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ABSTRACT

We characterize when, for any infinite cardinal α, Fremlin’s Archimedean Riesz space

tensor product of two Archimedean Riesz spaces is Dedekind α-complete. We provide an

example of an ideal I in an Archimedean Riesz space E such that the Fremlin tensor product

of I with itself is not an ideal in the Fremlin tensor product of E with itself. On the other

hand, we present conditions for which the Fremlin tensor product of ideals is an ideal and

that the Fremlin tensor product of projection bands is a projection band.

Lastly, we prove that the Carathéodory space of place functions on the free product of

two Boolean algebras is Riesz isomorphic with the Fremlin tensor product of their respective

Carathéodory spaces of place functions. This result is used to provide a solution to Fremlin’s

problem 315Y(f) in [16] concerning completeness in the free product of Boolean algebras by

applying our results on the Fremlin tensor product to Carathéodory spaces of place functions.

ii



DEDICATION

To my core, Avery and Kit.

iii



ACKNOWLEDGMENTS

Professor Gerard Buskes has guided me through all stages of research: initial learning,

asking an interesting question, approaching it from various angles, (often) finding a solution,

and framing it to fit into a bigger story. At the same time, he has kindly and patiently

grown my confidence. Most importantly, his flexibility and understanding has allowed me

to complete my degree while becoming a mother.

I thank my dissertation committee, Professors Qingying Bu, Gerard Buskes, Yixin Chen,

Samuel Lisi, and Sandra Spiroff for their generous time on my work. In particular, I thank

Spiroff and Lisi for their professional examples and willingness to mentor me. Additionally,

I thank my mathematical brother, Dr. Stephan Roberts, for being a mentor and my office

mate, Dr. Courtney Vanderford Michael, for being a friend that encouraged perseverance.

In the past six years, I have been supported by numerous faculty and graduate student

members of the Ole Miss department of mathematics.

I thank my family. During this time, my husband Avery has walked with me through

every hardship, celebrated every success, and encouraged rest. My daughter Kit has brought

me joy and centered my priorities by being the best thing I’ve ever helped make. My

grandmother, Frances Morris, has made this dissertation possible by supporting me and

providing hours of loving childcare. Together, my family has made my time at the University

of Mississippi not only possible, but joyful.

Lastly, I thank God for giving purpose to this work. If the chief end of man is to glorify

God by enjoying Him forever, then this work has been a success. It has been a time to rely

on God, to see mathematical reasoning as a gift from Him, and to seek out the wisdom of

others made in His image.

iv



Contents

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 ARCHIMEDEAN RIESZ SPACES . . . . . . . . . . . . . . . . . . . 1

1.2 THE ALGEBRAIC TENSOR PRODUCT . . . . . . . . . . . . . . . 5

1.3 THE ARCHIMEDEAN RIESZ SPACE TENSOR PRODUCT . . . . 7

1.4 RIESZ SUBSPACES AND THE MAIN INCLUSION THEOREM . . 9

2 MOTIVATING EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 EXAMPLE RIESZ SPACES AND THEIR TENSOR PRODUCTS . . 13

2.2 THE UNIFORMCLOSURE OF THE ALGEBRAIC TENSOR PROD-

UCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 THE FREMLIN TENSOR PRODUCTAND CERTAIN RIESZ SPACE

PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 TENSOR PRODUCT OF RIESZ SUBSPACES . . . . . . . . . . . . . . . 24

3.1 POSITIVE RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



3.2 NEGATIVE RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 THE FREMLIN TENSOR PRODUCT AND DEDEKIND COMPLETE-

NESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 DEDEKIND α-COMPLETENESS . . . . . . . . . . . . . . . . . . . 34

5 BOOLEAN ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 BOOLEAN ALGEBRA PRELIMINARY MATERIAL . . . . . . . . 41

5.2 THE FREMLIN TENSOR PRODUCTOF CARATHÉODORY SPACES
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1. INTRODUCTION

The central object of our research is D.H. Fremlin’s tensor product of Archimedean Riesz

spaces. First, we prove several results about the tensor product of Riesz subspaces as a

subset of the tensor product of their respective Riesz spaces. An examination of the Boolean

algebra of bands leads to the Riesz space of place functions on a Boolean algebra (in the

sense of Carathéodory). The overarching question is which properties are and which are not

preserved by taking the tensor product of certain Archimedean Riesz spaces.

Chapter 1 introduces Riesz spaces, tensor products, and several model Riesz spaces.

The Riesz space properties that will be examined throughout the work are defined. In the

following chapter, those properties are identified in example Riesz spaces and checked for in

Fremlin’s tensor product of that space with itself. Definitions unless otherwise stated are

from [26], [35], and [36].

1.1 ARCHIMEDEAN RIESZ SPACES

Let X be a nonempty set. A relation, R, in X is a nonempty subset of the Cartesian

product of X with itself. If a pair (x, y) ∈ X × X belongs to R, we write xRy. R is an

equivalence relation in X if for all x, y, z ∈ X, we have that xRx (R is reflexive), xRy and

yRz imply xRz (R is transitive), and xRy implies yRx (R is symmetric). If we also have

that xRy and yRx imply x = y (R is anti-symmetric), then R is a partial ordering in X.

Whenever R is a partial ordering, we write x ≤ y in place of xRy.

Let X be a partially ordered set, and let Y be a nonempty subset of X. Then an element

x0 of X is an upper bound of Y if x0 ≥ y for every y ∈ Y . If additionally x0 ≤ z0 for any
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other upper bound z0 of Y , then x0 is the least upper bound or supremum of Y . The terms

lower bound, greatest lower bound, and infimum are defined analogously.

Definition 1.1.1. Let X be a partially ordered set. X is called a lattice if the supremum

(x ∨ y) and infimum (x ∧ y) exist for every pair of elements x and y in X.

Let V be a real vector space. V is an ordered vector space if V is partially ordered in

such a way that the vector space structure and order structure are compatible. That is, for

every x, y, z ∈ V and λ ≥ 0 in R,

(i) x ≤ y implies x+ z ≤ y + z, and

(ii) x ≥ 0 implies λx ≥ 0 in V .

Definition 1.1.2. A Riesz space or vector lattice is an ordered vector space that is also a

lattice with respect to the partial ordering.

Certainly not every ordered vector space is a Riesz space. For example, consider the set of

real-valued polynomials. Let V = {f : R → R | f is a polynomial}.

1. For every f, g ∈ V and λ ∈ R, define

(λf)(x) = λ(f(x)) and (f + g)(x) = f(x) + g(x)

for every x ∈ R. The partial ordering is defined by f ≤ g for f , g ∈ V whenever

f(x) ≤ g(x) for every x ∈ R. Under this ordering, it is easy to verify that V is an

ordered vector space.

2. Consider f(x) = x and g(x) = −x in V . The supremum is defined pointwise; that is,

for every x ∈ R,

(f ∨ g)(x) = f(x) ∨ g(x).

2



Then f ∨ g is not an element of V since

(f ∨ g)(x) =


−x if x ≤ 0,

x if x ≥ 0,

is not a polynomial. However, f ∨ g is a so-called piecewise polynomial. Indeed, the

set of piecewise polynomials is not only an ordered vector space, but a Riesz space.

Definition 1.1.3. A function p : R → R is said to be a piecewise polynomial if there are

n ∈ N and t1, · · · , tn ∈ (−∞,∞) such that t1 < t2 < · · · < tn and p is a polynomial function

on (−∞, t1], [tn,∞) and [ti, ti+1] for each i = 2, · · · , n − 1. The Riesz space of piecewise

polynomials on R is denoted PP (R).

For any f in a Riesz space E, we write

(i) f+ = f ∨ 0,

(ii) f− = (−f) ∨ 0, and

(iii) |f | = f ∨ (−f).

Note that −f− = f ∧0. The positive cone of E, denoted E+, is the set of all elements f ∈ E

such that f = f+. Two elements f and g are disjoint if |f | ∧ |g| = 0, in which case we write

f ⊥ g. Of course, |f+| ∧ |f−| = 0 for every f ∈ E. If A, B ⊆ E such that f ⊥ g for all

f ∈ A and for all g ∈ B, then we write A ⊥ B.

Theorem 1.1.4. (5.6 of [36]) If f = u− v with u and v in E+, then f+ ≤ u and f− ≤ v.

Hence, the decomposition f = f+ − f− as a difference of positive elements is a “minimal”

decomposition. In this case, i.e., if u = f+ and v = f−, we have u ∧ v = 0. Conversely, if

f = u− v with u ∧ v = 0, then this is the minimal decomposition, i.e., u = f+ and v = f−.

Definition 1.1.5. A Riesz space E is said to be Archimedean if

inf{n−1u | n = 1, 2, ...} = 0

3



holds for every u ∈ E+.

An exemplary Archimedean Riesz space is the set of real-valued continuous functions on

a topological space X, in short C(X), where scalar multiplication, addition, finite suprema,

and finite infima are defined pointwise. It is easy to verify that C(X) is a Riesz space. At

the same time,

inf{n−1f ∈ C(X) | n = 1, 2, · · · }(x) = inf{n−1f(x) ∈ R | n = 1, 2, · · · } = 0

for every x ∈ X, so C(X) is an Archimedean Riesz space. Note that f ∈ C(X)+ if f(x) ≥ 0

for all x ∈ X.

Not every Riesz space is Archimedean. Take, for instance, R2 with a lexicographical

ordering : (x1, y1) ≤ (x2, y2) whenever either x1 < x2 or x1 = x2, y1 ≤ y2. Then R2 with this

ordering forms a Riesz space. However, (0, 1) is a lower bound of {n−1(1, 1) | n = 1, 2, · · · },

so inf{n−1(1, 1) : n = 1, 2, · · · } ≠ (0, 0).

A Riesz space is “unique” relative to a certain characterization whenever a Riesz iso-

morphism can be defined between that space and any other Riesz space with the same

characterization. In the remainder of this section, we define Riesz homomorpisms, state

equivalent criteria, and define Riesz isomorphisms.

Definition 1.1.6. Let X and Y be vector spaces. A mapping T : X → Y is linear if

T (λx+ y) = λT (x) + T (y)

for every x ∈ X, y ∈ Y , and λ ∈ R.

Definition 1.1.7. (19.1 of [36]) Let E and F be Riesz spaces. A linear mapping T : E → F

is a Riesz homomorphism or lattice homomorphism if

T (x ∨ y) = T (x) ∨ T (y)

4



for every x ∈ E and y ∈ E.

Note that in the literature “Riesz space” and “vector lattice” are used interchangeably.

Except for citations, we will use the term “Riesz space.”

Theorem 1.1.8. (19.2 of [36]) Let T : E → F be a linear map from the Riesz space E into

the Riesz space F . Then the following conditions for T are equivalent.

(i) T is a Riesz homomorphism.

(ii) T (x ∧ y) = T (x) ∧ T (y) for all x and y in E.

(iii) x ∧ y = 0 implies T (x) ∧ T (y) = 0.

(iv) |Tx| = T (|x|) for all x ∈ E.

(v) Tx+ = (Tx)+ for all x ∈ E.

A Riesz homomorphism T mapping the Riesz space E onto the Riesz space F in a one-

to-one way is called a Riesz isomorphism. The inverse operator T−1 from F onto E is then

also a Riesz isomorphism and the spaces E and F are said to be Riesz isomorphic (pages

125-126 of [36]).

1.2 THE ALGEBRAIC TENSOR PRODUCT

Definition 1.2.1. Let X, Y and Z be vector spaces. A map T : X × Y → Z is bilinear if

T (x1 + x2, y) = T (x1, y) + T (x2, y) (∀x1, x2 ∈ X, y ∈ Y )

T (x, y1 + y2) = T (x, y1) + T (x, y2) (∀x ∈ X, y1, y2 ∈ Y )

λT (x, y) = T (λx, y) = T (x, λy) (∀λ ∈ R, x ∈ X, y ∈ Y ).

B(X × Y, Z) denotes the set of all bilinear maps X × Y → Z.

The algebraic tensor product of X and Y , denoted X ⊗ Y , can be constructed as a

subspace of B(X × Y )∗, the set of real-valued linear functions on B(X × Y,R) (see e.g.

5



Chapter 1 of [29]). For every (x, y) ∈ X×Y , set (x⊗y)(A) = A(x, y) for every A ∈ B(X×Y ).

We refer to x ⊗ y as an elementary tensor. Then X ⊗ Y is the subspace spanned by the

elementary tensors in B(X×Y )∗. As a consequence, for every u ∈ X⊗Y there exists n ∈ N,

λ ∈ R, xi ∈ X, and yi ∈ Y such that

u =
n∑
i=1

λixi ⊗ yi.

This representation need not be unique. Because ⊗ is a bilinear map, ⊗(λx, y) = ⊗(x, λy) =

λ⊗ (x, y). Since X is a vector space, λx ∈ X for every x. Thus, we more commonly write

u =
n∑
i=1

xi ⊗ yi.

The uniqueness of the algebraic tensor product is guaranteed by its universal property

which is stated below.

Theorem 1.2.2. (Proposition 1.5 of [29]) Let X and Y be vector spaces. Suppose there

exists a vector space W and a bilinear mapping B : X × Y → W with the property that, for

every vector space Z and every bilinear mapping A from X × Y into Z, there is a unique

linear mapping L : W → Z such that A = L ◦ B. Then there is an isomorphism J from

X ⊗ Y into W such that J(x⊗ y) = B(x, y) for every x ∈ X, y ∈ Y .

X ⊗ Y satisfies the conditions for W in Theorem 1.2.2 (e.g. Proposition 1.4 of [29]). Thus,

for every bilinear map A : X×Y → Z, there exists a unique linear map L : X⊗Y → Z such

that the diagram below commutes.

X × Y

A
��

⊗ // X ⊗ Y

L
yy

Z

6



In other words, every bilinear mapping A on X × Y factors through the linear mapping

(x, y) ∈ X × Y 7→ x⊗ y ∈ X ⊗ Y.

See [29] for more on the algebraic tensor product.

1.3 THE ARCHIMEDEAN RIESZ SPACE TENSOR PRODUCT

Let E and F be Riesz spaces. The algebraic tensor product E ⊗ F uniquely exists, but

in most cases it is not closed under finite suprema and infima. Chapter 2 provides several

examples of E and F such that E ⊗ F is properly contained in the smallest Archimedean

Riesz space containing E ⊗ F . One motivation for defining an Archimedean Riesz space

tensor product is to have a minimal, unique up to isomorphism, Archimedean Riesz space

with a universal property enhancing that of the algebraic tensor product. D.H. Fremlin

constructs such a product in [14]. In this thesis, we assume E and F to be Archimedean.

The analogue of a linear map on a vector space is a Riesz homomorphism on a Riesz

space.

Definition 1.3.1. Let E, F , and G be Archimedean Riesz spaces. A Riesz bimorphism is a

bilinear map T : E × F → G such that the maps

z 7−→ T (z, y) : E → G

z 7−→ T (x, z) : F → G

are Riesz homomorphisms for all x ∈ E+ and all y ∈ F+.

Definition 1.3.2. The linear subspace V of E is called a Riesz subspace of E if f , g ∈ V

implies f ∨ g, f ∧ g ∈ V .

Definition 1.3.3. (page 30 of [36]) For any nonempty subset D of the Riesz space E, the

intersection of all Riesz subspaces containing D is called the Riesz subspace generated by

D.

7



Theorem 1.3.4 defines the (Fremlin) Archimedean Riesz space tensor product and, for

convenience, summarizes all relevant properties from [14].

Theorem 1.3.4. (4.2 and 4.4 of [14]) Let E and F be Archimedean Riesz spaces. There

exists an Archimedean Riesz space G and a Riesz bimorphism φ : E × F → G with the

following properties.

(i) Whenever H is an Archimedean Riesz space and ψ : E×F → H is a Riesz bimorphism,

there is a unique Riesz homomorphism T : G→ H such that T ◦φ = ψ. In other words,

the following diagram commutes.

E × F

ψ
��

φ // G

T{{
H

(ii) If ψ(x, y) > 0 in H whenever x > 0 in E and y > 0 in F , then G may be identified

with the Riesz subspace of H generated by ψ[E × F ].

(iii) φ induces an embedding of the algebraic tensor product of E and F , denoted E ⊗ F ,

in G.

(iv) E ⊗ F is uniformly dense in G, i.e., for every w ∈ G there exist x0 ∈ E and y0 ∈ F

such that for every δ > 0 there is a v ∈ E ⊗ F such that |w − v| ≤ δx0 ⊗ y0.

(v) If w > 0 in G, then there exist x ∈ E+ and y ∈ F+ such that 0 < x⊗ y ≤ w.

G of Theorem 1.3.4 is the Archimedean Riesz space tensor product of E and F , denoted

E⊗̄F . Any Archimedean Riesz space paired with a Riesz bimorphism satisfying the universal

property (i) is Riesz isomorphic to G.

Theorem 1.3.5. (2.2.11 of [24]) Let D be a linear subspace of a Riesz space E, and let R

be the Riesz subspace generated by D in E. Then any element of R can be written in the

8



form

sup
i∈I

inf
j∈J

xij

for some finite sets I and J of N, where xij are elements of D.

The Riesz bimorphism ⊗ : E × F → E⊗̄F embeds the algebraic tensor product E ⊗ F

into E⊗̄F via ⊗(e, f) = e ⊗ f for all e ∈ E, f ∈ F . According to Theorem 1.3.4 (ii),

E⊗̄F may be identified with the Riesz space generated by the elementary tensors. It follows

from Theorem 1.3.5 that for every element h of E⊗̄F , there exist finite sets I, J of N and

gij ∈ E ⊗ F such that

h = sup
i∈I

inf
j∈J

{gij},

where gij =
∑n

k=1 ek ⊗ fk for some n ∈ N, ek ∈ E, and fk ∈ F .

1.4 RIESZ SUBSPACES AND THE MAIN INCLUSION THEOREM

The so-called “main inclusion theorem” organizes the most important Riesz space prop-

erties. It was originally named after the diagram in 25.1 of [26] but has since been expanded.

The contents vary in the literature, so we choose those which are examined in this thesis.

First, we define specific types of Riesz subspaces. Then Riesz space properties of inter-

est, along with the the main inclusion theorem diagram, are given and serve as a reference

throughout this thesis.

Definition 1.4.1. Let E be a Riesz space.

(i) The Riesz subspace I of E is called an ideal in E if f ∈ I, g ∈ E, and |g| ≤ |f | imply

g ∈ I.

(ii) The ideal B of E is called a band in E if, whenever D ⊆ B and sup(D) exists in E,

then sup(D) ∈ B.

(iii) For any nonempty subset D of E the intersection of all Riesz subspaces containing D is

called the Riesz subspace generated by D. In the particular case that D consists of one

9



element f , the Riesz subspace generated by D is called a principal band and denoted

by [f ].

(iv) The band B of E is called a projection band of E if E = B⊕Bd, where

Bd = {f ∈ E | |f | ∧ |g| = 0 ∀g ∈ B}.

(v) The ideal I of E is called a maximal ideal of E if, whenever I ⊆ J for some ideal J

of E, it follows that I = J or J = E.

(vi) Let f ∈ E. The principal ideal generated by f , denoted Ef , is the smallest ideal of E

containing f . More concretely,

Ef = {g ∈ E | |g| ≤ |λf | for some λ ∈ R}.

Definition 1.4.2. Let E be a Riesz space.

(i) (DC) E is called Dedekind complete if every nonempty subset of E that is bounded

above (below) has a supremum (infimum).

(ii) (DαC) Let α be an infinite cardinal. E is called Dedekind α-complete if every nonempty

subset A of E that is bounded above (bounded below) has a supremum (infimum) when-

ever A has cardinality no more than α (i.e., |A| ≤ α). If α is countable, we say that

E is Dedekind σ-complete.

(iii) (PP) E is said to have the projection property if every band in E is a projection band.

(iv) (PPP) E is said to have the principal projection property if every principal band in E

is a projection band.

(v) (UC) Let E be a Riesz space and 0 < u ∈ E. A sequence {fn}n∈N is said to be a u-

uniform Cauchy sequence if for any ϵ > 0 there exists N ∈ N such that |fm − fn| < ϵu

10



for all m, n ≥ N . A sequence {fn}n∈N converges u-uniformly to a u-uniform limit f

if there exists a sequence of numbers ϵn ↓ 0 such that |f − fn| ≤ ϵnu for all n. E is

uniformly complete if, for every u > 0 in E, every u-uniform Cauchy sequence has a

u-uniform limit.

Theorem 1.4.3. The following implications hold for any Riesz space, with “and” represented

by “ +” and the abbreviations referring to Theorem 1.4.2.

The Main Inclusion Theorem

DαC +3

��

DσC

#+
(PP + UC) ∼= DC

2:

$,

Archimedean

PP +3 PPP

3;

No implication in the converse direction holds. For counterexamples, see Section 25 of

[26]. Additional examples are provided as needed.

Theorem 1.4.4. (12.4 of [36]) If the Riesz space E has one of the properties in the main

inclusion theorem and A is an ideal in E, then A has the same property.

Since C(X) is an iconic example of an Archimedean Riesz space, we identify a few

relationships between Riesz space properties of C(X) and topological properties of X. The

corresponding definitions are included.

Definition 1.4.5. Let X be a topological space.

(i) X is said to be completely regular provided that it is a Hausdorff space such that,

whenever F is a closed set and x is a point in its complement, there exists a function

f ∈ C(X) such that f(x) = 1 and f [F ] = {0}.

(ii) Two subsets A and B of X are said to be completely separated (from one another)

in X if there exists a function f ∈ C(X) such that 0 ≤ f(x) ≤ 1 for every x ∈ X,

f(x) = 0 for all x ∈ A, and f(x) = 1 for all x ∈ B.
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Definition 1.4.6. Let X be a completely regular topological space and α an infinite cardinal.

(i) X is extremally disconnected if every open set has open closure (1H of [17]).

(ii) Every set of the form {x | f(x) = 0} for some f ∈ C(X) is called a zero-set of

X; a cozero-set is the complement of zero-set (1.10, 1.11 of [17]). X is basically

disconnected if every cozero-set has an open closure (1H of [17]).

(iii) A subset V ⊆ X is said to be an α-cozero set if V =
⋃
U , where U is a set of cozero-

sets in X with |U| ≤ α. X is α-disconnected if every α-cozero set has open closure

([27]).

Theorem 1.4.7. ([31] and 3N of [17]) Let X be a completely regular topological space and

α an infinite cardinal.

(i) C(X) is Dedekind complete if and only if X is extremally disconnected.

(ii) C(X) is Dedekind σ-complete if and only if X is basically disconnected.

(iii) C(X) is Dedekind α-complete if and only if X is α-disconnected.

Definition 1.4.8. A completely regular topological space X is an F-space provided that

disjoint cozero sets are completely separated.
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2. MOTIVATING EXAMPLES

Chapter 2 examines three Riesz spaces—namely c(N), l∞(N), and RX—in order to gain

intuition for the behavior of the tensor product of each space with itself. Both their algebraic

and Fremlin tensor products are studied. Many of the proof-methods are inspired by Anthony

Hager in [22].

2.1 EXAMPLE RIESZ SPACES AND THEIR TENSOR PRODUCTS

We begin by defining a few Riesz spaces that will serve as motivating examples.

Definition 2.1.1.

1. The set of all convergent sequences is denoted c(N), i.e,

c(N) = {f : N → R | ∃L ∈ R s.t. ∀ϵ > 0,∃N s.t. n ≥ N =⇒ |f(n)− L| ≤ ϵ}.

The set of all sequences convergent to zero is denoted c0(N), i.e.,

c0(N) = {f : N → R | ∀ϵ > 0,∃N s.t. n ≥ N =⇒ |f(n)| ≤ ϵ}.

More generally, let X be a locally compact Hausdorff space. Then c(X) is the set of all

convergent functions on X, i.e. f : X → R such that for some L ∈ R,

∀ϵ > 0, ∃Z ⊆ X compact where u ∈ X\Z =⇒ |f(u)− L| ≤ ϵ}.

Similarly, c0(X) is the set of all functions on X convergent to zero.
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2. The set of bounded sequences is denoted l∞(N), i.e.,

l∞(N) = {f : N → R | ∃M ∈ R s.t. ∀n ∈ N, |f(n)| ≤M}.

Similarly, l∞(N× N) is the set of all bounded sequences on N× N.

3. Let X be a set. RX denotes the set of all functions from X to R.

As Fremlin notes in [14], for topological spaces X and Y we have the following:

C(X)⊗ C(Y ) ⊆ C(X)⊗̄C(Y ) ⊆ C(X × Y ).

We will prove in Examples 2.1.4 and 2.1.8 and Corollary 2.3.2 that the inclusions are proper

whenever C(X) and C(Y ) are replaced with c(N).

Hager’s Proposition 1 of [22] “tests” elements of C(X × Y ) to determine if they are

elements of C(X)⊗C(Y ). His proposition holds specifically for c(N)⊗ c(N) inside c(N×N)

and c0(N)⊗ c0(N) inside c0(N×N). In the remainder of the section, we assume X and Y to

be locally compact.

Theorem 2.1.2. (Hager, [22]) Suppose F ∈ C(X × Y ). Then F ∈ C(X) ⊗ C(Y ) if and

only if the dimension of the vector subspace of C(X) generated by {F (·, y) : y ∈ Y } is finite.

Example 2.1.3. c0(N)⊗ c0(N) ̸= c0(N× N).

Proof. Let F ∈ c0(N× N) such that

F (x, y) =
1

xy
, ((x, y) ∈ N× N) .

The functions {fn(y) = 1
ny }n∈N are linearly independent. Thus by Theorem 2.1.2, F ̸∈

c0(N)⊗ c0(N), and c0(N)⊗ c0(N) ̸= c0(N× N).
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Note that F (x, y) = 1
xy

is an element of c(N×N) and of l∞(N×N). By the same argument

as in Example 2.1.3, we obtain the following two results.

Example 2.1.4. c(N)⊗ c(N) ̸= c(N× N).

Example 2.1.5. l∞(N)⊗ l∞(N) ̸= l∞(N× N).

Example 2.1.3 proves that c0(X)⊗ c0(Y ) ̸= c0(X × Y ) when X = Y = N. We follow the

ideas in 2.1.6 to characterize when c0(X)⊗ c0(Y ) = c0(X × Y ).

Theorem 2.1.6. (Hager, 2 of [22]) C(X) ⊗ C(Y ) = C(X × Y ) if and only if X or Y is

finite.

Theorem 2.1.7. c0(X)⊗ c0(Y ) = c0(X × Y ) if and only if X or Y is finite.

Proof. If X is finite and f ∈ c0(X×Y ), then {f(x, ·) : x ∈ X} is finite and f ∈ c0(X)⊗c0(Y )

by Theorem 2.1.2.

We prove the contrapositive. Suppose X and Y are infinite. Since X is Hausdorff, there

are distinct elements x1, x2, · · · in X and U1, U2, ... open subsets of X that are pairwise

disjoint with xn ∈ Un for every n ∈ N. Since X is locally compact, for every i there exists

a compact neighborhood Vi of xi such that V̄i ⊆ Ui. Hence there exist V1, V2, ... ⊆ X open

neighborhoods of x1, x2, ... ∈ X respectively such that Vi ∩ Vj = ∅ for every i ̸= j.

Let fn ∈ C(X) satisfy fn(xn) = 1, fn(x) = 0 if x /∈ Vn, and 0 ≤ fn ≤ 1. Indeed, by

definition fn is an element of c0(X) since fn ≡ 0 outside a compact set. Likewise, select

distinct y1, y2, · · · ∈ Y and W1,W2, ... open pairwise disjoint subsets of Y such that yn ∈ Wn.

Let gn ∈ c0(Y ) satisfy gn(yn) = 1, gn(y) = 0 if y /∈ Wn, and 0 ≤ gn ≤ 1. Set

F (x, y) =
∞∑
n=1

1

2n
fn(x)gn(y).

Then F ∈ c0(X × Y ) and F (x, yk) =
∑∞

n=1
1
2n
fn(x)gn(yk) = 1

2k
fk(x). Since {fk : k ∈ N}

are independent, {F (·, yk) : k ∈ N} are independent. Hence, F (x, y) ̸∈ c0(X) ⊗ c0(Y ) by

Theorem 2.1.2.
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The following example compares the algebraic tensor product of c(N) with itself to the

Fremlin tensor product of c(N) with itself. For a subset A of a set X, we use 1A to denote

the characteristic function of A. In the case that E and F are spaces of real-valued functions

on X and Y respectively, for f ∈ E, g ∈ F , x ∈ X, and y ∈ Y we simply write f(x)g(y)

rather than (f ⊗ g)(x, y).

Example 2.1.8. c(N)⊗ c(N) ̸= c(N)⊗̄c(N).

Proof. Let F (x, y) = ( 1
x
1N(y)) ∨ (1N(x)

1
y
) for every (x, y) ∈ N × N. Then F ∈ c(N)⊗̄c(N).

Fix n ∈ N and consider the matrix determined by (aij) = F (i, j) for all i, j ∈ {1, · · · , n}.

By the use of elementary row operations, the determinant is nonzero. Indeed,

F (1, 1) F (1, 2) F (1, 3) · · · F (1, n)

F (2, 1) F (2, 2) F (2, 3) · · · F (2, n)

F (3, 1) F (3, 2) F (3, 3) · · · F (3, n)

...
...

...
. . .

...

F (n, 1) F (n, 2) F (n, 3) · · · F (n, n)

=

1 1 1 · · · 1

1 1
2

1
2

· · · 1
2

1 1
2

1
3

· · · 1
3

...
...

...
. . .

...

1 1
2

1
3

· · · 1
n

=

1 1 1 · · · 1

0 1
2
− 1 1

2
− 1 · · · 1

2
− 1

0 0 1
3
− 1

2
· · · 1

3
− 1

2

...
...

...
. . .

...

0 0 0 · · · 1
n
− 1

n−1

= (1)

(
1

2
− 1

)(
1

3
− 1

2

)
· · ·
(
1

n
− 1

n− 1

)
̸= 0.
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Hence, F (1, ·), F (2, ·), ..., F (n, ·) are linearly independent elements of c(N) and the dimension

of the vector space generated by {F (·, y) | y ∈ N} is infinite. By Theorem 2.1.2, F /∈

c(N)⊗ c(N). As a result, c(N)⊗ c(N) ̸= c(N)⊗̄c(N).

We highlight the handiness of the “determinant trick” that tests whether an element of

C(X×Y ) is an element of C(X)⊗C(Y ). A similar test to determine exactly which elements

of C(X × Y ) belong to C(X)⊗̄C(Y ) is not yet in the literature.

2.2 THE UNIFORM CLOSURE OF THE ALGEBRAIC TENSOR PRODUCT

Example 2.1.4 shows that c(N)⊗ c(N) is a proper subset of c(N× N). Since c(N× N) is

uniformly complete (43.1 of [26]), we compare the set of Cauchy sequences in c(N) ⊗ c(N)

with their relative uniform limits to the set c(N× N). Let c0(N)⊗ c0(N)
u.c

be the set of all

equivalence classes of u-Cauchy sequences of c0(N) ⊗ c0(N) together with their u-uniform

limits in c0(N× N).

Theorem 2.2.1. c0(N× N) = c0(N)⊗ c0(N)
u.c
.

Proof. Let F ∈ c0(N× N). To show c0(N×N) ⊆ c0(N)⊗ c0(N)
u.c
, there must exist a Cauchy

sequence of functions in c0(N)⊗c0(N) that converges to F relative to some u in c0(N)⊗c0(N).

Since F ∈ c0(N × N), for every n ∈ N there exists Xn ⊆ N such that F (x, y) ≤ 1
n3 for all

(x, y) /∈ (Xn ×Xn). Define

Fn(x, y) = F (x, y) · 1{Xn×Xn}(x, y).

Note that for every n ∈ N, the set {F (x, y) : (x, y) ∈ Xn × Xn} is finite, so Fn(x, y) is an

element of c0(N)⊗ c0(N). For every ϵ > 0, there exists N ∈ N such that

|Fn(x, y)− Fm(x, y)| ≤ ϵ
1

xy
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for every (x, y) ∈ X × Y whenever n, m ≥ N . Thus, (Fn)n∈N is a u-Cauchy sequence for

u(x, y) = 1
xy
.

Let ϵn = 1
n
for every n ∈ N. Then there exists M ∈ N such that ∀n ≥M ,

|F − Fn|(x, y)

 = 0 if (x, y) ∈ Xn ×Xn

≤ ϵnu(x, y) otherwise.

By definition 1.4.2 (v), Fn converges u-uniformly to F in c0(N×N). Since c0(N)⊗ c0(N)
u.c

⊆

c0(N× N), the spaces are equal.

2.3 THE FREMLIN TENSOR PRODUCT AND CERTAIN RIESZ SPACE PROPER-

TIES

c(N) holds numerous Riesz space properties from the main inclusion theorem in Section

1. Namely, c(N) is Dedekind complete. In particular, c(N) is uniformly complete and has

the projection property. The following is an example of a Dedekind complete Riesz space

whose Fremlin tensor product with itself is not uniformly complete and thus not Dedekind

complete.

Theorem 2.3.1. c(N)⊗̄c(N) is not uniformly complete.

Proof. Define the sequences of functions

an(x, y) = 1{1,··· ,n}(x)1{1,··· ,n}(y), ((x, y) ∈ N× N)

bn(x, y) =

∣∣∣∣(1y sinx)(an(x, y))
∣∣∣∣ , ((x, y) ∈ N× N) .

Note that for every n, the function bn(x, y) vanishes outside a finite collection of points.

Thus, bn ∈ c(N)⊗̄c(N) for all n ∈ N. At the same time, | 1
y
sinx| ≤ 1X

1
y
. For all ϵ > 0, there

exists N such that |bn−bm| ≤ ϵ(1X
1
y
) whenever n, m ≥ N , so {bn}n∈N is a u-uniform Cauchy

sequence for u(x, y) = 1
y
. However, the u-uniform limit of {bn}n∈N is | 1

y
sinx|. Since sin(x)
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does not converge to any real number, the u-uniform limit does not exist in c(N)⊗̄c(N).

Thus, c(N)⊗̄c(N) is not uniformly complete.

Corollary 2.3.2. c(N)⊗̄c(N) ̸= c(N× N).

Proof. c(N × N) is uniformly complete. By Theorem 2.3.1, c(N)⊗̄c(N) is not uniformly

complete. Thus, the two cannot be isomorphic as Riesz spaces.

Next, we check whether the Fremlin tensor product of c0(N) with itself has the projection

property. We make use of c0(N)⊗̄c0(N) as a Riesz subspace of c0(N × N) in order to apply

the following two theorems.

Definition 2.3.3. (23.1 of [36]) A Riesz subspace V of the Riesz space E is said to be order

dense in E if for each u > 0 in E (i.e., u ≥ 0, u ̸= 0) there exists an element v ∈ V such

that 0 < v ≤ u.

Theorem 2.3.4. (5.12 of [32]) Let Y be a Riesz space, X an order dense subspace of Y ,

and I a band in X. Then there is a band J in Y such that I = J ∩X.

Theorem 2.3.5. (5.2 of [25]) Let X be a locally compact Hausdorff space and J a vector

subspace in c0(X).

(i) J is a band if and only if J = {f ∈ c0(X) : f |F ≡ 0} for some closed set F in X with

F = Int(F ).

(ii) J is a projection band if and only if J = {f ∈ c0(X) : f |F ≡ 0} for some clopen set F

in X.

Theorem 2.3.6. (Riesz decomposition property) Let the elements f, g1, g2 in E+ satisfy

f ≤ g1 + g2. Then there exist elements f1, f2 in E+ such that f1 ≤ g1, f2 ≤ g2 and

f = f1 + f2.

Theorem 2.3.7. c0(N)⊗̄c0(N) has the projection property.
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Proof. Let B be a band of c0(N)⊗̄c0(N). Since c0(N)⊗̄c0(N) is order dense in c0(N × N)

(Theorem 1.3.4 (v)), there exists a band D in c0(N×N) such that B = c0(N)⊗̄c0(N)∩D by

Theorem 2.3.4. Because N× N is a locally compact Hausdorff space, by Theorem 5.2 (i) of

2.3.5 there exists a regularly closed set F ⊆ N×N such that D = {f ∈ c0(N×N) : f |F ≡ 0}.

Since N× N is discrete, F is clopen. Consequently, D is a projection band in c0(N× N) by

Theorem 2.3.5 (ii). Thus, D ⊕Dd = c0(N× N).

Let f ∈ (c0(N)⊗̄c0(N))+ ⊆ c0(N × N)+. Then there exist positive elements h1 ∈ D and

h2 ∈ Dd such that f = h1+h2. Since B is order dense in D, there exists positive g1 ∈ B such

that h1 ≤ g1. Likewise, there exists g2 ∈ Bd such that h2 ≤ g2. Then f = h1 + h2 ≤ g1 + g2.

By the Riesz decomposition property, there exist elements f1, f2 ∈ (c0(N)⊗̄c0(N))+ such

that f1 ≤ g1, f2 ≤ g2 and f = f1 + f2. Since B and Bd are, in particular, ideals, f1 ∈ B

and f2 ∈ Bd. Every element of c0(N)⊗̄c0(N) is a difference of two positive elements, and

thus we have shown that c0(N)⊗̄c0(N) ⊆ B ⊕Bd. It is clear that B ⊕Bd ⊆ c0(N)⊗̄c0(N), so

c0(N)⊗̄c0(N) has the projection property.

Throughout this work, we combine the fact that the algebraic tensor product is uniformly

dense in the Fremlin tensor product (Theorem 1.3.4 (iv)) with the existence of a unique uni-

form completion of any Archimedean Riesz space. Here, this pattern is introduced to prove

Theorem 2.3.12. For the existence and uniqueness of the uniform completion of Archimedean

Riesz spaces, see [3] and [33].

Definition 2.3.8. (see [3]) A uniform completion of an Archimedean Riesz space E is a pair

(Ẽ, i) consisting of a uniformly complete Riesz space Ẽ and a Riesz homomorphism i : E →

Ẽ such that for every uniformly complete Riesz space F and every Riesz homomorphism

φ : E → F , there is a unique Riesz homomorphism φ̃ : Ẽ → F with φ = φ̃ ◦ i. In other
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words, the following diagram commutes.

E

φ

��

i // Ẽ

φ̃��
F

Theorem 2.3.9. (3 of [3]) For an Archimedean Riesz space E, a uniform completion of E

exists and is unique up to Riesz isomorphisms.

Definition 2.3.10. Let E be an Archimedean Riesz space. A subset V of E is uniformly

dense in E if for every w ∈ E there exists u ∈ V such that for every ϵ > 0 there is a v ∈ V

such that |w − v| ≤ ϵu.

Definition 2.3.11. Let E be an Archimedean Riesz space. An element u > 0 for which E

is the principal ideal generated by u in E is called a strong order unit of E.

Excepting c0(N), all of the example Riesz spaces in Chapter 2 have 1N or 1X as their

strong order units.

Theorem 2.3.12. Let E be a uniformly complete Riesz space with a strong order unit u. If

V is a uniformly dense Riesz subspace of E containing u, then E is a uniform completion

of V .

Proof. Let ι : V → E be an embedding of V into E as a Riesz subspace of E. Suppose F

is a uniformly complete Riesz space and φ : V → F is a Riesz homomorphism. For every

x ∈ E, there exists a u-uniform Cauchy sequence (xn)n∈N of V that converges to x in E.

Since (xn)n∈N is a u-uniform Cauchy sequence, for all ϵ > 0 there exists an N ∈ N such that

|xn−xm| < ϵu whenever n, m ≥ N . Then for all ϵ > 0, there exists N such that ∀n, m ≥ N ,

|φ(xn)− φ(xm)| = |φ(xn − xm)| = φ(|xn − xm|) < ϵφ(u).

Thus, (φ(xn))n∈N) is a φ(u)-uniform Cauchy sequence of F and converges φ(u)-uniformly in

F . Define φ̃(x) to be the φ(u)-uniform limit of (φ(xn))n∈N in F . By Theorem 10.3 (ii) of
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[36], φ̃ is a Riesz homomorphism that is uniquely determined by φ. Then φ = φ̃ ◦ ι and

(E, ι) is a uniform completion of V .

To conclude this section, we check for the Dedekind completeness of the Fremlin tensor

product of l∞(N) with itself and of RX with RY for discrete, infinite dimensional topological

spaces. In order to do so, we will use the Stone-Weierstrass Theorem and the Stone-Čech

compactification βN of N (e.g. [17]).

Theorem 2.3.13. (Stone-Weierstrass Theorem) Let X be a compact space and A an algebra

of continuous real-valued functions on X that separates the points of X and contains the

constant functions. Then A is a dense subset of C(X).

Example 2.3.14. l∞(N)⊗̄l∞(N) is not Dedekind complete.

Proof. Suppose l∞(N)⊗̄l∞(N) is Dedekind complete. Note that l∞(N) ∼= C(βN). Then

C(βN)⊗̄C(βN) is in particular uniformly complete.

By Fremlin’s Theorem 1.3.4, C(βN) ⊗ C(βN) is uniformly dense in C(βN)⊗̄C(βN).

By the Stone-Weierstrass theorem, C(βN) ⊗ C(βN) is uniformly dense in C(βN × βN).

Then C(βN)⊗̄C(βN) is a uniformly dense Riesz subspace of C(βN× βN) with unit 1βN×βN.

By Theorem 2.3.12, C(βN)⊗̄C(βN) is a uniform completion of C(βN × βN). However,

C(βN)⊗̄C(βN) is uniformly complete by assumption, so C(βN)⊗̄C(βN) = C(βN × βN).

Then C(βN × βN) is also Dedekind complete which implies βN × βN is extremally discon-

nected, a contradiction to Glicksberg’s Theorem 1 of [18].

Example 2.3.15. Let X, Y be infinite.

1. RX⊗̄RY is not Riesz isomorphic to RX×Y .

2. RX⊗̄RY is not Dedekind complete.

Proof. Note that RX×Y is Dedekind complete. Suppose that RX⊗̄RY is Dedekind complete.

Let A be a bounded subset of l∞(N)⊗̄l∞(N). Since X and Y are infinite, let DX and DY

represent homeomorphic copies of N in X and Y respectively. For every f ∈ A, there exists
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an extension f ′ : X × Y → R such that f ′(x, y) = f(x, y) for every (x, y) ∈ DX ×DY , and

f
′
(x, y) = 0 otherwise. Then

g(x, y) = sup
f∈A

f
′
(x, y)

exists in RX⊗̄RY . Since the supremum is taken pointwise, g(x, y) = 0 for all (x, y) ∈

(X × Y )\(DX ×DY ). Thus, g|DX×DY
is an element of l∞(N)⊗̄l∞(N) and the supremum of

A. Our choice of a bounded subset of l∞(N)⊗̄l∞(N) was arbitrary, so we have shown that

l∞(N)⊗̄l∞(N) is Dedekind complete, a contradiction to Example 2.3.14. Therefore, RX⊗̄RY

is not Dedekind complete and RX⊗̄RY is not Riesz isomorphic to RX×Y .
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3. TENSOR PRODUCT OF RIESZ SUBSPACES

Chapter 2 gives examples of two Riesz spaces having a certain Riesz space property but

their Fremlin tensor product not having that property. Chapter 3 discusses Riesz subspaces

in arbitrary Archimedean Riesz spaces E, F . In particular, many questions are of the

following nature:

“If A ⊆ E and B ⊆ F are of subspace type P , is A⊗̄B also of subspace type P in E⊗̄F?”

We refer the reader to definition 1.4.1 for each subspace type.

3.1 POSITIVE RESULTS

A “positive result” refers to instances where the answer to the question proposed above

is “yes.” Fremlin gave the first positive result in his paper defining the Archimedean Riesz

space tensor product (see Theorem 3.1.1). We prove two additional positive instances which

will be provided in Theorems 3.1.9 and 3.1.13.

Theorem 3.1.1. (4.5 of [14]) Let E and F be Archimedean Riesz spaces with Riesz subspaces

A and B respectively. Then A⊗̄B can be identified with the Riesz subspace of E⊗̄F generated

by A⊗B.

In order to prove results for principal ideals and projection bands, we use the Kakutani

representation theorem and a description of positive elements of the Fremlin tensor product

given by Allenby and Labuschagne in [4].
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Theorem 3.1.2. (2.2 of [4]) Let E and F be Archimedean Riesz spaces. If h ∈ (E⊗̄F )+,

then there exists (x, y) ∈ E+×F+ such that for every ϵ > 0 there exist u, v ∈ E+⊗F+ where

E+ ⊗ F+ :=

{
n∑
i=1

fi ⊗ gi|fi ∈ E+, gi ∈ F+, n ∈ N

}
,

such that

0 ≤ h− u ≤ ϵx⊗ y and 0 ≤ v − h ≤ ϵx⊗ y.

Definition 3.1.3. (page 181 of [2]) A norm || · || on a Riesz space is said to be a lattice

norm whenever |x| ≤ |y| implies ||x|| ≤ ||y||. A Riesz space equipped with a lattice norm

is known as a normed Riesz space. If a normed Riesz space is norm complete, then it is

referred to as a Banach lattice.

Definition 3.1.4. (4.20 of [2]) A Banach lattice E is said to be an abstract M -space (or

AM -space) whenever its norm is an M-norm, i.e., if x ∧ y = 0 in E implies

||x ∨ y|| = max{||x||, ||y||}.

Theorem 3.1.5. (4.21 of [2]) Let E be a Banach lattice, and let x ∈ E. Then the principal

ideal Ex generated by x in E under the norm || · ||∞ defined by

||y||∞ = inf{λ > 0 | |y| ≤ λ|x|} (y ∈ Ex),

is an AM-space, whose closed unit ball is the order interval [−|x|, |x|].

Definition 3.1.6. Let E and F be Banach lattices. E and F are lattice isometric if there

exists a Riesz isomorphism φ : E → F such that ||x||E = ||φ(x)||F for all x ∈ E.

Theorem 3.1.7. (Kakutani-Bohnenblust and M.Krein-S.Krein, 4.29 of [2]) A Banach lattice

E is an AM-space with an order unit if and only if it is lattice isometric to some C(X) for

a (unique up to homeomorphism) Hausdorff compact topological space X.
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In particular, a Banach lattice is an AM-space if and only if it is lattice isometric to a

closed Riesz subspace of some C(X)-space.

If a Riesz space E is a uniformly complete, then (Ex, || · ||∞) is a Banach lattice for

any x ∈ E+. Indeed, let E be uniformly complete and fix x ∈ E+. Then Ex is uniformly

complete (Theorem 1.4.4). Ex can be equipped with the norm defined in Theorem 3.1.5

so that every Cauchy sequence in Ex converges and, in particular, converges relative to the

norm. Therefore, Ex is a Banach lattice that by Theorem 3.1.5 is an AM-space with unit. As

a consequence of Theorem 3.1.7, Ex is Riesz isomorphic to C(X) for some compact Hausdorff

space X.

Lemma 3.1.8. Let E and F be uniformly complete Archimedean Riesz spaces. Then Ex⊗̄Fy

is uniformly dense in (E⊗̄F )x⊗y for every x ∈ E+ and y ∈ F+.

Proof. There exist compact Hausdorff spaces X and Y such that Ex is Riesz isomorphic to

C(X) and Fy is Riesz isomorphic to C(Y ). Then Ex⊗̄Fy ∼= C(X)⊗̄C(Y ). Also, C(X)⊗̄C(Y )

is uniformly dense in C(X × Y ) where x ∈ E+ and y ∈ F+ correspond to the unit functions

1X and 1Y respectively (2.2 of [4]). Finally, (E⊗̄F )x⊗y has a unique uniform completion that

is Riesz isomorphic to a Riesz subspace of C(X ×Y ). Since C(X)⊗̄C(Y ) is uniformly dense

in C(X × Y ), it follows that Ex⊗̄Fy is uniformly dense in (E⊗̄F )x⊗y.

Theorem 3.1.9. Let E and F be Dedekind α-complete for an infinite cardinal α. If E⊗̄F

is Dedekind α-complete, then Ex⊗̄Fy is a principal ideal for every x ∈ E+ and y ∈ F+. In

particular,

Ex⊗̄Fy = (E⊗̄F )x⊗y.

Proof. Since E and F are in particular uniformly complete, there exist compact Hausdorff

spaces X, Y such that Ex ∼= C(X) and Fy ∼= C(Y ). By Lemma 3.1.8, Ex⊗̄Fy contains x⊗ y

and is uniformly dense in (E⊗̄F )x⊗y. As an ideal of a Dedekind α-complete space, (E⊗̄F )x⊗y

is Dedekind α-complete (Theorem 1.4.4). Thus, (E⊗̄F )x⊗y is a uniform completion of Ex⊗̄Fy

by Theorem 2.3.12. On the other hand, Ex⊗̄Fy is Riesz isomorphic to C(X)⊗̄C(Y ) which
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has C(X × Y ) as a uniform completion. Since the uniform completion is unique up to

isomorphism, C(X×Y ) ∼= (E⊗̄F )x⊗y. Hence, C(X×Y ) is Dedekind α-complete. Therefore,

X × Y is, in particular, basically disconnected which implies X × Y is an F -space (e.g.

[12]). The product of two infinite compact spaces cannot be an F -space (14Q of [17]), so

X or Y is finite dimensional. By Theorem 2.1.6, C(X)⊗̄C(Y ) = C(X × Y ). Therefore,

Ex⊗̄Fy ∼= (E⊗̄F )x⊗y.

The following inequalities and equalities are quite useful and listed below for convenience.

They will be referenced in Lemma 3.1.11.

Theorem 3.1.10. (6.5 of [36]) Let u, v, w be elements in E+ and let f , g be arbitrary

elements in a Riesz space E. Then

(u+ v) ∧ w ≤ (u ∧ w) + (v ∧ w),

(f + g) ∨ w ≤ (f ∨ w) + (g ∨ w).

Furthermore, v ∧ w = 0 implies

(u+ v) ∧ w = (u ∧ w) + (v ∧ w),

(f + g) ∨ w = (f ∨ w) + (g ∨ w).

Lemma 3.1.11. Let E and F be Archimedean Riesz spaces with B1, B2 bands of E. If

B1 ⊥ B2, then (B1⊗̄F ) ⊥ (B2⊗̄F ) in B1⊗̄B2.

Proof. Let h1 ∈ B1⊗̄F and h2 ∈ B2⊗̄F . We will show that |h1| ∧ |h2| = 0. Since |h1|,

|h2| ≥ 0, we need only prove (B1⊗̄F )+ ⊥ (B2⊗̄F )+.
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Step 1 Consider elementary tensors. Let b1 ∈ B+
1 and b2 ∈ B+

2 . Since B1 ⊥ B2, we have

for all f1, f2 ∈ F+,

(b1 ⊗ f1) ∧ (b2 ⊗ f2) ≤ (b1 ⊗ (f1 + f2)) ∧ (b2 ⊗ (f1 + f2))

=(b1 ∧ b2)⊗ (f1 + f2)

=0⊗ (f1 + f2)

=0.

Step 2We prove that (B1⊗F )+ ⊥ (B2⊗F )+. Let h1 =
∑n

i=1 b
1
i⊗fi and h2 =

∑m
j=1 b

2
j⊗fj

for b1i ∈ B+
1 , b

2
j ∈ B+

2 , and fi, fj ∈ F+. Then by Step 1 and Theorem 3.1.10,

h1 ∧ h2 =

(
n∑
i=1

b1i ⊗ fi

)
∧

(
m∑
j=1

b2j ⊗ fj

)

≤
m∑
j=1

((
n∑
i=1

b1i ⊗ fi

)
∧ b2j ⊗ fj

)

≤
m∑
j=1

n∑
i=1

(b1i ⊗ fi) ∧ (b2j ⊗ fj)

=0.

Step 3 We show that the positive cone of the Fremlin tensor product of B1 and B2 is

disjoint with the positive cone of the algebraic tensor product of B1 and B2, i.e.

(B1⊗̄F )+ ⊥ (B2 ⊗ F )+.

Let f ∈ (B1⊗̄F )+ and g ∈ (B2 ⊗F )+. Since f ∈ B1⊗̄F , there exists {fn}∞n=1 ∈ B1 ⊗F such

that {fn}∞n=1 converges uniformly relative to some h ∈ B1 ⊗ F . Then there exists {ϵn} ↓ 0
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such that

|f | ∧ |g| ≤ (|f − fn|+ |fn|) ∧ |g| ≤ (|f − fn| ∧ |g|) + (|fn| ∧ |g|) ≤ ϵn|h| ∧ |g|+ 0

since fn ∈ B1⊗F and g ∈ B2⊗F implies |fn|∧ |g| = 0 for every n by Step 2. Since {ϵn} ↓ 0,

|f | ∧ |g| = 0.

Step 4 It remains to show that (B1⊗̄F )+ ⊥ (B2⊗̄F )+. Let k ∈ (B1⊗̄F )+, i ∈ (B2⊗̄F )+.

Since i ∈ B2⊗̄F , there exists {in}∞n=1 ∈ B2⊗F such that {in}∞n=1 converges uniformly relative

to some j ∈ B2 ⊗ F . Then there exists {ϵ̂n} ↓ 0 such that

|i| ∧ |k| ≤ (|i− in|+ |in|) ∧ |k| ≤ (|i− in| ∧ |k|) + (|in| ∧ |k|) ≤ ϵ̂n|j| ∧ |k|

since |in| ∧ |k| = 0 for every n by Step 3. Since {ϵ̂n} ↓ 0, we have |i| ∧ |k| = 0. Therefore,

(B1⊗̄F ) ⊥ (B2⊗̄F ).

Theorem 3.1.12. (8.4 of [36]) Let D be a nonempty subset of E. Then the disjoint com-

plement Dd is a band in E.

Theorem 3.1.13. Let E,F be Archimedean Riesz spaces with B a projection band of E and

C a projection band of F . Then B⊗̄C ⊆ E⊗̄F is a projection band.

Proof. B is a projection band of E implies E = B⊕Bd. Lemma 3.1.11 proves that B⊗̄F ⊥

Bd⊗̄F . Hence,

E⊗̄F = (B ⊕Bd)⊗̄F = (B⊗̄F )⊕ (Bd⊗̄F )

by substitution and the fact that ⊗ is a Riesz bimorphism. Likewise, F = C ⊕ Cd so

E⊗̄F =(B⊗̄F )⊕ (Bd⊗̄F )

=(B⊗̄(C ⊕ Cd))⊕ (Bd⊗̄(C ⊕ Cd))

=(B⊗̄C)⊕ (B⊗̄Cd)⊕ (Bd⊗̄C)⊕ (Bd⊗̄Cd)

29



with each of the four tensor products disjoint from one another.

It follows that (B⊗̄C)d = (B⊗̄Cd)⊕ (Bd⊗̄C)⊕ (Bd⊗̄Cd). By Theorem 3.1.12, (B⊗̄C)d

is a band. Set D = (B⊗̄Cd)⊕ (Bd⊗̄C)⊕ (Bd⊗̄Cd). Then likewise, Dd is a band. Then

Dd = {h ∈ E⊗̄F | h ⊥ f for all f ∈ D}

and B⊗̄C ⊥ D, so B⊗̄C ⊆ Dd. On the other hand, D ⊆ E⊗̄F\(B⊗̄C) implies Dd ⊆ B⊗̄C.

Hence, Dd = B⊗̄C is a band. Therefore, E⊗̄F ∼= (B⊗̄C) ⊕ (B⊗̄C)d so that B⊗̄C is a

projection band.

3.2 NEGATIVE RESULTS

A “negative result” refers to instances where the answer to the question proposed in the

introduction of Chapter 3 is “no.”

Theorem 3.2.1. (5.3 of [32]) Let Y be a Riesz space, X an order dense subspace of Y , and

J an ideal of Y . Then the set J ∩X is an ideal in X.

Example 3.2.2. Let X and Y be compact Hausdorff spaces. If I and J are maximal ideals

in C(X) and C(Y ) respectively, then I⊗̄J is not a maximal ideal in C(X)⊗̄C(Y ).

Proof. For a ∈ X, consider Ma = {f ∈ C(X) | f(a) = 0}. Ma is a Riesz subspace of C(X).

Suppose f ∈ C(X) and g ∈ Ma such that 0 ≤ |f | ≤ |g|. Then g(a) = 0 so f(a) = 0. Thus,

f ∈ Ma, and Ma is an ideal in C(X). Furthermore, if I is an ideal such that Ma ⊊ I, then

there exists f ∈ I such that f(x) ̸= 0 for all x ∈ X. Since I is an ideal, 1X ≤ |λf | for some

λ ∈ R implies 1X ∈ I. Thus, I = C(X), and Ma is a maximal ideal. In fact, all maximal

ideals in C(X) are of the form {f ∈ C(X) | f(a) = 0} for some a ∈ X (4.6 of [17]).

Let I and J be maximal ideals of C(X) and C(Y ) respectively. Then there exist a ∈ X

and b ∈ Y such that I = {f ∈ C(X) | f(a) = 0} and J = {f ∈ C(Y ) | f(b) = 0}. Let

M = {f ∈ C(X × Y ) | f(x, y) = 0 if x = a or y = b}.
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Since C(X)⊗̄C(Y ) is order dense in C(X ×Y ), we have that M ∩ (C(X)⊗̄C(Y )) is an ideal

in C(X)⊗̄C(Y ) by Theorem 3.2.1. Note that I⊗̄J ⊆ M ∩ C(X)⊗̄C(Y ). If I⊗̄J is not an

ideal, we are done. If I⊗̄J is an ideal, it is properly contained in the ideal

{f ∈ C(X)⊗̄C(Y ) | f(x) = 0 if x = a}.

Thus, I⊗̄J is not a maximal ideal in C(X)⊗̄C(Y ).

Recall from definition 1.1.3 that PP ([0,∞)) is the Archimedean Riesz space of piecewise

polynomials on [0,∞). For ϵ > 0 and a, b ∈ [0,∞), we define

B((a, b), ϵ) = {(x, y) ∈ [0,∞)× [0,∞) |
√

(x− a)2 + (y − b)2 < ϵ}.

We thank Samuel Lisi for his contributions to Lemma 3.2.3 and Theorem 3.2.4 which sharpen

the main result of Chapter 4, namely Theorem 4.1.7.

Lemma 3.2.3. If p(x) is a piecewise polynomial on [0,∞) and |p(x)| ≤ Cx for some C ∈ R+,

then there exists k ∈ R+ such that p′′(x) = 0 whenever x > k.

Proof. By definition, there exist n ∈ N and t1, · · · , tn ∈ [0,∞) such that t1 < t2 < · · · < tn

and p is a polynomial function on [tn,∞) and [ti, ti+1] for each i = 1, · · · , n−1. In particular,

there exist a polynomial pn on [0,∞) such that p(x) = pn(x) for all x ∈ [tn,∞). Since by

assumption |p(x)| ≤ Cx for some C ∈ R+, the degree of pn is less than or equal to 1.

Therefore, p′′n(x) = 0 for all x ∈ [0,∞). Hence, x > tn implies that p′′(x) = 0.

Theorem 3.2.4. Let E and F be PP ([0,∞)). Let p(x) = x and q(y) = y. Then Ep⊗̄Fq is

not an ideal in E⊗̄F .

Proof. Let h(x, y) = 1⊗ y2 ∧ x2 ⊗ 1 ∈ E⊗̄F . If h ∈ Ep⊗̄Fq, there exist finite subsets I, J of

N such that

h(x, y) = sup
i∈I

inf
j∈J

{gij(x, y)}
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for some gij ∈ Ep ⊗ Fq. For each gij, there exist n ∈ N, pr ∈ Ep, and qr ∈ Fq such that

gij(x, y) =
n∑
r=1

pr(x)⊗ qr(y).

Since pr ∈ Ep and qr ∈ Fq, there exist λr ∈ R+ such that

|gij(x, y)| ≤
n∑
r=1

|pr(x)⊗ qr(y)| ≤
n∑
r=1

λr(x⊗ y) =

(
n∑
r=1

λr

)
x⊗ y.

By Lemma 3.2.3, for every i ∈ I and j ∈ J there exists kij ∈ R+ such that

x > kij and y > kij =⇒ (gij)xx = (gij)yy = 0, (3.1)

where (gij)xx, (gij)yy are two of the second order partial derivatives of gij with respect to x

and y, respectively.

Let k = supij{kij}, D = {[k,∞) × [k,∞)}, and Sij = {(x, y) ∈ D | h(x, y) = gij(x, y)}.

Note from the definition of h(x, y) that D =
⋃
i∈I,j∈J Sij. It follows that int(

⋃
i∈I,j∈J Sij)

is nonempty, and there exist i ∈ I, j ∈ J such that int(Sij) ̸= ∅. Therefore, there exists

(c, d) ∈ D and ϵ > 0 such that B((c, d), ϵ) ⊆ int(Sij). That is, h(x, y) = gij(x, y) for every

(x, y) ∈ B((c, d), ϵ) and for such i ∈ I, j ∈ J . It follows from (3.1) that

hxx(x, y) = hyy(x, y) = 0
(
(x, y) ∈ B((c, d), ϵ)

)
. (3.2)

On the other hand, by the very definition of h,

if a > b, then hyy(a, b) = 2 ̸= 0;

if a < b, then hxx(a, b) = 2 ̸= 0.

This contradicts (3.2). Then h /∈ Ep⊗̄Fq. Since h ≤ |p⊗ q|, it follows that Ep⊗̄Fq is not an

ideal in E⊗̄F .
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Notice that Theorem 3.1.9 shows that the Fremlin tensor product of ideals is an ideal

under very extreme conditions. However, Theorem 3.2.4 proves that for ideals I and J in

Archimedean Riesz spaces E and F , I⊗̄J need not be an ideal in E⊗̄F .
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4. THE FREMLIN TENSOR PRODUCT AND DEDEKIND COMPLETENESS

We return to a Riesz space property from the main inclusion theorem in Section 1.4,

namely, Dedekind completeness. Chapter 4 characterizes when, for any infinite cardinal α,

the Fremlin tensor product of two Archimedean Riesz spaces is Dedekind α-complete. We

thank Anton Schep for providing us with [34] and for the slides of his talk [30] where he

proved Theorem 4.1.1 for the Banach lattice tensor product.

4.1 DEDEKIND α-COMPLETENESS

While the terms Dedekind complete and Dedekind σ-complete are common in the liter-

ature, we prove this chapter’s results more generally for Dedekind “α-completeness,” where

α is any infinite cardinal. Our conclusion is negative in the sense that the preservation of

even Dedekind σ-completeness “rarely” happens.

Theorem 4.1.1. Let X and Y be compact, Hausdorff spaces and α an infinite cardinal. Let

C(X) and C(Y ) be Dedekind α-complete. C(X)⊗̄C(Y ) is Dedekind α-complete if and only

if X or Y is finite.

Proof. Assume C(X)⊗̄C(Y ) is Dedekind α-complete. C(X × Y ) is a uniform completion of

C(X)⊗̄C(Y ) by Theorem 2.3.12. Since C(X)⊗̄C(Y ) is uniformly complete by assumption,

C(X)⊗̄C(Y ) is Riesz isomorphic to C(X×Y ). Consequently, X×Y is α-disconnected which

implies X × Y is an F -space (e.g. [12]). The product of two infinite compact spaces cannot

be an F -space (14Q of [17]), so X or Y is finite.

Assume that Y is finite. Then C(Y ) ∼= C({1, · · · , n}) for some n ∈ N. Let B be a

bounded subset of C(X)⊗̄C(Y ) with |B| ≤ α. For every h ∈ B, there is {hi}ni=1 ∈ C(X)
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such that hi(x) = h(x, i) for x ∈ X and i ∈ {1, · · · , n}. For each i ∈ {1, · · · , n}, note that

{hi(x)}h∈B is a bounded subset of C(X) with cardinality no greater than α . Since C(X) is

Dedekind α-complete,

sup
h∈B

h(x, y) =


suph∈B h1(x) if y = 1

...
...

suph∈B hn(x) if y = n

exists for every (x, y) ∈ X × Y . Define gi(x) = suph∈B hi(x). Since 1{i} ∈ C({1, · · · , n}), we

have

sup
h∈B

h =
n∑
i=1

gi ⊗ 1{i}

is an element of C(X)⊗̄C({1, · · · , n}). Thus, C(X)⊗̄C(Y ) is Dedekind α-complete.

Note that the second half of Theorem 4.1.1 follows from Theorem 2.1.6. Indeed, if X

or Y is finite, then C(X) ⊗ C(Y ) = C(X × Y ). Thus, C(X)⊗̄C(Y ) = C(X × Y ). Since

the product of an α-disconnected space with a finite space is α-disconnected, C(X × Y ) is

Dedekind α-complete.

Definition 4.1.2. Let E be an Archimedean Riesz space and let I be a nonempty set.

c00(I, E) is the set of all maps f : I → E such that

S(f) = {x ∈ I : f(x) ̸= 0}

is finite. We write c00(I) in place of c00(I,R).

For f , g ∈ c00(I, E), f ≤ g if and only if f(x) ≤ g(x) in E for every x ∈ I. With this

pointwise ordering, c00(I, E) is an Archimedean Riesz space.

Lemma 4.1.3. Let I be a nonempty set. Then c00(I)⊗̄E and c00(I, E) are Riesz isomorphic.

Proof. We show that c00(I, E) has the universal property for the Fremlin tensor product of

c00(I) and E.
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Define φ : c00(I)× E → c00(I, E) by

φ(f, e) = fe (f ∈ c00(I), e ∈ E),

where fe(x) = f(x)e for every x ∈ X. Let f1, f2 ∈ c00(I), e ∈ E, and x ∈ X. Since E is a

vector space,

φ(f1 + f2, e) =(f1 + f2)e

=(f1 + f2)(x)e

=f1(x)e+ f2(x)e

=φ(f1, e) + φ(f2, e).

Let e1, e2 ∈ E, f ∈ c00(I), and x ∈ X. Since E is a vector space,

φ(f, e1 + e2)(x) =f(e1+e2)

=f(x)(e1 + e2)

=f(x)e1 + f(x)e2)

=φ(f, e1) + φ(f, e2).

Thus, φ is bilinear. For f1, f2 ∈ c00(I), e ∈ E+, and x ∈ X,

φ(f1 ∨ f2, e)(x) =(f1 ∨ f2)e

=(f1 ∨ f2)(x)e

=f1(x)e ∨ f2(x)e

=φ(f1, e) ∨ φ(f2, e).
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For f ∈ c00(I)
+, e1, e2 ∈ E, and x ∈ X,

φ(f, e1 ∨ e2)(x) =f(x)(e1 ∨ e2)

=f(x)e1 ∨ f(x)e2

=φ(f, e1) ∨ φ(f, e2).

Thus, φ is a Riesz bimorphism.

Let F be an Archimedean Riesz space, and suppose ψ : c00(I) × E → F is a Riesz

bimorphism. If g ∈ c00(I, E), then g is uniquely represented by g =
∑

y∈S(g) g(y)1{y}. Then

g(x) =
∑
y∈S(g)

φ(1{y}, g(y))(x) (x ∈ I)

and g is in the Riesz space generated by the range of φ. Define T : c00(I, E) → F by

T (g) =
∑

y∈S(g) ψ(1{y}, g(y)). Let λ ∈ R and f , g ∈ c00(I, E). Then

T (λf + g) =T

λ ∑
y∈S(f)

f(y)1{y} +
∑
y∈S(g)

g(y)1{y}


=T

 ∑
y∈S(f)∪S(g)

(λf + g)(y)1{y}


=

∑
y∈S(f)∪S(g)

ψ(1{y}, (λf + g)(y))

=
∑

y∈S(f)∪S(g)

(
ψ(1{y}, λf(y)) + ψ(1{y}, g(y))

)
=λ

∑
y∈S(f)

ψ(1{y}, f(y)) +
∑
y∈S(g)

ψ(1{y}, g(y))

=λT (f) + T (g).

Thus, T is linear.
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Let f, g ∈ c00(I, E) with f ∧g = 0. Then S(f)∩S(g) = ∅. Since ψ is a Riesz bimorphism,

T (f) ∧ T (g) =T (
∑
y∈S(f)

f(y)1{y}) ∧ T (
∑
y∈S(g)

g(y)1{y})

=
∑
y∈S(f)

T (f(y)1{y}) ∧
∑
y∈S(g)

T (g(y)1{y})

=
∑
y∈S(f)

ψ(1{y}, f(y)) ∧
∑
y∈S(g)

ψ(1{y}, g(y))

= 0.

Then T is a Riesz homomorphism by Theorem 1.1.8 (iii), and ψ = T ◦ φ. Consequently,

c00(I, E) ∼= c00(I)⊗̄E.

Theorem 4.1.4. Let I be a nonempty set and let E be an Archimedean Riesz space. If E

is Dedekind α-complete for an infinite cardinal α, then c00(I)⊗̄E is Dedekind α-complete.

Proof. Let B be a bounded subset of c00(I, E) such that |B| is less than α. Then there exists

an f ∈ c00(I, E) such that S(h) ⊆ S(f) for every h ∈ B. From the Dedekind α-completeness

of E it follows that suph∈B h(x) exists for each x ∈ I. Define

g(x) = sup
h∈B

h(x).

S(g) is finite since S(g) ⊆ S(f) and S(f) is finite. Then g ∈ c00(I, E). By Lemma 4.1.3,

c00(I)⊗̄E ∼= c00(I, E) is Dedekind α-complete.

Theorem 4.1.5. Let I be a nonempty set and let E be an Archimedean Riesz space. If E

is Dedekind complete, then c00(I)⊗̄E is Dedekind complete.

Proof. Let B be a bounded subset of c00(I, E). Then B has some cardinality, say α. E is in

particular Dedekind α-complete, so supB exists in c00(I)⊗̄E by Theorem 4.1.4.
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Theorem 4.1.6. (61.4 of [26]) Let E be a Riesz space, not consisting exclusively of the null

element. E ∼= c00(X) for some nonempty point set X if and only if every principal ideal in

E is a finite dimensional Archimedean Riesz space.

In Theorem 4.1.7, we combine our results on ideals and Dedekind α-completeness to

characterize exactly when the Fremlin tensor product of two Dedekind α-complete Riesz

spaces is Dedekind α-complete.

Theorem 4.1.7. Let α be an infinite cardinal. Suppose E and F are Dedekind α-complete.

The following are equivalent.

1. Ex⊗̄Fy is Dedekind α-complete for every x ∈ E+ and y ∈ F+.

2. [Ex is finite dimensional for every x ∈ E+] or [Fy is finite dimensional for every

y ∈ F+].

3. E ∼= c00(I) for a set I ⊆ E or F ∼= c00(J) for a set J ⊆ F .

4. E⊗̄F ∼= c00(I, F ) for a set I ⊆ E or E⊗̄F ∼= c00(J,E) for a set J ⊆ F .

5. E⊗̄F is Dedekind α-complete.

Proof. (1) =⇒ (2) By the Kakutani representation theorem, there exist compact, Hausdorff

topological spaces X, Y such that Ex ∼= C(X) and Fy ∼= C(Y ). If Ex⊗̄Fy is Dedekind α-

complete, then X or Y is finite by Theorem 4.1.1. Then Ex or Fy is finite dimensional. We

claim that this holds either for every x ∈ E+ or for every y ∈ F+. Indeed, if there exists

u ∈ E+, v ∈ F+ such that Eu, Fv are infinite dimensional, then Eu⊗̄Fv cannot be Dedekind

α-complete by Theorem 4.1.1. Thus, either Ex is finite dimensional for every x ∈ E+ or Fy

is finite dimensional for every y ∈ F+.

(2) =⇒ (3) Follows from Theorem 4.1.6.

(3) =⇒ (4) Follows from Lemma 4.1.3.

(4) =⇒ (5) Follows from Theorem 4.1.4.
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(5) =⇒ (1) By Theorem 3.1.9, the fact that E⊗̄F is Dedekind α-complete implies that

Ex⊗̄Fy is an ideal for every x ∈ E+, y ∈ F+. Thus, Ex⊗̄Fy is Dedekind α-complete.

Theorem 4.1.7 can be generalized to a Dedekind β-complete space E and a Dedekind

γ-complete space F for β ̸= γ. In this case, min{β, γ} replaces α in statements (1) and (5).

We emphasize the result for α a countable cardinal, in which case we use the term Dedekind

σ-complete. Since Theorem 4.1.7 holds for any infinite cardinal, we have the concluding

corollary.

Corollary 4.1.8. Suppose E and F are Dedekind complete. The following are equivalent.

1. Ex⊗̄Fy is Dedekind complete for every x ∈ E+ and y ∈ F+.

2. [Ex is finite dimensional for every x ∈ E+] or [Fy is finite dimensional for every

y ∈ F+].

3. E ∼= c00(I) for a set I ⊆ E or F ∼= c00(J) for a set J ⊆ F .

4. E⊗̄F ∼= c00(I, F ) for a set I ⊆ E or E⊗̄F ∼= c00(J,E) for a set J ⊆ F .

5. E⊗̄F is Dedekind complete.
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5. BOOLEAN ALGEBRAS

5.1 BOOLEAN ALGEBRA PRELIMINARY MATERIAL

Fremlin asserts in exercise 315Y(f) of [16] that the Boolean algebra tensor product of two

nontrivial Boolean algebras is complete if and only if one is finite and the other is complete.

In Theorem 4.1.7, we proved that the Fremlin tensor product of two Dedekind complete Riesz

spaces rarely is Dedekind complete. In fact, if the tensor product is Dedekind complete, then

one of the two spaces is Riesz isomorphic to the set of all finite-valued functions on a subset

of that space. To connect 315Y(f) of [16] with Theorem 4.1.7, we employ Carathéodory

spaces of place functions on a Boolean algebra. The main result in this chapter is Theorem

5.2.1 with applications given in Section 5.3.

The necessary terms for Boolean algebras, their free product, and Carathéodory spaces

of place functions are provided. As a general reference, we reserve A, B for Boolean algebras

and E, F , G for Archimedean Riesz spaces throughout. For Boolean algebras, see Chapter

31 of [16].

BOOLEAN ALGEBRAS AND THEIR FREE PRODUCT

A lattice X is called distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
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for all x, y, z in X. Equivalently, X is distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all

x, y, and z in X (Theorem 2.2 of [36]). An element y ∈ X is a complement of an element

x ∈ X if x ∧ y = 0 and x ∨ y = 1. Thereupon we write y = x′.

Definition 5.1.1. A Boolean algebra is a distributive lattice with zero 0 and unit 1 having

the property that every element has a complement.

Two elements x and y of a Boolean algebra are called disjoint if x∧ y = 0, in which case

we write x ⊥ y. Two subsets A and B of a Boolean algebra are disjoint if x ⊥ y for every

x ∈ A and y ∈ B, in which case we write A ⊥ B. We define the disjoint sum of two elements

x and y in a Boolean algebra by

x⊕ y = (x ∧ y′) ∨ (x′ ∧ y).

A Boolean algebra is complete if every nonempty subset has a supremum.

Definition 5.1.2. (312F of [16]) Let A and B be Boolean algebras. A function χ : A → B

is said to be a Boolean homomorphism if for all x, y ∈ A,

(i) χ(x ∧ y) = χ(x) ∧ χ(y);

(ii) χ(x⊕ y) = χ(x)⊕ χ(y);

(iii) χ(1A) = 1B.

A bijective Boolean homomorphism is called a Boolean isomorphism. If there exists a Boolean

isomorphism χ : A → B, then the Boolean algebras A and B are said to be Boolean isomor-

phic.

Proposition 312H of [16] proves additionally that every Boolean homomorphism preserves

finite suprema, that is χ(x ∨ y) = χ(x) ∨ χ(y) for every x, y ∈ A.

The Stone space of a Boolean algebra A is the set Z of nonzero ring homomorphisms

from A to Z2. Set

â = {z | z ∈ Z, z(a) = 1}.
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By Stone’s Theorem (see, for instance, 311E of [16]), the canonical map

a 7→ â | A → P(Z), (a ∈ A)

is an injective ring homomorphism which we call the Stone representation. For more on

Stone spaces, see [16] where Fremlin uses them in order to define a Boolean algebra tensor

product, called the free product.

Definition 5.1.3. (Fremlin, 315I of [16])

(i) Let {Ai}i∈I be a family of Boolean algebras. For each i ∈ I, let Zi be the Stone space

of Ai. Set Z =
∏

i∈I Zi, with the product topology. Then the free product of {Ai}i∈I

is the algebra of open-and-closed sets in Z, denoted
⊗

i∈I Ai.

(ii) For i ∈ I and a ∈ Ai, the set â ⊆ Zi representing a is an open-and-closed subset of Zi;

because z 7→ z(i) : Z → Zi is continuous,

ϵi(a) = {z | z(i) ∈ â}

is open-and-closed, so belongs to A. In this context, ϵi : Ai → A is called the canonical

map.

In the following theorem, we list the material from 315J and 315K of [16] that will be

used in later proofs.

Theorem 5.1.4. Let {Ai}i∈I be a family of Boolean algebras, with free product A.

(i) The canonical map ϵi : Ai → A is a Boolean homomorphism for every i ∈ I.

(ii) For any Boolean algebra B and any family {φi}i∈I such that φi is a Boolean homomor-

phism from Ai to B for every i, there is a unique Boolean homomorphism φ : A → B

such that φi = φ ◦ ϵi for each i.
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(iii) Write C for the set of those members of A expressible in the form infj∈J ϵj(aj), where

J ⊆ I is finite and aj ∈ Aj for every j. Then every member of A is expressible as the

supremum of a disjoint finite subset of C.

(iv) A = {0A} if and only if there is some i ∈ I such that Ai = {0Ai
}.

(v) If Ai ̸= {0A} for every i ∈ I, then ϵi is injective for every i ∈ I.

(vi) Let Ai ̸= {0A} for every i ∈ I. If J ⊆ I is finite and aj is a nonzero member of Aj for

each j ∈ J , then infj∈J ϵj(aj) ̸= 0.

BOOLEAN ALGEBRA OF BANDS

As an intermediary between Archimedean Riesz spaces and Boolean algebras, we consider

Boolean algebras of bands.

Theorem 5.1.5. Let E be a Riesz space. Define

B(E) = {B ⊆ E | B is a band}.

(i) {0} and E are elements of B(E) (2.2 (i) of [13]);

(ii) intersections of bands are bands (2.2 (ii) of [13]);

(iii) for any subset D of E, the disjoint complement of D, which is

Dd = {f ∈ E | |f | ∧ |g| = 0 for all g ∈ D},

is an element of B(E) (3.3 of [13]).

Theorem 5.1.6. (22.6, 22.8 of [26]) Let E be a Riesz space. B(E) is an order complete

distributive lattice. B(E), partially ordered by inclusion, is a Boolean algebra if and only if

E is Archimedean.
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In order to introduce B(E) as a Boolean algebra, we outline the structure used in the

proof of the preceding theorem. B(E) is partially ordered by

“B1 ≤ B2 whenever B1 is contained in B2.”

For every pair of bands B1 and B2 in E, the infimum B1∧B2, which is defined to be B1∩B2,

exists in B(E). There are instances when B1 + B2 is not a band (page 14 of [13]). Thus,

B1∨B2 is defined to be [B1+B2], the band generated by B1+B2. In B(E), the complement

of B is Bd. The zero is {0} and the unit is E.

Theorem 5.1.7. (7.8 of [36]) The band [A] generated by the ideal A in the Riesz space E

consists of all f ∈ E satisfying

|f | = sup{u | u ∈ A, 0 ≤ u ≤ |f |}.

Theorem 5.1.8. (Infinite distributive laws, 6.1 of [36]) Let D be a subset of a Riesz space

E possessing a supremum, i.e., f0 = supD = sup{f | f ∈ D} exists. Then, for any g ∈ E,

we have

f0 ∧ g = sup{f ∧ g | f ∈ D}.

Similarly, if f1 = infD exists, then

f1 ∨ g = inf{f ∨ g | g ∈ D}.

Lemma 5.1.9. Let E be a Riesz space and f , g ∈ E. Then |f | ∧ |g| = 0 implies [f ] ⊥ [g].

Proof. Assume |f | ∧ |g| = 0 in E. For h1 ∈ Ef and h2 ∈ Eg, find λ1 and λ2 ∈ R+ such that

|h1| ≤ λ1|f | and |h2| ≤ λ2|g|. Then

|h1| ∧ |h2| ≤ max{λ1, λ2}(|f | ∧ |g|) = 0.

Consequently, Ef ⊥ Eg.
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Let h3 ∈ [f ] and h4 ∈ [g]. By Theorem 5.1.7,

|h3| = sup{u | u ∈ Ef , 0 ≤ u ≤ |h3|},

|h4| = sup{v | v ∈ Eg, 0 ≤ v ≤ |h4|}.

Then by the infinite distributive laws,

|h3| ∧ |h4| =sup{u | u ∈ Ef , 0 ≤ u ≤ |h3|} ∧ sup{v | v ∈ Eg, 0 ≤ v ≤ |h4|}

=sup{u ∧ [sup{v | v ∈ Eg, 0 ≤ v ≤ |h4|}] | u ∈ Ef , 0 ≤ u ≤ |h3|}

=sup{sup{u ∧ v | v ∈ Eg, 0 ≤ v ≤ |h4|} | u ∈ Ef , 0 ≤ u ≤ |h3|}

= 0.

Thus, [f ] ⊥ [g].

Theorem 5.1.10. (26.10 of [26]) If the Archimedean Riesz space E has the property that

any set of mutually disjoint nonzero elements is finite, then E is of finite dimension.

Lemma 5.1.11. If E is an infinite dimensional Archimedean Riesz space, then B(E) is not

finite.

Proof. By the contrapositive of Theorem 5.1.10, there is an infinite set of mutually disjoint

nonzero elements in E. Thus, there exists an infinite number of mutually disjoint bands in

E by Lemma 5.1.9.

CARATHÉODORY SPACES OF PLACE FUNCTIONS

Definition 5.1.12. (page 40 of [2]) Let E be a Riesz space and e ∈ E+. Then x ∈ E+ is

said to be a component of e whenever x ∧ (e− x) = 0.
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The collection of all components of e, denoted C(e), is a Boolean algebra under the

partial ordering induced by E (page 40 of [2]). With e as an order unit, a connection be-

tween Archimedean Riesz spaces and Boolean algebras is described explicitly in the following

theorem.

Theorem 5.1.13. (Buskes, de Pagter, van Rooij, 4.1 of [7]) Let A be a Boolean algebra.

There exists an Archimedean Riesz space E with an order unit e with the following properties.

(i) There exists a Boolean isomorphism χ : A → C(e);

(ii) E is the linear span of C(e).

(E,χ) is unique up to isomorphism. It is denoted by C(A) and is called the Carathéodory

space of place functions on A.

Let λi, γj ∈ R be nonzero; n, m ∈ N; xi ∈ A be pairwise disjoint; and yj ∈ A be pairwise

disjoint. Two elements

f =
n∑
i=1

λiχ(xi) and g =
m∑
j=1

γjχ(yj)

are equivalent if
∨n
i=1 xi =

∨m
j=1 yj and if λi = γj whenever xi ∧ yj ̸= 0. We call the set of all

equivalence classes C(A). Henceforth, we take f =
∑n

i=1 λiχ(xi) to represent all elements of

C(A) that are equivalent to f .

We define addition in C(A) in the style of Goffman in [19] and Jakubik in [23]. For a

different approach, see [7]. For x, y ∈ A, let x −1 y be the complement of x ∧ y relative to

x, that is, x ∧ (x ∧ y)′. Then addition in C(A) is defined by

f + g =
n∑
i=1

m∑
j=1

(λi + γj)χ(xi ∧ yj) +
n∑
i=1

λiχ(xi −1

m∨
j=1

yj) +
m∑
j=1

γjχ(yj −1

n∨
i=1

xi)

where in the summation only those terms are taken into account in which λi + γj ̸= 0 and

the elements xi ∧ yj, xi −1

∨
yj, and yj −1

∨
xi are nonzero.
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Addition is well-defined in C(A), for if f and g are equivalent,
∨
i xi =

∨
j yj and λi = γj

whenever xi ∧ yj ̸= 0. Thus,

f − g =
∑
i,j

(λi − γj)χ(xi ∧ yj) +
∑
i

λiχ(xi −1

m∨
j=1

yj)−
∑
j

γjχ(yj −1

n∨
i=1

xi)

= 0.

Definition 5.1.14. A Boolean algebra is complete if every subset has a supremum.

Jakubik proves in [23] that the completeness of a Boolean algebra is equivalent to the

Dedekind completeness of its Carathéodory space of place functions. However, his proposi-

tions assume “complete distributivity.” Since this work has no need for a Boolean algebra to

be completely distributive, we prove Theorem 5.1.16. The proof is adapted from Jakubik’s

outline in Propositions 5.6 and 5.3 (a2) of [23].

Definition 5.1.15. (Jakubik, page 231 of [23]) Let Y be a sublattice of a lattice X. Y is

said to be a regular sublattice of X if:

(i) whenever x0 ∈ Y and ∅ ≠ X ⊆ Y such that x0 = supY X, then x0 = supX X; and

(ii) whenever x1 ∈ Y and ∅ ≠ X ⊆ Y such that x1 = infY X, then x1 = infX X.

Theorem 5.1.16. Let A be a Boolean algebra. A is complete if and only if C(A) is Dedekind

complete.

Proof. Assume that A is complete. Let D be a bounded subset of C(A). Then there exists

g ∈ C(A) such that g ≥ f for every f ∈ C(A). Find λi ∈ R, n ∈ N, and xi ∈ A such that

g =
∑n

i=1 λiχ(xi). Set

x = x1 ∨ · · · ∨ xn and λ = max{λ1, · · · , λn}.
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Then D ⊆ [0, λχ(x)]. By assumption, the interval [0, x] is complete in A. It follows from

Corollary 4.4 of [23] that A is a regular subset of C(A). Then the interval [0, χ(x)] is complete

as a subset of C(A). In particular, [0, λχ(x)] is complete, so sup(D) exists in C(A).

To prove sufficiency, assume that C(A) is complete. Let χ : A → C(e) be the Boolean

isomorphism from (i) of Theorem 5.1.13. Let D be a subset of A. Then χ(D) is a bounded

subset of C(e). Since C(A) is Dedekind complete, supχ(D) exists in C(A)+. For every

x ∈ D, χ(x) is a component of χ(1A). Thus, supχ(D) = 2 supχ(D) ∧ χ(1A) so that

0 = supχ(D) ∧ (χ(1A)− supχ(D)). By definition, supχ(D) is a component of e.

Let y = χ−1(supχ(D)). Since χ is a Boolean homomorphism, y is an upper bound for D.

Suppose there exists y′ such that x ≤ y′ < y for every x ∈ D. Then χ(y′) ≥ supx∈D χ(x) =

χ(y). Thus, χ(y′) = χ(y). Since χ is one-to-one, y′ = y. Therefore, y = sup(D).

5.2 THE FREMLIN TENSOR PRODUCT OF CARATHÉODORY SPACES OF PLACE

FUNCTIONS

In this section, we relate Boolean algebrasA, B, andA⊗B to their respective Carathéodory

spaces of place functions C(A), C(B), and C(A⊗B). The notation of Theorem 5.1.13 is used

with the addition of subscripts to indicate which Boolean algebra is at work. The symbols

in (1), (2), and (3) below will be used freely.

(1) χA : A → C(A), χB : B → C(B), and χ̂ : A⊗B → C(A⊗B) are the Boolean isomor-

phisms from Theorem 5.1.13.

(2) C(A), C(B), and C(A⊗B) have units χA(1A), χB(1B), and χ̂(1A⊗B) respectively.

(3) ϵA : A → A ⊗ B and ϵB : B → A ⊗ B are the canonical Boolean homomorphisms in

definition 5.1.3.

Theorem 5.2.1. C(A)⊗̄C(B) and C(A⊗ B) are Riesz isomorphic.

Proof. Assume that A and B are nontrivial Boolean algebras. For f ∈ C(A), there exist n ∈

N, pairwise disjoint xi ∈ A, and nonzero λi ∈ R such that f =
∑n

i=1 λiχA(xi). For g ∈ C(B),
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there exist m ∈ N, pairwise disjoint uj ∈ B, and nonzero γj ∈ R so g =
∑m

j=1 γjχB(uj).

Define ψ : C(A)× C(B) → C(A⊗ B) by

ψ(f, g) =ψ

(
n∑
i=1

λiχA(xi),
m∑
j=1

γjχB(uj)

)

=
n∑
i=1

m∑
j=1

λiγjχ̂(ϵA(xi) ∧ ϵB(uj)).

Claim: The definition of ψ is independent of the representations chosen for f and g.

Suppose that there exists n0 ∈ N, pairwise disjoint xi0 ∈ A, and nonzero λi0 ∈ R such that

f0 =
∑n0

i0=1 λi0χA(xi0) is equivalent to f in C(A). Then ψ(f, g) and ψ(f0, g) are respectively

n∑
i=1

m∑
j=1

λiγjχ̂(ϵA(xi) ∧ ϵB(uj)) and

n0∑
i0=1

m∑
j=1

λi0γjχ̂(ϵA(xi0) ∧ ϵB(uj)).

Fix j. It follows from the equivalence of f and f0 that

n∨
i=1

(ϵA(xi) ∧ ϵB(uj)) =

(
ϵA(

n∨
i=1

xi)

)
∧ ϵB(uj)

=

(
ϵA(

n0∨
i0=1

xi0)

)
∧ ϵB(uj)

=

n0∨
i0=1

(ϵA(xi0) ∧ ϵB(uj)).

Now suppose [ϵA(xi) ∧ ϵB(uj)] ∧ [ϵA(xi0) ∧ ϵB(uj)] ̸= 0. Then it follows from Theorem 5.1.4

(iv) that ϵA(xi) ∧ ϵA(xi0) = ϵA(xi ∧ xi0) ̸= 0. By (v) of the same theorem, ϵA is injective.

Then xi ∧ xi0 ̸= 0 in which case λi = λi0 . Thus, λiγj = λi0γj whenever [ϵA(xi) ∧ ϵB(uj)] ∧

[ϵA(xi0) ∧ ϵB(uj)] ̸= 0.

We have shown that
∑

i λiγjχ̂(xi⊗uj) and
∑

i0
λi0γjχ̂(xi0⊗uj) are equivalent in C(A⊗B)

for every j, and thus ψ(f, g) = ψ(f0, g). Symmetrically, the map ψ does not depend on the

representation in the second variable.
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Let f1 = f and f2 =
∑p

k=1 δkχA(yk) for nonzero δk ∈ R, p ∈ N and pairwise disjoint

yk ∈ A. Recall that f1 + f2 is defined to be

∑
i

∑
k

(λi + δk)χA(xi ∧ yk) +
∑
i

λiχA(xi−1

∨
k

yk) +
∑
k

δkχA(yk−1

∨
i

xi).

Claim: ψ is bilinear.

ψ(f1 + f2, g)

=ψ

(∑
i

λiχA(xi) +
∑
k

δkχA(yk),
∑
j

γjχB(uj)

)

=
∑
i,k,j

(λi + δk)γjχ̂ (ϵA(xi ∧ yk) ∧ ϵB(uj)) +
∑
i,j

λiγjχ̂

(
ϵA(xi−1

∨
k

yk) ∧ ϵB(uj)

)

+
∑
k,j

δkγjχ̂

(
ϵA(yk−1

∨
i

xi) ∧ ϵB(uj)

)

=
∑
i,j

[∑
k

λiγjχ̂ (ϵA(xi ∧ yk) ∧ ϵB(uj)) + λiγjχ̂

(
ϵA(xi−1

∨
k

yk) ∧ ϵB(uj)

)]

+
∑
k,j

[∑
i

δkγjχ̂ (ϵA(xi ∧ yk) ∧ ϵB(uj)) + δkγjχ̂

(
ϵA(yk−1

∨
i

xi) ∧ ϵB(uj)

)]

=
∑
i,j

λiγj

[
χ̂

(∨
k

ϵA(xi ∧ yk) ∧ ϵB(uj)

)
+ χ̂

(
ϵA(xi−1

∨
k

yk) ∧ ϵB(uj)

)]

+
∑
k,j

δkγj

[
χ̂

(∨
i

ϵA(xi ∧ yk) ∧ ϵB(uj)

)
+ χ̂

(
ϵA(yk−1

∨
i

xi) ∧ ϵB(uj)

)]
(∗)

=
∑
i,j

λiγjχ̂(ϵA(xi) ∧ ϵB(uj)) +
∑
k,j

δkγjχ̂(ϵA(yk) ∧ ϵB(uj))

=ψ(f1, g) + ψ(f2, g),

where (∗) is justified because yk ⊥ yk′ for all k ̸= k′. Symmetrically, ψ(f, g1 + g2) =

ψ(f, g1) + ψ(f, g2) for f ∈ C(A) and g1, g2 ∈ C(B). It follows from the definition of ψ that

ψ(λf, g) = ψ(f, λg) = λψ(f, g)
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for every λ ∈ R.

Claim: ψ is a Riesz bimorphism.

Assume f1 ∧ f2 = 0 and g ∈ C(B)+. Using the same representations as above, xi ⊥ yk for all

i and k. Then since the maps χ̂ and ϵA are Boolean homomorphisms and xi ∧ yk = 0 for all

i, k,

ψ(f1, g) ∧ ψ(f2, g) =ψ

(∑
i

λiχA(xi),
∑
j

γjχB(uj)

)
∧ ψ

(∑
k

δkχA(yk),
∑
j

γjχB(uj)

)

=

(∑
i,j

(λiγj)χ̂(ϵA(xi) ∧ ϵB(uj))

)
∧

(∑
k,j

(δkγj)χ̂(ϵA(yk) ∧ ϵB(uj))

)

= 0.

Likewise if f ∈ C(A)+ and g1 ∧ g2 = 0 in C(B), then ψ(f, g1) ∧ ψ(f, g2) = 0. By Theorem

1.1.8, ψ is a Riesz bimorphism.

It follows from the universal property of the Fremlin tensor product that there exists a

unique Riesz homomorphism T : C(A)⊗̄C(B) → C(A⊗ B) such that ψ = T ◦ ⊗.

C(A)× C(B)
ψ

��

⊗ // C(A)⊗̄C(B)

Tvv
C(A⊗ B)

Step 1: T is onto.

Let h ∈ C(A⊗B). Then h =
∑n

i=1 λiχ̂(ei) for some ei ∈ A⊗B, n ∈ N, and nonzero λi ∈ R.

Fix i ∈ {1, · · · , n}. Since ei ∈ A ⊗ B, by Theorem 5.1.4 (iii) there exist a finite disjoint

subset {ϵA(ak) ∧ ϵB(bk)}mk=1 (m ∈ N) of A⊗ B such that

ei =
m∨
k=1

ϵA(ak) ∧ ϵB(bk).
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Then it follows from the definition of ψ that

χ̂(ei) =χ̂

(
m∨
k=1

ϵA(ak) ∧ ϵB(bk)

)

=
m∨
k=1

χ̂(ϵA(ak) ∧ ϵB(bk))

=
m∨
k=1

ψ(χA(ak), χB(bk))

=
m∨
k=1

T ◦ ⊗(χA(ak), χB(bk)).

Since T preserves finite suprema, χ̂(ei) is in the image of T for every i. It follows from the

linearity of T that h is in the image of T .

Step 2: T is one-to-one.

Suppose f ∈ C(A)⊗C(B), the algebraic tensor product of C(A) and C(B), such that f ̸= 0.

Then there exist n ∈ N, nonzero λk ∈ R, and nontrivial xk ∈ A, uk ∈ B such that

f =
n∑
k=1

λkχA(xk)⊗ χB(uk).

Since ϵA, ϵB, and χ̂ are injective Boolean isomorphisms,

T (f) =T

(
n∑
k=1

λkχA(xk)⊗ χB(uk)

)

=
n∑
k=1

λkψ (χA(xk), χB(uk))

=
n∑
k=1

λkχ̂(ϵA(xk) ∧ ϵB(uj))

̸=0.
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If g ∈ C(A)⊗̄C(B), the Riesz space tensor product of C(A) and C(B), such that g ̸= 0, then

|g| ≠ 0. By Theorem 3.1.2, for all δ > 0 there exists f ∈ C(A)+ ⊗ C(B)+ such that

0 ≤ |g| − f ≤ δχ̂(1A⊗B).

Since C(A)⊗̄C(B) is Archimedean, choose δ > 0 such that |g| ∧ δχ̂(1A⊗B) ̸= |g|. Then f

is nonzero. We have shown that T (f) ̸= 0 when 0 ̸= f ∈ C(A) ⊗ C(B). Since T is a Riesz

homomorphism, 0 < T (f) ≤ |T (g)|. Therefore, T (g) ̸= 0, and T is a Riesz isomorphism.

Consequently, C(A)⊗̄C(B) is Riesz isomorphic to C(A⊗ B).

5.3 APPLICATIONS

In this section, we provide a solution for Fremlin’s exercise 315Y(f) in [16]. The exercise

leads to an observation on Dedekind completeness in the Fremlin tensor product of place

functions and a statement on bands in the Fremlin tensor product of infinite dimensional

Archimedean Riesz spaces.

Theorem 5.3.1. (Grobler, 3.6 of [20]) Let E and F be Archimedean Riesz spaces. If the

space E⊗̄F is Dedekind complete, then both E and F are Dedekind complete.

Theorem 5.3.2. (Fremlin, 315Y(f) of [16]) Let A and B be Boolean algebras. A ⊗ B is

complete if and only if either A = {0} or B = {0} or A is finite and B is complete or B is

finite and A is complete.

Proof. If A = {0} or B = {0}, the result is trivial. Assume A and B are nontrivial Boolean

algebras.

Suppose A⊗B is complete. It follows from Theorems 5.2.1 and 5.1.16 that C(A⊗B) ∼=

C(A)⊗̄C(B) is Dedekind complete. By Theorem 5.3.1, C(A) and C(B) are Dedekind complete.

From Theorem 5.1.16, A and B are complete. It remains to show that one of the Boolean

algebras is finite.
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By Theorem 4.1.7, the Dedekind completeness of C(A)⊗̄C(B) implies that C(A) ∼= c00(I)

for a set I ⊆ C(A) or C(B) ∼= c00(J) for a set J ⊆ C(B). Since each Carathéodory space of

place functions contains a unit, C(A) or C(B) is finite dimensional. Thus, A is finite or B is

finite.

The sufficiency is proven similarly via Theorem 4.1.7.

Corollary 5.3.3. Let A and B be nontrivial Boolean algebras. C(A)⊗̄C(B) is Dedekind

complete if and only if one of A or B is finite and the other is complete.

Recall that for an Archimedean Riesz space E, its collection of bands, denoted B(E),

forms a complete Boolean algebra. Our last application shows that for Archimedean Riesz

spaces E and F , the set of bands in E⊗̄F is rarely Boolean isomorphic to B(E) ⊗ B(F ).

That is, if E and F are infinite dimensional, not every band B of E⊗̄F can be “decomposed”

into the Fremlin tensor product of a band in E and a band in F .

Corollary 5.3.4. Let E and F be infinite dimensional Archimedean Riesz spaces. Then

B(E)⊗ B(F ) is not Boolean isomorphic to B(E⊗̄F ).

Proof. By Lemma 5.1.11, neither B(E) nor B(F ) is finite. Then B(E)⊗B(F ) is not complete

by Theorem 5.3.2. However, by Theorem 5.1.6 the Boolean algebra of bands is complete for

any Archimedean Riesz space, so B(E⊗̄F ) is complete.
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6. CONCLUSION

In this final chapter, we provide connections with what has been proven in this thesis to

recent results related to Archimedean Riesz spaces and tensor products.

6.1 DEDEKIND COMPLETENESS IN FREMLIN TENSOR PRODUCTS

The absence of Dedekind completeness in the Banach lattice tensor product of Dedekind

complete Banach lattices was first exemplified by Fremlin himself in [15].

Definition 6.1.1. (1C of [15]) Let E and F be Banach lattices.

(i) Let G be another Banach lattice and φ : E×F → G be a bilinear map. Then φ induces

a map φ̂ : E ⊗F → G such that φ̂(x⊗ y) = φ(x, y) for all x ∈ E and y ∈ F . For each

φ,

||φ|| = sup{||φ(x, y)|| : ||x|| ≤ 1, ||y|| ≤ 1}.

The positive-projective norm on E ⊗ F is defined by

||u|||π| = sup ||φ̂(u)||,

where the supremum is taken over all Banach lattices G and all positive bilinear maps

φ from E × F to G with ||φ|| ≤ 1.

(ii) The Banach lattice tensor product of E and F is the completion of E⊗F under || |||π|

and is denoted by E
△⊗ F .

Example 6.1.2. (4C of [15]) If E = F = L2([0, 1]), then E
△⊗ F is not Dedekind complete.

56



In other words, we observe that the Dedekind completeness of L2([0, 1]) is not “preserved”

even in L2([0, 1])
△⊗ L2([0, 1]) which has been completed relative to the positive-projective

norm. This phenomenon was the initial motivation for questioning when the (Fremlin)

Archimedean Riesz space tensor product of Dedekind complete Riesz spaces is Dedekind

complete, which led to Theorem 4.1.7. Indeed, by applying Theorem 4.1.7, we can immedi-

ately conclude that L2([0, 1])⊗̄L2([0, 1]) is not Dedekind complete since L2([0, 1]) is not Riesz

isomorphic to c00(I) for any I ⊆ L2([0, 1]). It is to our knowledge unknown when exactly

E
△⊗ F is Dedekind complete for Dedekind complete Banach lattices E and F .

6.2 THE TENSOR PRODUCT OF IDEALS

In [11], Buskes and Van Rooij introduce bilinear maps of order bounded variation,

bounded semivariation and norm bounded variation in order to broaden the understanding

of the projective tensor product of Banach lattices. Of interest to this work, the introduction

of [11] states “it is known that the tensor product of two Riesz subspaces is a Riesz subspace

of the tensor product; it is unknown, whether the tensor product of two ideals is an ideal

in the tensor product.” Theorem 3.1.9 answers the question positively under the condition

that the Fremlin tensor product is Dedekind σ-complete, but Theorem 3.2.4 contradicts the

statement in general.

Additionally, in [5] Ben Amor, Gok, and Yaman cite Theorem 3.2.4 to demonstrate that

the Fremlin tensor product of ideals need not be an ideal in the tensor product. Their paper

proves that the Dedekind completion of the Fremlin tensor product of two ideals is again an

ideal. They go further to prove that the Dedekind completion of the Fremlin tensor product

of principal bands is again a principal band in the Dedekind completion of the Fremlin tensor

product.
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6.3 THE ORDER CONTINUITY OF THE TENSOR MAP

In [21], Grobler and Labuschagne present two approaches to constructing the Fremlin

tensor product of Archimedean Riesz spaces. In [20], Grobler continues their work by defining

various lattice tensor products in different categories of Riesz spaces. In particular, he defines

the Dedekind complete Fremlin tensor product, denoted by E⊗̄δF , which satisfies a universal

property with respect to order continuous maps.

Definition 6.3.1. (1.2 of [1]) A net {fα}α∈A of a Riesz space is said to be order convergent

to f (in symbols fα
o−→ f), if there exists a net {zβ}β∈B such that

1. zβ ↓ 0, and

2. for each β ∈ B, there exists some α0 ∈ A satisfying |fα − f | ≤ zβ for all α ≥ α0.

Definition 6.3.2. (1.53 of [2]) A linear map T : E → F between two Riesz spaces is said to

be order continuous if fα
o−→ f in E implies T (fα)

o−→ T (f) in F .

Aliprantis and Burkinshaw note that a positive linear map T : E → F between two Riesz

spaces is order continuous if and only if xα ↓ 0 in E implies T (xα) ↓ 0 in F (or equivalently,

if and only if 0 ≤ xα ↑ x in E implies T (xα) ↑ T (x) in F ). Since every Riesz homomorphism

is a positive linear map, we apply this equivalent criteria freely.

Definition 6.3.3. (page 403 of [6]) Let E, F , and G be Riesz spaces. A bilinear map

φ : E × F → G is called separately order continuous if

e 7→ φ(e, y) and f 7→ φ(x, f) (e ∈ E, f ∈ F )

are order continuous for each x ∈ E+, and each y ∈ F+.

Theorem 4.1.7 shows precisely how rarely the Fremlin tensor product is Dedekind com-

plete. E⊗̄δF is a natural solution whenever Dedekind completeness is desired in the tensor

product.
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Theorem 6.3.4. (Grobler, 5.1 of [20]) For Archimedean Riesz spaces E and F , the lattice

tensor product E⊗̄δF is the unique Dedekind complete vector lattice R (up to Riesz iso-

morphism) with the properties that there exists a Riesz bimorphism σ : E × F → R such

that

(D1) The map σ : E × F → R defined by σ(x, y) = x⊗ y is an order continuous embedding

of E ⊗ F into R.

(D2) If G is a Dedekind complete vector lattice and if ψ : E×F → G is an order continuous

Riesz bimorphism, then there exists a unique order continuous Riesz homomorphism

τ : R → G satisfying τ ◦ σ = ψ.

Proposition 3.3 and Corollary 3.4 of [20] claim that the map ⊗ : E × F → E⊗̄F is

separately order continuous for any Archimedean Riesz spaces E and F . Together with

Stephan Roberts (see [28], [8]), we provide a proof in Theorem 6.3.8. We begin by utilizing

Kakutani’s representation theorem once again to get Lemma 6.3.5.

Lemma 6.3.5. Let X, Y be compact, Hausdorff spaces. Then ⊗ : C(X)×C(Y ) → C(X)⊗̄C(Y )

is separately order continuous.

Proof. Let g ∈ C(Y )+ be nonzero and {fα}α∈A be a net in C(X) such that fα
o−→ f ∈ C(X).

Since Y is compact, choose M ∈ N such that g ≤ M1Y . There exists {zβ}β∈B ↓ 0 in C(X)

such that for every β ∈ B, there is an α0 ∈ A satisfying |fα− f | ≤ zβ whenever α ≥ α0. Fix

β ∈ B. Then for some α0 ∈ A,

| ⊗ (fα, g)−⊗(f, g)|(x, y) =| ⊗ (fα − f, g)|(x, y)

≤| ⊗ (zβ,M1Y )|(x, y)

=(zβ ⊗M1Y )(x, y)

=M · zβ(x)1Y (y)

=Mzβ(x) ↓ 0
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for all α ≥ α0. By definition 6.3.3, ⊗ is separately order continuous on C(X)× C(Y ).

Theorem 6.3.6. (1.35 of [2]) Let G be an order dense Riesz subspace of a Riesz space E,

and let D ⊆ G+ satisfying D ↓. Then D ↓ 0 holds in G if and only if D ↓ 0 in E.

Recall that if E is a uniformly complete Riesz space, Ex is Riesz isomorphic to C(X) for

some compact Hausdorff space X (Theorem 3.1.7).

Lemma 6.3.7. Let E and F be uniformly complete Archimedean Riesz spaces. The tensor

map ⊗ : E × F → E⊗̄F is separately order continuous.

Proof. Let g ∈ F+ be nonzero and fα ↑ f in E. Ef is Riesz isomorphic to C(X) for some

compact Hausdorff space X. Likewise, Fg is Riesz isomorphic to C(Y ) for some compact

Hausdorff space Y . Then by Lemma 6.3.5, we have that fα ⊗ g ↑ f ⊗ g in C(X)⊗̄C(Y ). It

follows from f ⊗ g ∈ Ef⊗̄Fg that fα ⊗ g ↑ f ⊗ g in Ef⊗̄Fg.

Since E and F are uniformly complete, Ef⊗̄Fg is order dense in (E⊗̄F )f⊗g (Lemma

3.1.8). It follows from Theorem 6.3.6 that fα ⊗ g ↑ f ⊗ g in (E⊗̄F )f⊗g. If there exists

h ∈ E⊗̄F such that h < f ⊗ g and fα ⊗ g ↑ h, then h ∈ (E⊗̄F )f⊗g, a contradiction. Thus,

fα ⊗ g ↑ f ⊗ g in E⊗̄F .

Theorem 6.3.8. Let E and F be Archimedean Riesz spaces. The tensor map ⊗ : E × F →

E⊗̄F is separately order continuous.

Proof. Let g ∈ F+ be nonzero and fα ↑ f in E. Let Ẽ, F̃ be the unique up to Riesz

isomorphism uniform completions of E, F respectively. Then since E is order dense in Ẽ,

fα ⊗ g ↑ f ⊗ g in Ẽ⊗̄F̃ by Lemma 6.3.7. Since E⊗̄F ⊆ Ẽ⊗̄F̃ , it follows that fα ⊗ g ↑ f ⊗ g

in E⊗̄F .
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functions, Trans. Amer. Math. Soc. 88 (1958), 107–120.

[20] J. Grobler, Lattice tensor products in different categories of Riesz spaces, Research Gate
(July 2022).

[21] J. Grobler and C. C. A. Labuschagne, The tensor product of Archimedean ordered vector
spaces, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 2, 331–345. MR 948918

[22] A. W. Hager, On the tensor product of function rings, ProQuest LLC, Ann Arbor, MI,
1965, Thesis (Ph.D.)–The Pennsylvania State University.

[23] J. Jakub́ık, On vector lattices of elementary Carathéodory functions, Czechoslovak
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