frontalis
byHavill et al. (2019) found broad-scale differentiation between eastern and western North
America but did not detect distinct geo-genetic groups nor IBD within eastern North
America. The discrepancy with earlier findings is not clearly attributable to differences
in the underlying genetic marker set, or the extent of geographic sampling. Havill et al.
(2019) used 24 microsatellite loci that included the eight loci from Schrey et al. (2011), and
the maximum pairwise distances among collection localities were very similar (1,658 km
vs. 1,513 km, respectively). Also, in both studies, per-site sample sizes were quite large
(typically ≥ 25 individuals). Thus, it would seem that biologically meaningful genetic
distance estimates should have been attainable. From an applied management perspective,
it is important to reconcile these contrasting inferences about spatial-genetic structure
among D. frontalis in eastern North America because they have different ramifications
for impacts upon pine forest ecosystems in newly colonized regions. For example, if
distinct genetic clusters exist, multiple gene pools may converge and recombine at the
wave front, producing an invasive population with elevated genetic variation and adaptive
potential (e.g., Kolbe et al., 2004). Conversely, if the species is essentially panmictic across
eastern North America, then the risk of rapid adaptive evolution (e.g., leading to larger
population sizes and/or faster expansion speeds in novel environments; Szücs et al., 2017)
may be lowered, and mitigation measures previously developed for outbreaks in the native
range should be readily transferable to the northeasternUnited States. That said, forecasting
responses to novel climates and associated no-analog communities is challenging (Williams
& Jackson, 2007), likely necessitating adaptive management.

There are several plausible explanations for an unexpected absence of clusters or clines.
Some can be broadly classified as technical issues, such as inadequate information content
or unfavorable signal-to-noise ratio in the molecular marker set, and/or insensitivity of the
chosen analytical approaches or violation of key assumptions. Alternatively, species-specific
biological phenomena may mask or overwrite signatures of spatial-genetic structure. For
example, when using biparentally inherited markers, a life history trait such as sex-biased
dispersal could prevent detection of philopatry that is exhibited by only half of the
members of a population. Likewise, a demographic event such as recent rapid range
expansion could create non-equilibrium conditions that re-partition genetic variation
(perhaps ephemerally) to be consistent with broad-scale panmixia (i.e., similar to impacts
of postglacial expansion into newly available habitats; Hewitt, 1996; Hewitt, 2004, but see
Excoffier & Ray, 2008).

While the explanations for a lack of detectable spatial-genetic structure given above
are not mutually exclusive (e.g., technical limitations and biological influences may act
concurrently), and acknowledging the potential for genuine panmixia (i.e., a null hypothesis
that may be true), the goal here was to systematically explore evidence for each of them.
This was approached by augmenting, sub-setting, and reanalyzing Havill et al.’s (2019)
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dataset. Specifically, we enhanced overall information content by developing and screening
additional microsatellite loci, and elevated signal over noise either by identifying and
omitting loci most likely to be compromised by null alleles and homoplasy, or following
Russello et al. (2012), by retaining only those loci that showed the greatest magnitude of
differentiation among sampling sites. For each of these, we also created male-only and
female-only partitions of the data. To circumvent potential analytical inefficiencies and/or
restrictive assumptions, we used a suite of methods/metrics that each leverage different
types of signal in the data, thereby reducing the overall risk of false negatives.

Our exploration of the extent to which inferences about the type, and strength, of
spatial-genetic structure may be impacted by technical and/or biological factors improves
our understanding of the biology of a destructive native invasive species. This work also
contributes new molecular markers that can be used to investigate other aspects of the
biology of D. frontalis, such as questions about parentage and relatedness, family group
structure and kin clustering, as well as inbreeding dynamics.

MATERIALS & METHODS
General approaches to assess lack of structure
Inadequate information content
The power of microsatellites to detect spatial-genetic structure increases as independent
loci are added (Allendorf, Luikart & Aitken, 2013), but in some cases, at least 30 loci may
be needed to detect weak structure (e.g., Duchesne & Turgeon, 2012). To address this, nine
newmicrosatellite markers were developed here, and used to genotype the same individuals
included inHavill et al.’s (2019) 24-locus data matrix. Briefly, those samples were collected
with permission from the U.S. Department of Agriculture Forest Service by numerous
colleagues (see field permit statement) between 2013 and 2017, using Lindgren funnel
traps baited with frontalin and alpha-pinene. Specimens were identified as D. fontalis
following Armendáriz-Toledano & Zuñiga’s (2017) key, and individual sex was determined
based on the presence (female) or absence (male) of a mycangium on the pronotum. The
new and old datasets were combined, creating what we refer to as the ‘‘augmented dataset
(ADS).’’

Unfavorable signal-to-noise ratio
The utility of microsatellite data can be compromised by technical artefacts, and/or affected
(either negatively of positively) by inherent features of the loci themselves. To reduce overall
noise, we omitted loci most likely to suffer from a higher frequency of non-amplifying
null alleles, and/or allele size homoplasy based on a proxy for potential mutation rate.
Herein, this is the ‘‘low noise dataset (LNDS).’’ As an alternative strategy, we attempted to
enhance overall signal by retaining only those loci that maximized genetic differentiation,
as measured by FST (Weir & Cockerham, 1984) among sampling sites. The threshold for
inclusion in this ‘‘high signal dataset’’ was chosen based on observed natural breaks in the
distribution of FST values.
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Figure 1 Map of eastern North America showing the locations of nineD. frontalis sampling sites
(numbered yellow dots). Pie charts associated with each site represent the proportion of males (black)
and females (white) in the set of genotyped beetles. The geographic range of the species (green) is based
on the distributions of suitable pine host tree species based on Critchfield & Little Jr (1966), modified to
reflect the current northern limits of D. frontalis.

Full-size DOI: 10.7717/peerj.11947/fig-1

Sex-biased dispersal
Different degrees of site fidelity between males and females can affect detection of
population differentiation when using biparentally inherited microsatellite markers.
Impacts are most pronounced when sex-specific dispersal rates and distances are highly
asymmetric, and when sampling includes many individuals that have dispersed but not yet
reproduced (Prugnolle & De Meeûs, 2002). To evaluate this, we analyzed male-only (n =
185 individuals from 9 sites) and female-only (n = 70, 8 sites) partitions, in addition to
combined datasets (n = 255, 9 sites; Fig. 1).

Insensitivity of analysis, or violation of assumptions
Genotypic clustering methods differ in their incorporation of geo-spatial information, and
when differentiation is weak, this impacts accuracy (Chen et al., 2007). Also, sensitivity of
IBD analyses can depend on the chosen genetic distancemetric (Séré et al., 2017). To at least
partly account for this, each of the above datasets were analyzed using several clustering
and IBD approaches that represent different strengths and limitations of a broader suite
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of existing methods and metrics. That said, we recognize that clusters vs. clines are not
mutually exclusive (Rosenberg et al., 2005), and so we interpret these outcomes with
caution, and in the context of our sampling limitations.

Development and validation of new microsatellite loci
In the present study, we extended upon the assessment of a suite of microsatellite loci
identified byHavill et al. (2019). Specifically, nine additional loci were selected from among
those identified using the softwareQDD (Meglecz et al., 2014) following low coverage whole
genome sequencing of one male D. frontalis from Homochitto National Forest, Mississippi
(NCBI BioProject Accession Number PRJNA493650). To assess the suitability of these new
loci, multiplex polymerase chain reaction (PCR) amplifications were performed for sets
of three loci, each with a different 5′ fluorescent label on the forward primer and mostly
non-overlapping allele size ranges (Table 1). Reactions were conducted in 15 µL volumes
that contained 7.5 µL Type-it

R©
Microsatellite PCR Kit master mix (Qiagen, Valencia CA),

1.5 µL dH2O, 0.75 µL of each primer (10 mM), and 1.5 µL genomic DNA. The following
‘‘touchdown’’ thermal cycling conditions were used: 95 ◦C for 2 min (1 cycle), 95 ◦C for
30 s, 61 ◦C minus 2 ◦C per successive cycle for 30 s, 72 ◦C for 45 s (5 cycles), 95 ◦C for 30 s,
51 ◦C for 30 s, 72 ◦C for 45 s (30 cycles), and 60 ◦C for 30 min (1 cycle).

Amplified fragments were run on an ABI 3730 sequencer (Life Technologies) with a Liz
500 ladder (Gel Company, San Francisco CA) at Yale University’s DNA Analysis Facility
on Science Hill. Genotype scoring was performed using GENEIOUS v10.0.5 (Kearse et al.,
2012). Following Havill et al. (2019), we assessed Mendelian inheritance patterns for each
of the new loci in two local populations (i.e., 27 individuals from Sicily Island, Louisiana,
and 28 individuals from Tombigbee, Mississippi). For each locus and population, evidence
for departures from Hardy-Weinberg Equilibrium (HWE) were examined via exact
tests (Guo & Thompson, 1992), with significance assessed using 10,000 Markov Chain
permutations. Observed (HO) and expected (HE) heterozygosity were also calculated.
Independent segregation of alleles among loci was assessed using all D. frontalis samples
(255 individuals) by testing for departures from Linkage Equilibrium (LE) for all possible
pairs of 33 loci (i.e., nine reported here, plus 24 fromHavill et al., 2019), again using 10,000
Markov Chain permutations. Given that nine different sampling sites were included,
Fisher’s combined probability test was used to calculate P-values across populations for
each locus pair. These analyses were performed in GENEPOP v4.5.1 (Rousset, 2008), with
sequential Bonferroni correction (Holm, 1979) of P-values associated with LE tests.

Identification and omission of loci that may elevate stochastic noise
MICRO-CHECKER v2.2.3 (Van Oosterhout et al., 2004) was used to determine whether
there was evidence for null alleles, and if so, to estimate their frequencies. For each
locus in each local population, a null allele was inferred to exist if there was a significant
excess of homozygotes that were evenly distributed across all homozygote classes. This
was determined by Fisher’s combined probability test, with P-values determined using
1,000 permutations. Frequency of the null allele (r) was then was estimated using the
method of Chakraborty et al. (1992), which assumes that missing data are not attributable
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Table 1 Characterization of microsatellite loci forD. frontalis from each of two local populations. As in Havill et al. (2019), a pig-tail (5′-GTTT-3′) was added to the
5′ end of each reverse primer (shown below).

Locus
name

Primer sequences 5′ to 3′

(fluorescent label)
Repeat
motif

All ENA populations Sicily Island, Louisiana Tombigbee, Mississippi

Allele size
range (bp)

No. of
alleles

HO HE No. of
alleles

HO HE No. of
alleles

SPB4422 F: (FAM)-ATCGACTTCGCACGCAAAAC
R: GTTTCCGCTTTCACTCACTTTAATCAT

AC 226–246 7 0.259 0.236 5 0.179 0.165 3

SPB903595 F: (NED)-TTTATGTCTATGCCGGATGG
R: GTTTGGACATTGACAAAATCGGAC

CAG 262–278 7 0.320 0.269 2 0.250 0.433 3

SPB180144 F: (PET)-ACTAATATTTCAGGTCCGCC
R: GTTTGAGCTACTGAAAATTGCGAC

AC 172–182 6 0.185* 0.294 4 0.429 0.443 4

SPB265317 F: (FAM)-AAACATGTCGGGGAATCTAC
R: GTTTGTTCATTAGCAGCAGGGATA

AT 376–395 10 0.593 0.707 5 0.593 0.713 5

SPB979494 F: (NED)-TGACATATGCGACATAAGGG
R: GTTTGAAGTGTTTATTGTGCTCGG

ATC 192–225 8 0.630 0.502 4 0.679 0.561 5

SPB4155 F: (PET)-GATGCAGTGAAAGTGGCGTG
R: GTTTGCCGATCTTTACCAACTCAAGC

ATG 95–116 8 0.481 0.519 4 0.593 0.562 4

SPB3702 F: (FAM)-AACGCTTCACATTTGCACCG
R: GTTTCATCGGATAATCCTGCGGGA

CAC 93–117 10 0.185 0.173 4 0.321 0.284 4

SPB1278 F: (VIC)-TCAGATCTGAGACGACAAGAAAGA
R: GTTTCCGGTCTGCAAATACGAGGT

AT 104–120 7 0.259 0.233 4 0.357* 0.390 5

SPB1534 F: (PET)-CGGGTGAAAGAGTTAGGGGA
R: GTTTGCCCTTACGATCACAGGTACT

(CCA)
GAA
(CCA)

109–133 10 0.615* 0.641 6 0.643 0.645 6

Notes.
Abbreviations: ENA, Eastern North America; (HO), observed heterozygosity; HE, expected heterozygosity; F, forward primers; R, reverse primers.
*HO values with an asterisk denote loci that showed significant departure from Hardy-Weinberg Equilibrium at the 0.05-level.
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to homozygous nulls, and that populations are panmictic. To identify inbred populations
for removal, we relied on the tendency for inbreeding to generate homozygote excess at
many loci (cf. locus-specific impacts of null alleles). Here we defined outbred populations
as those in which fewer than seven loci (i.e., <20%) showed significantly (P < 0.05) positive
FIS values. For each locus and population, the null hypothesis of panmixia was compared
to an alternative hypothesis of heterozygote deficiency using a U-test (Rousset & Raymond,
1995), performed in GENEPOP with 10,000 Markov Chain permutations. After omitting
outbred populations, we rank-ordered the loci based on the level of noise contributed by
putative null alleles. To ensure that both prevalence and severity of the null allele at a locus
were considered, the r value from each population with a significant excess of homozygotes
was summed (rcumulative).

The number of contiguous repeat units may be a useful proxy formicrosatellitemutation
rate, given that DNA structure affects the opportunity for slipped-strand mispairing
(Bhargava & Fuentes 2010, and references therein). Here we used the reported positive
association between repeat number and mutation rate to identify which loci might be
predisposed to having alleles identical in state but not by descent. Briefly, based on one
sequence per locus generated during marker development (Schrey et al., 2007; Havill et
al., 2019; this study), we first estimated the PCR amplicon length for each locus given the
locations of forward and reverse primer annealing sites. Next, the observed number of
contiguous repeats was scaled to reflect what should be present within the median-sized
allele (i.e., a reference allele identified from the eastern United States gene pool as whole).
Rank-ordering of loci based on the potential level of stochastic noise contributed by
homoplasy followed the inferred number of repeats of each reference allele.

The omission of loci that may elevate overall noise was based on joint consideration
of null alleles and homoplasy. Along each of these two axes, we iteratively omitted the
lowest ranked locus one at a time, until a two-sample t -test (one-tailed) determined
that a significant (P < 0.05) reduction in the mean value of the original metric used for
rank-ordering (compared to that of the 33-locus dataset) had been achieved. To assess
whether the low noise dataset was comprised of a subset of loci with inadvertently low
information content, we calculated Paetkau et al.’s (1995) Probability of Identity (PI; the
chance that two individuals randomly drawn from a panmictic population have the same
genotype) using GENALEX v6.5 (Peakall & Smouse, 2006; Peakall & Smouse, 2012). We
then compared mean PI between the reduced vs. full dataset, using a t -test as above.

Identification and retention of loci that may enhance overall signal
For species in which population divergence is shallow, ‘‘outlier’’ microsatellite loci (e.g.,
those displaying unusually strong differentiation, potentially due to effects of divergent
selection on linked genomic regions) may be particularly useful for identification of
population structure (Russello et al., 2012). This is because recent divergence (e.g., over
post-glacial timescales or shorter) may be slow to register in most loci, particularly when
it is coupled with large effective populations sizes. To explore the potential benefit of
focusing on loci with the strongest signatures of spatial-genetic structure in D. frontalis,
we calculated global FST (Weir & Cockerham, 1984) using the augmented dataset, for each
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of the 33 loci separately, and then plotted the distribution of these values in rank order.
Natural breaks were identified qualitatively, based on the magnitude of change (i.e., 1FST
= FST locus n −FST locus n+1, where n is the rank order position). These breaks defined the
thresholds for retention vs. exclusion of loci from the high signal dataset.

Genotypic clustering analyses
To infer the number of natural genetic groups (K ) and their members, we analyzed
microsatellite datasets using three approaches: STRUCTURE v2.3.4 (Pritchard, Stephens &
Donnelly, 2000), BAPS v6.0 (Corander, Waldmann & Sillanpää, 2003), and Discriminant
Analysis of Principal Components (DAPC; Jombart, Devillard & Balloux, 2010). The first
two are Bayesian approaches and assume HWE and LE within ‘‘true’’ clusters. However,
STRUCTURE is strictly individual-based and does not make use of geo-referenced samples
(although priors on population of origin can be applied), but it has been shown to tolerate
clinal variation relatively well (Chen et al., 2007). BAPS can be run using either individuals
or groups of individuals as the basic units of analysis, and it explicitly considers spatial
coordinates, which can help when differentiation is weak. DAPC can also be used to
identify natural groups of individuals a posteriori, but this method does not attribute the
underlying cause of such groups to population genetic processes, nor does it incorporate
spatial information. In all clustering analyses, we assessed K values from one up to and
including the total number of sampling sites (i.e.,maximum K = 8 or 9, depending on the
dataset under consideration).
STRUCTURE. All runs employed the correlated allele frequency and admixture ancestry
models. Estimated -ln likelihood scores were obtained for each value ofK, with 20 replicates
each. A burn-in of 50,000Markov chainMonte Carlo (MCMC) generations and run length
of 200,000 MCMC generations were used, with other parameters set as default. The best-fit
value of K was chosen using Evanno, Regnaut & Goudet’s (2005)1K method implemented
in STRUCTURE HARVESTER v0.6.94 (Earl & vonHoldt, 2012). However, the1K method
is unable to assess support forK = 1, and it may be subject to bias with respect to identifying
only the top (e.g., K = 2) level of hierarchical structure (see Janes et al., 2017). Accordingly,
we also used a visual assessment of Ln Pr(X|K ) plots, from which the smallest K that
captured the major structure in the data was accepted, following Pritchard & Wen (2003).
BAPS. To enable spatial clustering of individuals, we created non-redundant GPS
coordinates via the addition of fine-scale jitter (i.e., a random number at the 4th and
5th decimal places, equivalent to ≤ 11.1 m at the equator). For spatial clustering of groups
of individuals, each of the 8 or 9 sampling locations (depending on the dataset) defined an
a priori group, and the original spatial coordinates were used. Accordingly, the complexity
of Voronoi tessellations differed considerably between the two approaches. Spatial data
were analyzed with associated microsatellite genotype data, with 10 replicates per run. The
best-fit K was identified via log marginal likelihood scores (Cheng et al., 2013).
DAPC. Individual-based multilocus microsatellite genotypes were first transformed via
principal component (PC) analysis to identify uncorrelated variables to be used for
subsequent discriminant analysis. The best-fit number of clusters was determined via
k-means clustering, with the lowest Bayesian Information Criterion (BIC) score used
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to choose K. Following Miller, Cullingham & Peery (2020), an initial preliminary DAPC
was conducted to determine the optimal number of PCs to retain, followed by a second
final DAPC using the chosen number of PCs. In the initial assessment, the optimal
number of PCs was determined using the cross-validation procedure, considering 20 to
300 PCs (in increments of 20) with 30 replicates at each level of PC retention, and 90%
of the data comprising the training set. Pre-defined groups based on sampling location
information were used only for the purpose of quantifying the number of de novo clusters
that were inferred to be present at a given sampling location. DAPC was implemented
using ADEGENET v2.1.2 (Jombart, 2008) in R v3.6.1 (R Core Team, 2020).

Isolation-by-distance analyses
To assess evidence for subtle gradients in genetic variation across the landscape, we
conducted IBD analyses of our microsatellite datasets using either sampling sites or
individuals as the basic units. The rationale for these two approaches was that population
allele frequencies typically can change rather gradually over time and therefore provide
insights into historical processes, whereas diploid genotypes are much more labile owing
to reshuffling of alleles every generation in sexually reproducing species, and therefore
have the potential to closely track recent or on-going processes (Sunnucks, 2000; Garrick,
Caccone & Sunnucks, 2010; Epps & Keyghobadi, 2015).
Population-based metrics. Three measures of genetic distance were used: Cavalli-Sforza &
Edwards’s (1967) chord distance (Dc), which has desirable properties for detecting IBD
in the presence of null alleles (Séré et al., 2017); Nei’s (1972) standard genetic distance
(Ds), which increases linearly with geographic distance if mutation follows an infinite
allele model and occurs at a constant rate; andWeir & Cockerham’s (1984) estimate of FST
linearized as FST/(1- FST) following Slatkin (1995), to account for the high mutation rate
of microsatellite loci.
Individual-based metrics. Three metrics for genetic similarity were used: the kinship
coefficient (Dkf,Cavalli-Sforza & Bodmer, 1971); proportion of shared alleles (Dps, Bowcock
et al., 1994), or relatedness (r̂, Lynch & Ritland, 1999). Briefly, for a given locus, Dkf is the
probability that a randomly chosen allele from one individual is identical-by-descent to
that of second individual (summed over all loci and alleles). Conversely, when comparing
two mutlilocus genotypes, Dps is calculated as number of shared alleles summed over loci
/ (2× number of loci compared). Unlike the other two metrics, Lynch & Ritland’s (1999)
methods-of-moments estimator of relatedness makes use of information on population
allele frequencies (e.g., a shared rare allele is considered more likely to be identical-by-
descent than a shared common allele). Given that r̂ is asymmetrical, following Ritland
(2000), we used the average of both directions.

MICROSATELLITE ANALYZER v4.05 (Dieringer & Schlötterer, 2003) was used to
calculateDc, Dkf, and Dps, whereas GENALEX was used to calculateDs, FST and r̂, as well as
linear pairwise geographic distance matrices based on latitude and longitude coordinates,
using a modified Haversine Formula. For all datasets and distance metrics, the significance
of IBD was assessed via Mantel (1967) tests with 999 permutations.
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RESULTS
Development and validation of new microsatellite loci
For the nine new loci developed here, amplification success across all eastern United States
D. frontalis samples was reasonably high (mean of 4.2% missing data per locus). Three loci
showed significant departures from HWE in the direction of homozygote excess. However,
in all cases this was limited to just one of the two local collection sites (Table 1), suggesting
that there were no intrinsic issues with allelic inheritance (i.e., the new microsatellite loci
appear to be autosomal, diploid, and single copy). Levels of with-population polymorphism
were modest (mean of ∼4.3 alleles per new locus for the two exemplar local populations).
Across all eastern United States D. frontalis samples, there was a mean of 8.1 alleles per new
locus (Table 1). Based on our assessment of LE for all 33 loci (528 locus pairs), 22 pairs
were significant at the P <0.05-level, but none remained so after sequential Bonferroni
correction to account for multiple tests. Accordingly, there was no strong evidence for
non-independence among loci in the augmented dataset. Preliminary analyses using all
loci indicated weak genetic structure among sampling sites (FST= 0.009, P = 0.001).

Identification and omission of loci that may elevate overall noise
Null alleles. Two local populations had seven or more loci with significantly positive FIS
values: Homochitto, MS, and Woolford, MD. These were considered inbred and therefore
omitted from consideration when assessing null alleles. MICRO-CHECKER identified 13
loci that may have a null allele (Table 2). However, prevalence was low (i.e., restricted to
a single population) for 10 of these. Of the remaining loci, two had null alleles in four
populations, and one had nulls in two populations. Across the 20 cases of putative null
alleles (out of 33 loci ×7 retained populations = 231 potential cases), mean estimated r
was 0.245 (range: 0.139–0.431). Rank-ordering followed by iterative removal revealed that
omission of the five worst loci was required to significantly reduce themean rcumulative value
(t = 1.720, d.f. = 40, P = 0.047). The removal of these loci did not cause a concomitant
reduction in mean information content, as measured by PI (t =−0.435, d.f. = 57,
P = 0.332).
Homoplasy. For 31 loci, the available allele sequence trimmed at the 5′ ends of both
primers yielded a predicted PCR product that was within the empirically determined size
range for eastern United States D. frontalis. For two loci with unexpectedly short or long
amplicons, an alternative priming site (i.e., a region of high sequence similarity located
up or downstream of the original target site) was readily identifiable (Table 3). Three loci
constrained two distinct microsatellite regions. These were either composed of different
(i.e., compound) repeat motifs located immediately adjacent to one other (locus Dfr-16;
Schrey et al., 2008), or the same (i.e., impure) repeat motif interrupted by a 2-bp (locus
Dfr-24; Schrey et al., 2008) or 3-bp (locus SPB1534; this study) insertion. In all three cases,
only the longest repeat region was used as a proxy for potential for homoplasy. Following
re-scaling (seeMethods), across 33 loci the average value of the median contiguous number
of repeats was 7.6 (range: 4.945–14.901; Table 3). The five most concerning loci needed
to be removed in order to significantly reduce the number of repeat units (t = 1.819, d.f.
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Table 2 MICRO-CHECKER assessment of null alleles and estimates of their frequency (r). Twenty cases of putative null alleles were detected
(marked by an asterisk) across 33 loci and seven outbred populations (abbreviations follow Fig. 1). For each locus, r cumulative is the sum of r values
from each population with a significant excess of homozygotes, and this was used to rank-order loci from worst (1st) to best (equal 14th).

Locus name Estimated null allele frequency (r) per population r cumulative Locus rank

AL FL GA LA MS-Hol MS-Tom PA

SPB2727 0.000 0.000 0.000 0.116 0.273 0.000 0.000 0.000 14
Dfr-09 0.000 0.043 0.000 0.021 0.000 0.071 0.000 0.000 14
Dfr-16 0.001 0.000 0.096 0.000 0.008 0.000 0.000 0.000 14
SPB3731 0.000 0.000 0.140 0.008 0.000 0.104 0.000 0.000 14
Dfr-10 0.055 0.000 0.000 0.029 0.000 0.011 0.000 0.000 14
SPB2313 0.080 0.046 0.033 0.000 0.156 0.005 0.002 0.000 14
SPB0138 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14
SPB1983 0.055 0.000 0.015 0.000 0.000 0.000 0.000 0.000 14
Dfr-24 0.179* 0.043 0.000 0.016 0.139* 0.000 0.011 0.318 5
Dfr-14 0.093 0.000 0.000 0.000 0.000 0.082 0.000 0.000 14
Dfr-17 0.010 0.013 0.082 0.000 0.000 0.050 0.000 0.000 14
SPB2613 0.033 0.327* 0.021 0.000 0.000 0.012 0.000 0.327 4
SPB1230 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14
Dfr-18 0.032 0.000 0.024 0.000 0.021 0.000 0.000 0.000 14
SPB1875 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 14
SPB3013 0.042 0.000 0.000 0.000 0.000 0.000 0.136 0.000 14
SPB1272 0.017 0.000 0.000 0.000 0.000 0.000 0.043 0.000 14
SPB1284 0.000 0.041 0.000 0.000 0.248* 0.052 0.013 0.248 7
SPB1242 0.044 0.000 0.000 0.044 0.000 0.142 0.000 0.000 14
SPB2480 0.431* 0.134 0.000 0.208 0.324* 0.246* 0.404* 1.405 1
Dfr-06 0.048 0.044 0.046 0.054 0.069 0.099 0.054 0.000 14
SPB1507 0.162* 0.089 0.235* 0.085 0.197* 0.094 0.249* 0.843 2
SPB2187 0.014 0.000 0.071 0.058 0.000 0.148* 0.064 0.148 12
SPB1270 0.161* 0.106 0.000 0.000 0.156 0.000 0.000 0.161 10
SPB4422 0.000 0.000 0.000 0.000 0.000 0.000 0.239* 0.239 8
SPB903595 0.000 0.000 0.106 0.000 0.053 0.268* 0.000 0.268 6
SPB180144 0.024 0.025 0.000 0.228* 0.083 0.016 0.012 0.228 9
SPB265317 0.054 0.094 0.149* 0.088 0.000 0.092 0.083 0.149 11
SPB979494 0.000 0.000 0.078 0.000 0.000 0.000 0.068 0.000 14
SPB4155 0.053 0.000 0.426* 0.037 0.076 0.000 0.000 0.426 3
SPB3702 0.006 0.006 0.000 0.000 0.065 0.000 0.223 0.000 14
SPB1278 0.000 0.000 0.000 0.000 0.073 0.044 0.000 0.000 14
SPB1534 0.145* 0.000 0.000 0.021 0.026 0.002 0.069 0.145 13

= 50, P = 0.037), but their omission did not also reduce mean PI (t =−0.780, d.f. = 58,
P = 0.219).

Of the two sets of five omitted loci, one (Dfr-24) was common to both approaches
used to reduce noise. Accordingly, the largest subset of loci with reduced null allele and
homoplasy issues was made up of 24 loci. Reassessment of the impacts of our strategic
removal of nine loci to create the low noise dataset showed that the reduction in mean
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Table 3 Characterization of a proxy for microsatellite mutation per locus. From each directly sequenced allele, the number of contiguous repeat
units was recorded from the longest uninterrupted microsatellite region (imperfect or compound repeats were seen in three loci, marked with †),
and allele length was determined by trimming sequences at the ends of primer annealing sites (alternative priming sites were inferred for two loci,
marked with #). For each locus, all allele sizes observed across Eastern North American (ENA) populations (n= 255 individuals) were used to calcu-
late the median allele size, and the associated number repeat units was extrapolated and then used to rank-order loci from most (1st) to least (33rd)
potential for homoplasy.

Locus
name

One directly sequenced allele ENA population screening Locus rank

NCBI accession No. of contiguous
repeat units

Allele
length
(bp)

Median
allele length
(bp)

Median no. of
contiguous
repeat units

SPB2727 PRJNA493650 7 144 141.5 6.88 19
Dfr-09 EF126297 10 109 104.5 9.59 5
Dfr-16 EF126300 11 † 191 183 10.54 3
SPB3731 PRJNA493650 6 145 142 5.88 31
Dfr-10 EF126298 13 158 149.5 12.30 2
SPB2313 PRJNA493650 9 296 292.5 8.89 9
SPB0138 PRJNA493650 6 115 # 116 6.05 27
SPB1983 PRJNA493650 7 143 142 6.95 18
Dfr-24 EF126305 15 † 151 150 14.90 1
Dfr-14 EF126299 9 188 190 9.10 8
Dfr-17 EF126301 9 122 126 9.30 6
SPB2613 PRJNA493650 7 283 291.5 7.21 14
SPB1230 PRJNA493650 7 219 227.5 7.27 13
Dfr-18 EF126302 7 130 136.5 7.35 12
SPB1875 PRJNA493650 6 110 118 6.44 22
SPB3013 PRJNA493650 6 154 156.5 6.10 25
SPB1272 PRJNA493650 9 263 259.5 8.88 10
SPB1284 PRJNA493650 8 130 126 7.75 11
SPB1242 PRJNA493650 6 146 144 5.92 30
SPB2480 PRJNA493650 6 162 164.5 6.09 26
Dfr-06 EF126295 10 139 139 10.00 4
SPB1507 PRJNA493650 7 146 149 7.14 15
SPB2187 PRJNA493650 6 196 194 5.94 29
SPB1270 PRJNA493650 9 243 246 9.11 7
SPB4422 PRJNA493650 7 244 # 230 6.60 21
SPB903595 PRJNA493650 5 275 272 4.95 33
SPB180144 PRJNA493650 7 174 177 7.12 16
SPB265317 PRJNA493650 6 386 389 6.05 28
SPB979494 PRJNA493650 7 215 205.5 6.69 20
SPB4155 PRJNA493650 7 107 108 7.07 17
SPB3702 PRJNA493650 6 109 103.5 5.70 32
SPB1278 PRJNA493650 6 108 110 6.11 24
SPB1534 PRJNA493650 6 † 116 120.5 6.23 23
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Figure 2 Plot showing the magnitude of reduction in F ST between adjacent pairs of rank-ordered loci,
used to visually identify inflection points (two open circles) to guide choice of thresholds for the num-
ber loci included in the high sensitivity datasets.

Full-size DOI: 10.7717/peerj.11947/fig-2

rcumulative remained close to significant (t = 1.520, d.f. = 42, P = 0.068), and so did
reduction in mean number of repeats (t = 1.499, d.f. = 53, P = 0.070). As before, there
was no inadvertent change in mean PI (t =−1.180, d.f. = 51, P = 0.122). Although our
low noise dataset happened to contain the same number of loci originally analyzed by
Havill et al. (2019), their compositions differed by eight loci.

Identification and retention of loci that may enhance overall signal
Based on a visual examination of the 1FST plot, several inflection points marking
pronounced decreases in FST among adjacent rank-ordered loci were apparent (Fig. 2).
Aside from steep declines that would have set a threshold for retention of too few loci for
meaningful population genetic analyses (i.e., ≤ 5 loci), there were two other inflection
points: one at the transition from the 10th to 11th ranked locus, and another at the
transition from 19th to 20th. Accordingly, we created two alternative versions of the high
sensitivity dataset (HSDS). One contained 10 loci with the highest FST values, and the
other was an expansion of this, where we retained the 19 highest ranked loci (Table 4).
The 10-locus and 19-locus high signal datasets contained 3 and 6 loci, respectively, that
were not shared with the 24-locus low noise dataset. Compared to Havill et al.’s (2019)
original dataset, the 10-locus and 19-locus high signal datasets contained 2 and 5 novel
loci, respectively. Ultimately, all datasets analyzed in the present paper differed from each
other and from the previous study, thereby enabling meaningful comparisons.
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Table 4 Global FST values for each microsatellite locus, calculated across nine sampling sites (n = 255
individuals), and their rank-ordering from highest (1st) to lowest (33rd).

Locus name Global FST Locus rank

SPB2727 0.025 11
Dfr-09 0.027 9
Dfr-16 0.023 15
SPB3731 0.035 4
Dfr-10 0.022 18
SPB2313 0.014 31
SPB0138 0.006 33
SPB1983 0.018 25
Dfr-24 0.024 12
Dfr-14 0.019 22
Dfr-17 0.028 8
SPB2613 0.018 24
SPB1230 0.012 32
Dfr-18 0.017 27
SPB1875 0.022 19
SPB3013 0.028 7
SPB1272 0.027 10
SPB1284 0.028 6
SPB1242 0.019 23
SPB2480 0.064 1
Dfr-06 0.015 29
SPB1507 0.017 26
SPB2187 0.036 3
SPB1270 0.023 16
SPB4422 0.023 14
SPB903595 0.031 5
SPB180144 0.017 28
SPB265317 0.023 17
SPB979494 0.023 13
SPB4155 0.039 2
SPB3702 0.021 20
SPB1278 0.015 30
SPB1534 0.019 21

Genotypic clustering analyses
STRUCTURE. Across all 12 datasets (i.e., ADS, LNDS, and HSDS with 10 or 19 loci; males
and females combined, or separated) there were five instances where the two alternative
approaches for identifying the best-fit value of K were in conflict. In these cases, Pritchard
& Wen’s (2003) qualitative method inferred K = 1 whereas Evanno, Regnaut & Goudet’s
(2005) 1K method inferred K = 2, 3, or 4, depending in the dataset (Table 5; but note that
1K is not capable of assessing K = 1). More generally, irrespective of whether there was
agreement or conflict between methods, wherever K>1 was inferred, the optimal clustering
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solution almost always contained ‘‘ghost clusters’’ (sensu Guillot et al., 2005); i.e., those for
which no individuals were strongly assigned with a membership coefficient of Q>0.50). In
some cases, all clusters were nonsensical. For instance, based on 1K, the best-fit value was
K = 3 for LNDS males plus females, and LNDS females-only, yet not a single individual
was strongly assigned; Table 5). Additionally, when K>1 there was also an absence of
geographic localization of clusters. Ultimately, as with Havill et al.’s (2019) STRUCTURE
analysis of a 24-locusD. frontalis dataset, our reanalysis using augmented and/or sub-setted
datasets did not provide any indications of discrete population structure.
BAPS. The optimal partition of geo-referenced molecular data was K = 1 for all datasets,
using both individual- and population-based clustering approaches (Table 5). Given this
outcome, we performed post-hoc HWE exact tests in GENEPOP, treating all individuals
as members of a single population. Each of the 12 datasets showed highly significant
departures from HWE (all P < 0.0005), indicating that eastern United States D. frontalis
cannot simply be characterized as panmictic.
DAPC. Across all datasets, there were only two instances where K = 1 was inferred (Table
5; but note that DAPC was not intended for this purpose; see Miller, Cullingham & Peery,
2020).However, whereverK ≥2, therewere strong indications that the groupswere artefacts
rather true reflections of population structure. For example, there were no cases where a
given local sampling site contained members of only a single inferred cluster. Indeed, in
seven of the datasets with best-fit K ≥2, all sampling sites contained representatives of all
inferred clusters (Table 5); such levels of coexistence among putatively distinct gene pools
has no plausible biological explanation.

Isolation-by-distance analyses
Population-based metrics. Regardless of which microsatellite dataset was analyzed, or which
genetic distance metric was used, no significant IBD was detected (all P ≥0.130; Table 6).
Individual-based metrics. All instances of significant IBD were limited to Lynch & Ritland’s
(1999) relatedness (note that such relationships are negative). Furthermore, this significant
IBD was almost always associated with datasets that included males, with the one exception
being the female-only 19-locus high sensitivity dataset (Table 6). Despite relatively strong
significance (all P = 0.001, except for the aforementioned female-only dataset, which
had P = 0.031; Table 6), the nature of relationships between relatedness and geographic
distance were consistently weak [augmented dataset with males plus females: slope =
−2×10−6, correlation coefficient (r) = 0.036; augmented dataset with males only: slope
= −2×10−6, r = 0.037; low noise dataset with males plus females: slope = −2×10−6, r =
0.020; low noise dataset with males only: slope=−2×10−6, r = 0.030; and even weaker for
the 19-locus high signal dataset with females only: slope = −3×10−6, r = 0.001]. Overall,
these outcomes are consistent with female-biased dispersal; however, males do not appear
to be strongly philopatric.

DISCUSSION
Spatially explicit population genetic analyses of microsatellite data from invasive insect
species can identify the geographic origin(s) and number of independent introductions
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Table 5 Outcomes of genotypic clustering using STRUCTURE (i.e., non-spatial, individual-based), BAPS (i.e., spatial, group- or individual-based) and DAPC (i.e.,
non-spatial, individual-based). For STRUCTURE analyses, the number of clusters (K ) was inferred using both a quantitative (Evanno, Regnaut & Goudet, 2005) and a
qualitative (Pritchard & Wen, 2003) approach. The maximum membership coefficient (Q) was used to identify putative ‘‘ghost clusters’’ in cases where the best-fit K>1.
Means were calculated from either 20 (STRUCTURE) or 10 (BAPS) replicates. For DAPC analyses, abbreviations are Bayesian Information Criterion (BIC) and Principal
Components (PCs), and Not Applicable (N/A). Dataset abbreviations are as follows: augmented dataset (ADS; 33 loci), low noise dataset (LNDS; 24 loci), high sensitivity
datasets (HSDS; either 10 or 19 loci), males and females (m+f), males only (m), and females only (f).

Microsatellite
dataset

STRUCTURE BAPS DAPC

Evanno, Regnaut & Goudet (2005) Pritchard &Wen (2003) MaximumQ
in each inferred
cluster

Groups Individuals Best-fit
K

BIC No. of PCs
retained

No. of
clusters
per site

Best-fit
K

Delta
K

Best-fit
K

Mean
LnP(K )

Best-fit
K

Mean
log(ml)

Best-fit
K

Mean
log(ml)

ADS m+f 3 10.28 3 −19161.63 0.31, 0.33, 0.94 1 −19891.68 1 −19891.68 2 577.66 80 2

ADS m 2 48.32 2 −13949.30 0.39, 0.92 1 −14533.15 1 −14533.15 2 419.22 120 2

ADS f 2 20.73 2 −5204.64 0.43, 0.87 1 −5575.48 1 −5575.48 1 162.61 N/A N/A

LNDS m+f 3 5.19 1 −11792.72 0.45, 0.46, 0.47 1 −12153.79 1 −12153.79 3 451.90 80 3

LNDS m 2 87.50 2 −8534.31 0.37, 0.93 1 −8861.98 1 −8861.98 3 329.35 40 3

LNDS f 3 6.34 1 −3201.78 0.38, 0.38, 0.43 1 −3408.28 1 −3408.28 1 128.88 N/A N/A

HSDS10 m+f 3 4.98 3 −5345.57 0.57, 0.67, 0.98 1 −5549.75 1 −5549.75 9 242.41 45 8–9

HSDS10 m 5 2.59 5 −3943.26 0.46, 0.47,
0.55, 0.73,
0.86

1 −4086.40 1 −4086.40 7 183.72 35 5–7

HSDS10 f 2 0.10 1 −1444.36 0.71, 0.80 1 −1529.06 1 −1529.06 4 71.63 20 3–4

HSDS19 m+f 3 20.73 3 −10933.57 0.35, 0.35, 0.94 1 −11338.45 1 −11338.45 4 432.41 80 4

HSDS19 m 4 2.28 1 −7939.17 0.37, 0.39, 0.45, 0.89 1 −8242.20 1 −8242.20 3 314.69 60 3

HSDS19 f 2 2.01 1 −3035.54 0.61, 0.74 1 −3234.04 1 −3234.04 2 125.00 25 2
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Table 6 Outcomes of Mantel tests of the significance of correlation between geographic and genetic
distance.

Microsatellite dataset Isolation-by-distance analysis P-values

Population-based metrics Individual-based metrics

Dc Ds FST† Dkf Dps r

ADS m+f 0.304 0.406 0.500 0.176 0.105 0.001*

ADS m 0.488 0.343 0.420 0.133 0.128 0.001*

ADS f 0.130 0.403 0.150 0.127 0.053 0.282
LNDS m+f 0.259 0.271 0.356 0.414 0.342 0.001*

LNDS m 0.379 0.280 0.253 0.343 0.465 0.001*

LNDS f 0.152 0.455 0.264 0.294 0.191 0.443
HSDS10 m+f 0381 0.380 0.357 0.330 0.243 0.001*

HSDS10 m 0.177 0.360 0.393 0.222 0.240 0.013*

HSDS10 f 0.419 0.451 0.276 0.457 0.287 0.406
HSDS19 m+f 0.464 0.390 0.451 0.332 0.505 0.001*

HSDS19 m 0.452 0.475 0.397 0.226 0.308 0.001*

HSDS19 f 0.287 0.481 0.174 0.283 0.154 0.031*

Notes.
Abbreviations : ADS; 33 loci, augmented dataset; LNDS; 24 loci, low noise dataset; HSDS; either 10 or 19 loci, high sensitiv-
ity datasets; m+f, males and females; m, males only; f, and females only.
*Significant P-values are marked with an asterisk.
†linearized.

into newly invaded areas, and provide insights into the relative importance of natural
vs. human-mediated dispersal (e.g., fire ants, Ascunce et al., 2011; termites, Perdereau et
al., 2013; hemlock woolly adelgid, Havill et al., 2016; Havill et al. 2021). These inferences
have implications for management, such as enabling targeted control (e.g., of an invasive
‘‘bridgehead’’ population that is the primary source of subsequent spread (Lombaert et
al., 2010) and which may have evolved higher invasiveness (Whitney & Gabler, 2008), or
enhanced surveillance of ‘‘stowaways’’ where transportation networks are involved in
accelerating spread (e.g., via inadvertent movement of contaminated live plants, wood
packing materials, or firewood;Meurisse et al., 2019). Notably, these insights often depend
on the existence of discrete populations, yet a long-standing challenge in population genetics
is the ‘‘clusters vs. clines’’ problem. This refers to the tendency for clustering methods to fail
(or mislead) when structure manifests as continuous gradients of genetic differentiation,
and conversely, true signatures of IBD can be distorted if sampling traverses abrupt genetic
breaks or is discontinuous and uneven (e.g., Frantz et al., 2009; Bradburd, Coop & Ralph,
2018). While clusters and clines are not mutually exclusive (see Rosenberg et al., 2005), an
understanding of the predominant form of spatial-genetic structure informs the choice
of appropriate analyses for reconstructing population history. In the case of D. frontalis,
gaining insights into the species’ recent and rapid range expansion to the northeastern
United States is of considerable interest owing to the economic and ecological damage this
may cause. Accordingly, here we systematically explored alternative explanations for the
apparent absence of clusters or clines reported by Havill et al. (2019).
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Clusters
Regardless of whether we increased the number of microsatellite loci (augmented dataset)
or analyzed subsets of loci with more favorable signal-to-noise ratio (low noise and high
signal datasets), no spatially abrupt genetic subdivisions were detected. Using simulations,
Miller, Cullingham & Peery (2020) showed that in the presence of even quite low levels
of on-going gene flow (i.e., migration rate, m ≥ 0.005), the best-fit number of clusters
inferred using STRUCTURE may be systematically underestimated, leading to erroneous
inferences of K = 1. Following the recommendations of those authors and others, we
compared outcomes across several analytical methods with different assumptions and
found that the inferred absence of discrete clusters was robust (Table 5). We interpret
this to indicate that either D. frontalis does not exhibit discrete population structure, or
gene flow is sufficiently high that such structure is not detectable with our data. Other
types of molecular markers, such as single nucleotide polymorphisms (SNPs) assayed via
sub-genomic sampling methods that are applicable to non-model species (e.g., Elshire et
al., 2011) could reveal subtle fine-scale spatial-genetic structure. For example, compared to
inferences from microsatellites, SNPs have identified additional structure in the mountain
pine beetle, D. ponderosae (Batista et al., 2016; Janes et al., 2018). That said, although only
4× to 12×more bi-allelic SNPs thanmulti-allelicmicrosatellite locimight offer comparable
resolution of population structure (e.g., Liu et al., 2005; but see Haasl & Payseur, 2011 for
a potentially much higher ratio), microsatellites have desirable properties for assignment
tests, kinship analyses and estimating heterozygosity, and therefore remain valuable (Narum
et al., 2008).

Clines
When using sampling sites as the unit of analysis, we found that microsatellite dataset
composition did not impact conclusions about the absence of gradients of genetic
differentiation. This outcome was also robust to the chosen genetic distance metric
(Table 6). Range expansion is often considered in the context of a series of founder events
that each give rise to a new population with reduced genetic variation along the moving
wave of advance, leading to genetic differentiation from the source population. However,
when range expansion is recent or on-going, multi-directional, and/or effective population
sizes are consistently large, there can be a lag time or weakening of bottleneck effects
(also see Roques et al., 2012 for an example of how Allee effects at a low-density wave
front can prevent successive loss of genetic diversity). Likewise, if occasional long-distance
dispersal is involved, new populations can establish in leaps and bounds, far from the
parent population (Nichols & Hewitt, 1994; Hewitt, 1996; Hewitt, 1999; Ibrahim, Nichols
& Hewitt, 1996). Under any of these scenarios, IBD is not expected to be immediately
detectable. Indeed, the current expansion of D. frontalis to the northeastern United States
is both recent and on-going: the species spread throughout New Jersey by the mid- to
late-2000’s, to Long Island in New York by 2014, and was trapped in Connecticut, Rhode
Island and Massachusetts by 2015–2016 (Dodds et al., 2018). Effective population sizes
certainly have the potential to be very large, but little is known about non-outbreak
populations, making it difficult to speculate about whether genetic drift would be a strong
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driver of allele frequency differences over increasing geographic distances. However, the
capacity for long-distance dispersal by D. frontalis has been well-documented: this could
occur via active flight over several kilometers, or via passive above-canopy wind-assisted
dispersal over tens of kilometers (Jones et al. 2019, and references therein). Ultimately, lack
of IBD is not entirely unexpected, at least not in the newly invaded portion of this species’
current geographic range. However, other explanations exist. For example, detection of
IBD might be scale-dependent, whereby its signal fades at increasingly larger geographic
distances owing to an upper bound on the maximum attainable genetic distance (Castric
& Bernatchez 2003). Such non-linearity might be revealed by iterative reanalysis using
different distance thresholds (Van Strien, Holderegger & Van Heck, 2015), provided that
straight-line geographic distance (cf. isolation-by-environment; Wang & Summers, 2010)
is the primary driver of genetic divergence.

Female-biased dispersal
Despite overall weak spatial-genetic structure among eastern United States D. fontalis, we
did find significant individual-based IBD attributable to males (Table 6). Although this
inference of female-biased dispersal was limited to Lynch & Ritland’s (1999) measure of
relatedness, it was robust to different compositions of microsatellite loci across datasets.
Indeed, this finding is concordant with life history traits of D. frontalis. Females are the
pioneering sex, who locate a suitable host before recruiting males via release of aggregation
pheromones (Jones et al. 2019). Furthermore, females are larger than males, and given
that body mass is correlated with stored energy reserves, their greater capacity for flight
(mean distance of 3.4 km vs. 2.7 km for males) in a flight mill experiment was attributed to
sexual size dimorphism (Kinn et al., 1994). Notably, the notion that males are themselves
not strongly philopatric is supported by capture-mark-recapture data, which showed no
significant differences in dispersal between the sexes over distances up to 1 km (Turchin &
Thoeny, 1993).

There are several reasons that could explain why individual-based IBD was detectable
in our study, yet population-based IBD was not. For instance, this may simply reflect an
issue of sample size (i.e., 2,415–32,385 pairwise comparisons among individuals vs. only
28–36 among sampling sites depending on the dataset; but note the elevated pseudo-
replication associated with the former). Alternatively, a difference in the timescales over
which spatial-genetic structure has evolved and/or is assessed may be responsible. Indeed,
individual-based genetic distances may better reflect contemporary processes such as intra-
generational dispersal, whereas population-based metrics primarily measure historical
connectivity given that most signal comes from the accumulated multi-generational effects
of dispersal and gene flow (Sunnucks, 2000; Garrick, Caccone & Sunnucks, 2010; Epps &
Keyghobadi, 2015). In the context of this study, however, these explanations are plausible
only if the other two individual-based genetic distance metrics that we assessed (i.e., Dkf

and Dps) had low power. One potential advantage of Lynch & Ritland’s (1999) r is that loci
with more alleles—particularly those with rare alleles—provide more information about
relatedness, such that highly polymorphic genetic markers such as microsatellites are very
powerful (Ritland, 2000). That said, this remains speculative, as simulations have shown
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Dps to be more sensitive than r under a variety of IBD scenarios, albeit under simplified
conditions (Shirk, Landguth & Cushman, 2017).

Reconciliation with previous work
Our findings forD. frontalis are inconsistent with those of Schrey et al. (2011)who reported
both clusters and clines, in the form of an east–west division approximately coincident with
southern Appalachian Mountains and population-based IBD across the eastern United
States. Those authors used eight microsatellite loci, all of which were included in Havill
et al.’s (2019) 24-locus dataset, as well as the present study’s 33-locus augmented dataset.
Generally, trade-offs between the number of loci and number of individuals favor adding
loci (Landguth et al., 2012), but given the shared loci, it seems unlikely that the marker set
alone can account for contrasting inferences. However, geographic and temporal sampling
did differ. Whereas Schrey et al.’s (2011) study design included 19 sites with an average of
63 individuals per site (range: 26–100) collected between fall 2004 to spring 2005, ours
included 9 sites with an average of 28 individuals (range: 21–31) collected >10 years later
(i.e., summer 2016 to summer 2017, except for Ponte Vedra, Florida, collected in summer
2013). Thus, although the overall spatial scale of sampling was similar between studies
(see Introduction), effort allocation was not. Indeed, Landguth & Schwartz (2014) have
shown that the optimal allocation of individuals for accurate estimation of FST changes
depending on the extent of gene flow limitation, with misallocations leading to either
over- or under-estimation of FST, depending on the circumstances. Furthermore, direct
comparison between studies may be impacted by the fact that Schrey et al. (2011) sampled
D. frontalis during years of relatively low population densities (albeit following a significant
outbreak in 2001–2002) whereas our specimens were collected at a time of considerable
increase in trap captures in Louisiana and Alabama, and an active outbreak in Mississippi
(B Sullivan, pers. comm., 2020).

During D. frontalis outbreak years, pulse irruptions have unusual population dynamics
where beetles emerge from infested trees in several waves and inter-tree distance is an
important determinant of attack success, with crowded healthy trees being at greater risk
owing to the spill-over effects of aggregation pheromones (Hain et al., 2011). Conversely,
in endemic (non-outbreak) situations, D. frontalis persists at low densities and generally
must travel further after emergence to encounter trees already under stress (e.g., from
lightning strike damage or disease). Indeed, seasonal differences within a given year
can also impact dispersal behavior, whereby individuals have the greatest potential for
long-distance dispersal in Fall and the lowest potential in mid-Summer, owing to temporal
differences in fat content levels (Turchin & Thoeny, 1993). Ultimately, the impacts of
inter- and intra-year differences in sampling across studies may at least partly account for
contrasting conclusions about the nature and strength of spatial-genetic structure.

The idea that preexisting structure may have been ‘‘overwritten’’ either by a change
in outbreak status (i.e., from endemic to epidemic) and/or on-going expansion processes
underscores the importance of considering both and ecological and geographic context.
For example, James et al. (2015) showed that while the spruce budworm (Choristoneura
fumiferana), a cyclical irruptive pest in North America, exhibits weak spatial-genetic
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structure, there is considerable nuance to this general finding. For example, the legacy
of high connectivity during past outbreaks can persist for some time afterwards, high
admixture can be driven by migrant adults sourced from relatively few sites, and different
life stages (i.e., adults vs. larvae) can concurrently exhibit different degrees of spatial genetic
structure. Although the periodicity of spruce budworm outbreaks is considerably longer
than that of D. frontalis (∼35 years vs. ∼5–10 years, respectively) and the synchrony
of irruptive populations may occur at different spatial scales, there may be considerable
similarity in the underlying processes that generate apparent weak spatial-genetic structure.
Future work on D. frontalis could attempt to distinguish between migrant and resident
individuals, and model range expansion dynamics and associated source–sink dynamics,
explicitly incorporating temporal effects.

CONCLUSIONS
The lack of discrete population differentiation and substantial IBD in D. frontalis in the
easternUnited States has implications formanagement as the species’ impacts spread north.
In contrast to alien pests that invade a region via long distance introduction by human
transport, D. frontalis is rapidly spreading into a previously unoccupied region contiguous
to its native range. For alien species, gene flow between native and alien populations only
occurs via additional introductions. Conversely, for D. frontalis, the gene flow between
long established populations in the southeastern United States and invading populations
in New Jersey, New York, and Connecticut is likely to be extensive and on-going. While it
is still an open question whether D. frontalis had been present in the northeastern areas at
low densities but is only now causing impacts due to population increases with less winter
mortality, or if it truly represents a recent arrival, the management implications could rely
less on looking for differences in beetle genetics, and more on environmental and host
tree differences between the south and north. Indeed, this is an approach that seems to be
working (Dodds et al., 2018).
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