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ABSTRACT

Distributed detection(DD) is an area of interest in the Cognitive Radio(CR) Network

domain. With the help of geographically dispersed sensors and a Fusion Center(FC) (i.e. the

network element which generates the global network decision), a DD system can determine

the presence or absence of a primary user signal. This prevents any harmful interference by

a secondary user who is trying to gain access to the unoccupied spectrum opportunistically.

DD system gained its popularity in spectrum analysis due to the limited bandwidth of the

reporting channels between the sensors and their fusion center.

But this process can be hindered by fading, a significant issue in wireless commu-

nication. Due to fading, the received signal can be varied significantly over amplitude and

phase. This phenomenon increases the difficulty to detect a signal.

In this thesis, we studied detecting a faded signal in a Gaussian noise environment.

Fading is often modeled as a random process. Here the faded signal has been assumed to

be Rayleigh distributed. In the first part of the thesis, the detection of the signal has been

converted into a binary hypothesis testing problem. We use a DD system with two parallel

sensors for the detection process. By calculating the probability of detection error (Pe), we

examine how accurately this particular system can detect the faded signal. In the second

part, the Genetic Algorithm (GA), which is a well-known optimization algorithm, has been

used to get the sub-optimal local decision rule for the sensors. And the thesis has concluded

with the results which establish the effectiveness and validity of the proposed framework in

a practical sensor system.
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CHAPTER 1

INTRODUCTION

1.1 Distributed Detection and Fading Channels

In the area of Cognitive Radio (CR) networks, Spectrum Sensing (SS) plays a vital role

to identify spectrum availability for the secondary Radio user (SU). It is a practical and

effective way to prevent interference and collision with the primary user (PU) by finding

spectrum holes and spectrum opportunities for CR transmission. SS can be done using

either one sensor or cooperatively (Cooperative SS). It has been studied over the years that

cooperative sensing performs better than the one-sensor SS due to its capability to exploit

the advantage of spatial diversity [3]. There are mainly two ways to do the detection in the

cooperative SS system: centralized detection(CD) [4]-[5] and decentralized detection(DD)

[6].

A DD system can find a vacant licensed band for secondary transmission without any

harmful interference to the primary user with the help of geographically displaced sensors

and a fusion center (FC). In the case of DD, each sensor sends processed data to an FC

whereas, in CD, all the sensors provide raw data to FC [7]. In this thesis work, we mainly

focused on decentralized detection (DD). The DD system is becoming more appealing for

wireless communication over CD due to its bandwidth efficiency and other advantages like

the relatively low cost of sensors, the availability of high-speed communication networks,

and low computational complexity have encouraged research in this topic [8].

Bandwidth limitations and high data rate costs forced system designers to quantize the

data at each sensor before it is transmitted to the FC. The sensors of a DD network transfer

the sensed information to the FC in either of two quantized (compressed) forms: single-bit
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local decision (hard-decision) [3] and multi-bit local decision (soft-decision) [8]. The FC then

makes the final decision regarding the presence or absence of a primary user using these local

decisions.

The focus of our thesis is to analyze a dual-sensor DD system capable of detecting signals

in the presence of fading channels.. In wireless communication, the communication between

a transmitter and a receiver is not ideal and the transmitted signal may go through various

kinds of attenuation including path loss, multi-path attenuation, etc. This attenuation of

the received signal amplitude and phase variation over time or space is known as Fading.

Fading depends on various factors like time, radio frequency, and the path or position of

the transmitter/receiver. In the fixed scenario, fading depends on atmospheric conditions

such as rainfall, lightning, etc. In a mobile scenario, fading depends on obstacles over the

path which are varying over time. These obstacles create complex transmission effects on

the transmitted signal. Different fading types can be implemented through Rayleigh, Rician,

Nakagami, Weibull, and other distributions.

Among the above-mentioned models, Rayleigh is the most commonly used one in wireless

communication. In the Rayleigh fading model, it is assumed that the variation of a transmit-

ted signal through a communication channel occurs according to a Rayleigh Distribution, i.e.

that the received signal power can be treated as the sum of two signal components that are

uncorrelated, squared Gaussian random variables. In this thesis work, it has been assumed

that the received data at the two sensors can be correlated. Rayleigh fading is very use-

ful and applicable in situations where the transmitter and the receiver are not propagating

within the line-of-sight (LOS) region. Fig. 1.1 depicts the scenario.

Therefore, this fading model is a reasonable choice for radio signal propagation in heavily

built-up urban areas, as well as for tropospheric and ionospheric signal propagation [9]. For

this research work, we have chosen this particular model due to its applicability in such

scenarios.

With this added complexity of fading and correlation, the performance of the DD system
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Figure 1.1. Rayleigh Fading Chanel

Figure 1.2. Two Sensor Distributed Detection System

has been assessed. The DD system under consideration consists of two sensors and an FC.

The diagram of the system has been shown in Fig. 1.2. This DD system works as an on-off

keying system to correctly detect the status of the presence or absence of the primary user.

The effectiveness of the system has been determined by calculating the probability of

error (Pe) value. Pe value is the summation of probability of false alarm(Pf ) weighted by

the prior probability of H0 and probability of miss(Pm) weighted by the prior probability of

H1. Pf defines the probability when the system falsely identifies the presence of PU in the

spectrum. And Pm defines the probability when the PU is present but the system cannot
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detect it properly. With the combination of these two values, The probability of the system

making an error can be decided.

In the end, Genetic Algorithm (GA) has been used to optimize the process. As imple-

mented in [8], it helped to find the sub-optimal local decision rules for the sensors. In the

result section of the thesis it has been shown that the system performance closely matches

the centralized likelihood ratio test(CLRT) values with the increment of quantization levels.

1.2 Organization of Thesis

The rest of the thesis work is organized in the following manner. Chapter II describes

the network model at first. It has explained how the sensors and FC communicate with each

other and the working procedure of a receiver for a Rayleigh faded signal. In this chapter,

it has also been shown that the problem at hand has been converted into a binary hypoth-

esis testing problem. Chapter III addresses the different Bi-variate exponential distribution

models and the corresponding calculation of P e. In this section, we have also generated

Bi-variate exponential distribution using an FGM (Ferlie-Gumbel-Morgenstern) copula. Re-

sults generated using the copula model showed that this model also performs in a similar

manner to the other two established models. Chapter IV discusses the Genetic algorithm

and its complexity. Finally, the thesis concludes with the presentation of simulation results

in Chapter V and the overall conclusion in Chapter VI.
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CHAPTER 2

SYSTEM MODEL AND PROBLEM STATEMENT

The system under consideration is an on-off keying system. It is the simplest form of ASK

(amplitude shift keying) modulation scheme. Here the digital data represents the presence

or absence of a carrier wave. It contains a binary communication channel where the source

transmits over a T-second interval. In this process, a digital ‘1’ transfers using a sinusoidal

waveform, and a digital ‘0’ stands for no transmission. Fig. 2.1 depicts the on-off keying

modulation scheme.

The receiver observes the transmitted signal in the presence of additive zero-mean white

Gaussian noise v(t) with variance σ2 = N0/2, where N0 is the two-sided power spectral

density. In the case of transmission over fading channels, the attenuation in the received

signal can be modeled as a random variable. A random change in phase also occurs during

reception as well. Hence the problem of deciding the presence of a signal can be depicted as

a binary hypothesis testing problem, which can be modeled in the following manner:

H1 : Z(t) =

√
2

T
Acos(ωct+Θ) + v(t) 0 ≤ t ≤ T (2.1)

H0 : Z(t) = v(t) 0 ≤ t ≤ T (2.2)

where A and Θ are random variables with known prior distributions. Here it has been

assumed that a Rayleigh Fading Channel is used for communication purposes. That is, A

is Rayleigh distributed. Θ is uniformly distributed in (0, 2π). A and Θ are independent of

each other.

We can see that the observations under H0 do not depend on A and θ. So the conditional

likelihood function λ(Z|A,Θ) has been obtained first. Then it was averaged over the joint
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Figure 2.1. On-Off keying modulation

density function of A and θ to find the likelihood ratio λ(Z):

λ(Z) ==

∫
RA

∫
RΘ

λ(Z|a, θ)P (a, θ)dadθ (2.3)

Where a and θ are samples of A and Θ. And RA and RΘ are the ranges of A and

Θ, respectively. Now the received signal Z(t) can be expanded into an ortho-normal basis

function to derive the conditional likelihood ratio. The first two chosen ortho-normal basis

functions are:

g1(t) =

√
2

T
cos(ωct), g2(t) =

√
2

T
sin(ωct).

The rest of the ortho-normal functions can be chosen arbitrarily. With the help of

these two basis functions, the received signal can be represented into two independent and
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Figure 2.2. Receiver Structure of the system

orthogonal components Z1 and Z2 [10]. Only these two signal components will depend on

the fact which hypothesis is true.

The process is shown in Fig. 2.2. Let

Z1 =

T∫
0

Z(t)g1(t)dt Z2 =

T∫
0

Z(t)g2(t)dt.

From the above discussion, it is very much comprehensible that Z1, Z2 are independent

and identically distributed Gaussian variables with zero means. The variance for these two

signal components are the same which is σ2 under the H0 , (σ2 + σ2
s) under H1. Now, the

conditional likelihood ratio can be written as:

λ(Z|a, θ) = P (Z1, Z2|a, θ,H1)

P (Z1, Z2|a, θ,H0)
(2.4)

Using these two signal components the probability distribution for the received signal

7



under the H1 hypothesis will be:

P (Z1, Z2|H1) =

π∫
−π

∞∫
0

P (Z1Z2|a, θ,H1)dadθ

=
1√

2π(σ2 + σ2
s)
exp

(
−Z2

1

2(σ2 + σ2
s)

)
1√

2π(σ2 + σ2
s)
exp

(
−Z2

2

2(σ2 + σ2
s)

)
(2.5)

Similarly, the probability distribution for the received signal under H0 hypothesis will be:

P (Z1, Z2|H0) =
1√
2πσ

exp

(
−Z2

1

2σ2

)
1√
2πσ

exp

(
−Z2

2

2σ2

)
(2.6)

The decision rule for the system is:

λ(Z) =
P (Z1, Z2|H1)

P (Z1, Z2|H0)
≶ η

where the decision =


H1 if λ>η

H0 if λ<η

(2.7)

here η = P (H0)
P (H1)

, P (H0) and P (H1) are the priori probabilities of the hypotheses. After

putting P (Z1, Z2|H1), P (Z1, Z2|H0) values and simplifying, the decision rule becomes:

Z2
1 + Z2

2 ≶ t

where t =
ln(η σ2+σ2

s

σ2 )
1

2σ2 − 1
2(σ2+σ2

s)

(2.8)

Here Z1 and Z2 are two Gaussian distributions. So the summation of squares of Z1, Z2

will be an exponential distribution. Equivalently, for each sensor, the detection becomes to

8



test hypotheses with the following distributions.

H1 : X ∽ Exp(2(σ2 + σ2
s)) (2.9)

H0 : X ∽ Exp(2σ2) (2.10)

Where, X = Z2
1 + Z2

2

In our work, we assume the use of two sensors in a parallel network as shown in Fig. 1.2.

It is also assumed that observations in both sensors could be correlated. As a result,

the problem becomes testing different Bivariate exponential distributions that are based on

different hypotheses.

9



CHAPTER 3

DISCUSSION ON DIFFERENT BIVARIATE EXPONENTIAL DISTRIBUTION

After establishing the Binary Hypothesis Problem in the last chapter, different Bi-variate

Exponential distributions have been used to find the solution for the problem. For this

purpose, we have mainly used two joint Cumulative Distribution Functions (CDF) which are

presented in [1]. From these CDF formulas, the PDFs have been generated in the context of

the problem. These PDFs are used to calculate the Pe values. To extend the correlation range

of observations, we have also used another PDF based on the Farlie-Gumbel Morgenstern

(FGM) copula [11]. Through simulation results, it has been introduced that the former

PDFs are performing similarly to the copula model. It has also been shown that the curves

for other PDFs and the Copula model come very close to each other with the increasing

value of quantization.

In the rest of the section, a detailed discussion of the different Bi-variate formulas has

been presented. Firstly, we have discussed the CDFs and PDFs formulas presented in the

paper. Also, some of the characteristics and traits have been presented. In the case of the

copula, an introductory discussion regarding the copula has been presented which follows the

characteristics of the FGM copula. We finish our discussion of the section by describing the

formula which has been used to calculate the probability of error (Pe) using these different

PDFs.

3.1 First Bi-variate Distribution formula

The first considered Bi-variate function given in [1] is the following:

10



FX1,X2(x1, x2) = 1− exp(−x1)− exp(−x2)

+exp(−x1 − x2 − δx1x2)

(3.1)

for two different random variables X1 and X2 which are exponentially distributed. The

boundary values for Eq.(3.1) are:

F (x1, 0) = 0;

F (x2, 0) = 0;

F (0, 0) = 0;

F (∞,∞) = 1;

(3.2)

In this CDF equation, we can see a parameter δ which can lead Eq.(3.1) to independence

if the value of δ becomes 0. The range of this delta parameter lies between 0 to 1, i.e.,:

0 ≤ δ ≤ 1 (3.3)

This above inequality can be proven in the following manner:

At first, if we derive the PDF function from Eq. (3.1) then the equation should look like the

following:

f(x1, y1) = e−x1(1+δx2)−x2 [(1 + δx1)(1 + δx2)− δ] (3.4)

where,

f(x1,∞) = 0;

f(∞, x2) = 0;

f(0, 0) = 1− δ;

(3.5)
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Using the last equation and the non-negativity of a density function, it can be shown that

the δ ≤ 1.

Now, according to the inequality which is true for any Bi-variate distribution is:

F (x1, x2) ≤ F (x1) (3.6)

Using this above condition, we can simplify Eq.(3.1) in the following way:

−x1(1 + δx2) ≤ 0 (3.7)

for all x1 and x2. Due to the non-negativity clause of the distribution function, the δ

parameter cannot be negative. Therefore δ ≥ 0.

The attributes of the first Bi-variate formula which has been described by the authors are:

1. Marginal probabilities are exponential:

fX1(x1) =
∂F (x1,∞)

∂x1

=
∂(1− exp(−x1))

∂x1

=


exp(−x1) when x1≥0

0 when x1<0

with mean value 1

(3.8)

Similarly, X2 also has an exponential distribution with a mean value of 1.

2. It has been mentioned earlier that δ = 0 leads to independence which means

F (x1, x2) = F (x1)F (x2). But δ is not the correlation co-efficient ρ. The relation-

ship between δ and ρ is as follows [1]

ρ = −
exp(1

δ
)

δ
Ei(−δ−1) (3.9)

where, Ei is the Exponential Integral function. We have already proved that

12



Figure 3.1. Relationship between δ and ρ from [1]

the range of parameter δ lies within 0 to 1, i.e. 0≤δ ≤1. So, the range of ρ

is −0.40365 ≤ ρ ≤ 0, which means that the correlation coefficient always stays

non-positive. The relationship between δ and correlation coefficient ρ has been

shown graphically in Fig. 3.1.

3. The other parameter η in the graph is the correlation ratio. The authors of [1]

describes the relationship between η and δ as:

η2(x1|x2) = −δ

3
− 1

6
− ρ

6δ
(3.10)

For increasing value of δ, the correlation ratio decreases from 0 to -0.4837, as

shown in the graph.

Under the context of the problem in hand, the random variables under consideration (i.e.

observation of each sensor) should be:

13



1. Under H1: Exponential distribution with mean θ1 = 1
2(σ2+σs2)

2. Under H0: Exponential distribution with mean θ0 = 1
2σ2

Now, let us assume two exponential variables X
′
1, X

′
2, which are represented as X

′
1 = θ1X1

and X
′
2 = θ2X2.

The joint CDF for X
′
1, X

′
2 can be written as

FX
′
1,X

′
2
(x1, x2) = P (X

′

1 < x1, X
′

2 < x2)

= P (θX1 < x1, θX2 < x2)

= P

(
X1 ≤

x1

θ1
, X2 ≤

x2

θ2

)
.

(3.11)

Using these modified random variables, the joint CDF will look like

FX
′
1,X

′
2
(x1, x2) = 1− exp

(
−x1

θ1

)
− exp

(
−x2

θ2

)
+exp

(
−x1

θ1
− x2

θ2
− δx1x2

θ1θ2

)
.

(3.12)

And the joint PDF will be

f
X

′
1,X

′
2
(x1, x2) =

1

θ1θ2
exp

(
−x1
θ1

− x2
θ2

)
exp

(
−δ

(
x1
θ1

)(
x2
θ2

))[(
1 + δ

(
x1
θ1

))(
1 + δ

(
x2
θ2

)
− δ

)]
.

(3.13)

Calculation of Eq.(3.13) from Eq.(3.12) is presented in Appendix A. The above equation

is a general formula for the joint PDF under both hypotheses H0 and H1. Replacing θ1 and

θ2 will give the PDF equations under H1 and H0, respectively. In other words, under H1 we

have θ1 = θ2 = θ1, and under H0 we have θ1 = θ2 = θ0.

3.2 Second Bi-variate Distribution formula

In the last section, we have seen that the value of the correlation coefficient can only be

negative. Now in this second formula, the correlation coefficient value ranges from negative

14



to positive.

The discussion for the second formula can be started from the fact that it has been

presented in [1]. If there are two given probability functions like F (X1) and F (X2) then a

Bi-variate can be constructed in the means of the equation like :

F (x1, x2) = F (x1)F (x2)[1 + α{1− F (x1)}{1− F (x2)}] (3.14)

where,

−1 ≤ α ≤ 1 (3.15)

And the corresponding density function is given by:

f(x1, x2) = f(x1)f(x2)[1 + α{2F (x1)− 1}{2F (x2)− 1}] (3.16)

A Bi-variate probability function F (x1, x2) with monotonically increasing marginal dis-

tribution should preserve these following conditions [1]:

1. F(- ∞, x2) = F(x1, - ∞) = 0

F(x1, ∞) = F(x1); F(∞, x2) = F(x2); F(∞, ∞) = 1

2. The Probability content for every rectangle is non-negative, that is, for every

x11 ≤ x12, x21 ≤ x22,

Prob{x11 < X ≤ x12, x21 < X ≤ x22}

= F(x12, x22) - F(x12, x21) - F(x11, x22) + F(x11, x21)

which can also be written in the following manner:

∂2F

∂x1∂x2

= f(x1, x2) ≥ 0

15



Now, Eq.(3.14) and Eq.(3.16) holds conditions 1 and 2, and F (X1) and F (X2) are expo-

nential functions.

So the second Bi-variate probability function which has been derived and presented in

the paper[1] is:

F (x1, x2) = (1− e−x1)(1− e−x2)[1 + αe−x1−x2 ];

f(x1, x2) = e−x1−x2 [1 + α(2e−x1 − 1)(2e−x2 − 1)];

(3.17)

The relationship between parameter α and correlation coefficient ρ is:

ρ =
α

4
(3.18)

From Eq.(3.15) and Eq.(3.18), it can be easily derived that the range of correlation

coefficient (ρ) is:

−0.25 ≤ ρ ≤ 0.25 (3.19)

In contrast to the previous case, ρ can also be positive over here.

The relationship between the correlation ratio and the α parameter is:

η(x1|x2) = − α

2
√
3

(3.20)

Hence, the relationship between η(x1|x2) and ρ is:

η(x1|x2) =
2ρ√
3

(3.21)

and the correlation value varies in the interval of -0.28867 to +0.28867.

Now we need to generate the PDF from this second formula in the context of the problem

at hand. The equation which has been derived from the formula is
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fX′
1,X

′
2
(x1, x2) =

1

θ1θ2
exp

(
−x1

θ1
− x2

θ2

)
(
1 + α

(
1− 2exp

(
−x1

θ1

))
(
1− 2exp

(
−x2

θ2

))) (3.22)

From this general equation, the PDFs under H1 and H0 can be generated simply by replacing

θ1, θ2 with θ1 (for H1 hypothesis) and θ0 (for H0 hypothesis) similar to the process followed

for the formula 1.

After generating these PDF equations, we can use these formulas to calculate the proba-

bility of false alarm (P f) and the probability of miss-detection (Pm). In the earlier section of

the thesis, we have already mentioned that Pf is the probability of making a wrong detection

when the primary user is not present, and Pm is the miss detection of the presence of the

primary user. These two components together give the value of Pe which measures what is

the overall probability of the system making a mistake.

The formula for the Probability of False Alarm (Pf ) is

Pf =

∫∫
R

fX′
1,X

′
2
(x1, x2|H0) dx1 dx2 (3.23)

The next thing we need to calculate is Probability of Detection(Pd) is

Pd =

∫∫
R

fX′
1,X

′
2
(x1, x2|H1) dx1 dx2 (3.24)

The R represents the region within the observation space where the decision is 1 if (x1, x2)

falls over it. Pd defines the probability of the system making the correct decision about the

occupation of the spectrum by the primary user. The probability of miss (Pm) can be

calculated using Pd by simply Pm = 1 − Pd. For the calculation purpose, the observation

17



regions can be divided into multiple non-overlap small areas using thresholds of t1 and

t2, with t1 ∈ {t11, t12, ..., t1n}, t2 ∈ {t21, t22, ..., t2n}, where t1 and t2 represent the set of

thresholds for the observations in sensor 1 and sensor 2. After getting these two values, we

can calculate the probability of error as Pe = PfP (H0) + PmP (H1) which is the metric to

judge the performance of detection.

3.3 Copula Model:

To consider a bi-variate model which is more general than the one presented in [1], we

also use a model based on the FGM (Farlie-Gumble-Morgenstern) copula [12] - [13].

Copula is a computationally convenient way to describe the dependency between two

random variables. We know that correlation also defines the dependency between two vari-

ables. But that is a more linear dependency. Using copula, we mostly describe the nonlinear

dependency. Also, a copula is a non-redundant way to find out the joint distribution. It is

because a two-dimensional CDF also contains information about one-dimensional CDFs. It

means that when we are calculating the 2D values we also need to calculate the 1D values

as well. But if we assume that the 1D CDF values are already known then soliciting them

will be unnecessary. Therefore it is more desirable to describe the dependence in a more

non-redundant way. In these situations the copula become very useful.

A general formula for the copula is:

FXY (x, y) = C(FX(x), FY (y)) (3.25)

Where X and Y are two random variables with the cumulative function FX(x) = Prob(X ≤

x) and FY (y) = Prob(Y ≤ y) respectively.

For a two-dimensional distribution function to be a copula, it must satisfy some properties

which can be easily derived from the definition of the copula:

1. C(0,v) = C(u, 0) = 0;
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2. C(1, v) = v;

3. C(u,1) = u;

There are many different families of copula existed. But among them, the following

Farlie-Gumble-Morgenstern (FGM) copula turns out to be very successful.

The general formula for FGM copula is:

C(u, v) = u · v + α · u · (1− u) · v · (1− v) (3.26)

where u, v are uniformly distributed in [0, 1], and α is a dependency parameter in the

range of [-1,1]. If α reaches zero then the FGM copula corresponds to independence. u, v

have positive dependence for α > 0 and negative dependence for α < 0.

The class of FGM copulas is a popular choice when working in two dimensions because

of its simplicity in computation and the exact calculus of polynomial functions. According

to [11], the fastest-to-compute copulas are polynomial copulas. And among them, the ones

with the smallest possible degrees are better. The FGM copula fits in that category perfectly

as mentioned in [14], [15]. It is also mentioned that when fuzzy logic is used to understand

the dependency between random variables, the FGM copulas are naturally suitable.

Now from equation 3.26 if we derive the density function then it should be:

c(u, v) = 1 + α(2u− 1)(2v − 1). (3.27)

Converting the joint CDF equation in the context of the problem in hand should be:

FX
′
1,X

′
2
(x1, x2) =

(
1− exp

(
−x1

θ1

))(
1− exp

(
−x2

θ2

))
(
1 + α

(
exp

(
−x1

θ1

))(
exp

(
−x2

θ2

)))
.

(3.28)
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The corresponding PDF is

fX′
1,X

′
2
(x1, x2) =

1

θ1θ2
exp

(
−x1

θ1

)
exp

(
−x2

θ2

)
[
1 + α

(
2exp

(
−x1

θ1

)
− 1

)(
2exp

(
−x2

θ2

)
− 1

)]
.

(3.29)

The above PDF is used as the hypothesis distribution to check the probability of detection

error, which is similar to the previously used bi-variate exponential formulas. In the results,

it has been shown that all three of these distribution formulas are performed similarly.
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CHAPTER 4

GENETIC ALGORITHM TO FIND THE MINIMUM Pe

This chapter discusses how the Genetic Algorithm is being used to produce a better-

optimized system.

4.1 Overview of the genetic algorithm (GA)

A type of optimized algorithm is the Genetic algorithm [16], which is used to resolve

issues in a variety of fields, including engineering, medicine, and finance. The main idea of

this algorithm is based on natural selection, a process that drives biological evolution. A

flowchart of the Genetic algorithm is presented in Fig.4.1. The algorithm starts with the

initial population. And with every iteration, it creates a new generation by the selected

parents of the old one. The selection for the parents of the new generation is mainly done

in three ways:

• Selection Rule selects a set of parents for the next generation depending on their score.

• Crossover procedure takes two parents and combines them to make two new offspring.

• Mutation applies random changes to individual offspring.

With each generation, the population “evolves” towards an optimal solution.

The Genetic Algorithm has several advantages, which is the reason behind its widespread

application and utilization, like:

• It can solve issues that are challenging to solve using conventional techniques.

• Problems that are stochastic can be solved using Genetic Algorithm.
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Figure 4.1. Flowchart of Genetic Algorithm [2]

• It can resolve issues with numerous objectives and restrictions.

• It is very useful when multiple local optima exist for a specific problem.

Due to these advantages, the genetic Algorithm has been employed in this specific prob-

lem to find the quantizers used in sensors that produce the minimum probability of error

in this decentralized detection environment [8]. The pseudo-code of this algorithm is given

in Algorithm 1. The algorithm first divides the observation region of the sensors into small

areas, then assigns those small areas with suitable codewords (CW). The main purpose of

the algorithm is to find the codeword assignment to the areas from a pool of codewords which

generates the minimum probability of detection error. The likelihood Ratio test (LRT) is

used at the FC for the final decision.

4.2 GA complexity

The time efficiency of the algorithm is judged on the following two aspects:
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Algorithm 1. Genetic Algorithm pseudo code

1: Initialize Detection parameters:

– π= Prior Prob

– mh0 = mean underH0

– mh1 = mean under H1

– parameter values for different formulas

2: Divide the total observation range of both sensors into small intervals using thresholds.
3: Measure and store the probability mass of each small area under both hypotheses
4: Initialize Genetic Algorithm(GA) parameters:

– nP= number of population

– nI = number of Iteration

– Cr = crossover rate

– Mr = mutation rate

5: Start GA
6: Generate initial population of codewords(CW) of size nP

(current CW <nP)
7: Calculate P e:

– assign the small intervals with CWs

– Randomly assign CWs for each interval of both sensors.

– calculate total probability mass for each set of combinations under both hypotheses
using the stored value

– make decision of H1 and H0 using LRT Fusion rule

– summing the total probability mass under hypothesis H0 when the decision is 1 to
calculate False Alarm (P f)

– summing the total probability mass under hypothesis H1 when the decision is 0 to
calculate Miss Detection (Pm)

– Calculate Pe: P (H0)Pf+P(H1)Pm where P (H0) and P (H1) are prior probabilities

• P e value

8: Store the min P e (current iteration <nI)
9: Select two parent CW using Roullette Wheel selection
10: Perform crossover to produce the offspring CW (random probability< Mr)
11: Mutate the offspring CW
12: Calculate P e for each off-spring CW and update best solution
13: Add offspring to population and remove least-fit solution
14: population=new-population
15: Return(min P e value, best CW )
16: End GA
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1. Counting the number of Fitness function calculation: The amount of time the fitness

function can be calculated using the following step:

nP × nI = (number of population) ×(number of iteration)

2. Time complexity to calculate the fitness function for each set of population: As we have

already stored the value of probability mass for each small area under both hypotheses,

the time required for calculating the prob. mass for one set of CW is a constant. We

have defined this time with PMCW. For two different hypotheses, the total time

required for each set of the population is

(PMCW(H0) + PMCW(H1))× nP

where, PMCW (Hj), j = 0, 1
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CHAPTER 5

PERFORMANCE EVALUATION

In this section, the simulation studies have been provided. The detection performance

is evaluated for different Bi-variate exponential distributions. P e has been taken as the

performance metric. The GA parameters were the same for all cases, which are No. of

Iterations = 200, number of Population = 500, Crossover rate = 0.8, Mutation rate= 0.05.

Also, the curves are compared among three types of quantizers i.e. 1-bit, 2-bit, and 3-bit.

1. Scenario 1: The performance of P e has been tested against the delta (δ) parameter

in Fig.5.1. The joint pdf, which has been used to generate this figure, is from the

first model in [1]. As mentioned earlier, the δ parameter is inversely related to the

correlation coefficient (ρ) which is always non-positive in value in this scenario. This

relation has been depicted in the figure where it can be seen that P e value decreases

with the increasing value of δ. The prior probabilities are equal and the mean values

under H0 and H1 are set as [4,4] and [2,2] respectively.

2. Scenario 2: In Fig. 5.2, the P e vs P(H1) plot has been presented. The mean values

under both hypotheses stay the same as the previous scenario, and the δ value was

fixed at 0.5. This figure has used the same probability of distribution function. As we

can see from the figure all the quantization curves give the highest P e at P (H1) = 0.6.

It is because the highest uncertainty happens when the prior probability value stays

in this range.

3. Scenario 3: Fig. 5.3 plots P e vs α. This α parameter comes from the second formula

of the Bivariate exponential distribution from Gumble’s paper [1]. The range of α lies

between -1 to 1. And it bears a relationship with the correlation coefficient, i.e., ρ = α
4
.
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Figure 5.1. Pe Vs δ

Figure 5.2. Pe Vs Prior Probability(using the first formula)
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Using this second formula of Bivariate exponential distribution, the nature of the de-

pendence of P e over the positive value ρ can be studied. In this figure, the value of α

increases (which means ρ is also increasing), and the probability of error (P e) increases

as well. Also, the P e curves are getting closer to the centralized one, i.e., without

quantization, with the increasing value of three quantization level.

Figure 5.3. P e Vs α

4. Scenario 4: Fig. 5.4 again studied the P e vs P (H1) to examine whether any changes

take place due to the change of Bi-variate exponential distribution formula. But in

the figure, we can notice that the behavior of the curve is similar to the earlier P e

vs P (H1) curve which has been generated using the first formula of [1] of Bivariate

exponential distribution. The value of α, which has been used in this figure is 0.25. So

the correlation coefficient (ρ) value is 0.0625.

Establishing a relationship between the α and the δ parameter (from the first formula)

is difficult. So, a detailed comparison between the two curves has not been presented

here.

5. Scenario 5: In the Fig. 5.5, the performance of the copula formula has been shown.

The α parameter(dependency parameter value) value is 0.5. As we can see in the figure

that the Pe values for the different prior probabilities are similar to the values which
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Figure 5.4. Pe Vs Prior Probability(using the second formula)

we got using the previous formulas. The curve reaches closer to the centralized value

with the change in the quantization levels.

Figure 5.5. P e Vs P (H1) (Using the FGM copula)
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CHAPTER 6

CONCLUSION

In this thesis work, it has been shown how distributed detection performs over a fading

channel with possible correlation in a two-sensors network. It has been mentioned earlier

how fading is very common in today’s wireless communication environment. As wireless

communication becomes part of our everyday life, a system that can properly detect despite

the difficulty of fading is very important.

Furthermore, we investigated the impact of correlation on the system’s performance by

examining both negative and positive correlations. We also presented the system’s perfor-

mance using a copula model that we generated. Simulation results show that our generated

model performs similarly to two established models taken from [1].

It had been shown how the problem has been transformed into a binary hypothesis testing

problem where the observations can be represented in the form of a Bi-variate exponential

distribution. And last but not least, a Genetic Algorithm is proposed in search of the Sub-

optimal solution. Using simulation it has been shown how the performance of the system

gets closer to the centralized likelihood ratio solution with increasing quantization levels.
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APPENDIX A

DERIVATION OF THE PDF EQUATION FROM THE CDF

In this appendix, we show the derivations of the joint PDF equation from the joint CDF

equation from the first formula of [1]. This derivation is done in the context of the problem

at hand.

The joint CDF equation is:

FX
′
1,X

′
2
(x1, x2) = 1− exp

(
−x1

θ1

)
− exp

(
−x2

θ2

)
+exp

(
−x1

θ1
− x2

θ2
− δx1x2

θ1θ2

)
.

(A.1)

Now,

fX′
1,X

′
2
(x1, x2) =

∂2FX
′
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′
2
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∂
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θ
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After simplifying and rearranging the last equation we will get

f
X

′
1,X

′
2
(x1, x2) =

1

θ1θ2
exp

(
−x1
θ1

− x2
θ2

)
exp

(
−δ

(
x1
θ1

)(
x2
θ2

))[(
1 + δ

(
x1
θ1

))(
1 + δ

(
x2
θ2

)
− δ

)]
.

(A.2)
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