

B. Kamalapreetha *, R. Gayathiri *, K. Geetika Gopi *, R. Mahendran *

^a Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) - Thanjavur, Tamil Nadu, India.

* Corresponding Author: <u>mahendran@iifpt.edu.in</u>

Received: 26-01-2023, Revised: 21-04-2023, Accepted: 02-05-2023, Published: 30-05-2023

Abstract: Food fraud is not just a local issue but perhaps a global phenomenon. If the food available in the market are undetected or poorly controlled, this can harm consumer health. Food fraud causes a lack of traceability of supply chains and may eventually be a risk to food safety. The purpose of this paper is to acquaint the various types of food fraud and to evaluate the detection methods in identifying the adulterants. It also addresses the importance of vulnerability assessment of food fraud and key actions required for its prevention. Fighting food fraud will remain a race between the fraudsters and scientists developing new methods to prevent them. The review is unique that it summarized food fraud types, basic and instrument-based detection techniques for adulterants identification and it also focuses on the international governing bodies concerned with food laws and regulations. This study also provides perceptions of the interplay between vulnerability assessment and food fraud prevention.

Keywords: Food adulteration, Food fraud, Health threat, Prevention strategy, Vulnerability assessment

1. Introduction

Food Fraud is also named as Economically Motivated Adulteration (EMA), an emerging global concern with socio-economic, physical, and environmental impacts. Food fraud is ubiquitous and has a substantial effect on a wide range of food items. It is defined as the act of defrauding the buyers of food or food ingredients for economic benefit and it can be committed by any individual person or in a group involved in the whole food supply chain including suppliers, food manufacturers, retailers, and importers [1]. It is a hazard that is growing in less awareness, concern, and danger is driven by different factors like increase in the complexity of supply chain networks, technology development, from within and outside the food supply chain.

The Grocery Manufacturers Association (GMA) in April 2018, estimates that the food fraud costs the world economy \$49 billion per year. This food fraud has been a major government focus across the country. "Food Fraud is a collective term that includes the adulteration (deliberate substitution, dilution and concealment or impurities), tampering (date code tampering and refilling containers), theft or misrepresentation of food and food ingredients, food packaging or misleading statements made about a product for economic profit," as defined by the United States Pharmacopeia Convention (USP) [1]. It is the subcategory of Economically Motivated Adulteration (EMA) [2]. The key factors are non-compliance with food laws or misleading the consumer, intentional fraud, and the purpose of economic gain. Therefore, it is important to address the effect of food fraud as it leads to public health risk and create catastrophic economic impacts on countries.

There are different types of food fraud in and around the world. Food fraud generates the various level of monetary gain according to the type of fraud involved in food [3]. It influences food composition like substitution, dilution, flavor and color enhancement and concealment. Changing the composition of food fraud can be either done by the addition of poor-quality material, foreign material, or adulteration with some other constituents. The common characteristics among these types (Figure 1) and detailed review on food fraud types with recent incidents are summarised in Table I. In general, 65% of the incidents are caused by substitution or dilution, 13% due to the presence of an unapproved additive. The remaining other incidents are attributed to counterfeiting products (9%), mislabelling (7%), transshipment (5%) and unknown types of adulteration (less than 1%) [4].

2. Different types of food fraud

Replacement: Complete or partial, intentional substitution of an authentic ingredient with a cheaper product.

Addition: Inclusion of small amount of non-authentic substances to enhance the quality of the inferior product.

Removal: Dismissal or intentional ejection of an authentic or valuable ingredient from the product without consumer's knowledge.

Mislabelling: Deliberate mislabelling of food products with the intent of deceiving the consumer regarding what is actually present in the package.

Theft: Legitimate food product gets stolen from warehouses, distribution centers, parking lots, truck stops and passed off as a legitimately procured.

Diversion or Gray Market: The sales or distribution of legitimate (legal, non-counterfeit) product outside the predetermined market and it causes a decline in the sales of the legitimate product.

Counterfeiting: Intellectual Property Rights (IPR) infringement, include all aspects of fraudulent product and packaging is fully replicated. Counterfeit foods are made with no regard for safety standards, quality or efficiency and may contain the ingredients of unknown origin.

Transhipment: It includes the shipment of goods from one carrier or vessel to another destination, in order to hide the identity of the product, port or country of origin.

Tampering: Deliberate contamination of legitimate product, to cause harm to the consumer. It affects any part of the food product, packaging, and label.

Figure 1. Types of food fraud

2.1. Global status on the different types of food fraud

Counterfeiting includes goods manufactured/packaged in illegal premises or without sufficient inspection or documentation and released with fake health certificates. Counterfeiting is the most common form of fraudulent activity. [5] Reported in the 20-year analysis (1997-2017) of beef manufacturing industry, 42.9% cases were on counterfeiting. The reports were further classified based upon supply chain in which 36.4% cases were documented on the primary manufacturing. In that almost 95.5% cases were listed on forgery cases.

Jia & Jukes (2013) [6] documented the China's biggest scandal of 2008, nearly 40 000 children were hospitalized after milk powder was intentionally poisoned by melamine (almost 300,000 ill and 6 deaths). In addition to this event, pesticides in "Jinhua" ham were confirmed in 2003, non-approved colour (Sudan) on food items in 2005 and Staphylococcus aureus in boiled dumplings in 2007.

	1 1.1 1	. 1	1 .	· · · ·	c	C 1	C 1	•	•	•
Vigitar Vigitar	breakthroughe	reported	due to	incide	nce of	tood	trand	1n	Various	countries
	DICANUITOUSIIS	TUDUIUU	uut io	monue.	nee or	IOOU	nauu	ш	various	countries.
J		1 -								

Recent cases of incidence	Country	Reference
Lampante oil and soya oil is substituted with olive oil	Ministry of Agriculture,	(Moore, Spink, & Lipp, 2012)
	Brazil	(Johnson, 2014) [1, 4]
Raided two spice producing units and notably seized yellow	Local officials from	(Moore, Spink, & Lipp, 2012)
pigment and sawdust is mixed with turmeric to enhance the color.	Ghaziabad, New Delhi.	(Caballero, Finglas, & Toldra, 2015)
	India	(Moyer, DeVries, & Spink, 2017)
		(Abress & Nateghi, 2015) [4, 7,8, 9]
Pollen is removed from 75% of honey which is sold commercially	USA	(Moore, Spink, & Lipp, 2012)
		(nature world news, 2014) [4, 10]
Fish and cheese have been mislabelled and seized	Sicily, Italy	(Johnson, 2014)
		(Spink & Moyer, 2011)
		(Huck, Pezzei, & 2016) [1,11,12]
Meat products and beverages are stolen	USA	(Spink & Moyer, 2011)
		(Burges, 2012)
		(food logistics, 2017)[11, 13, 14]
Legitimate Alcohol, wine, and spirits have been seized in shop	Birmingham and West	(Spink & Moyer, 2011)
	Midlands, England	(Goel & Gupta, 2014)
		(Birmingham news, 2017)[11,
		15,16]
Buffalo mozzarella cheese is counterfeited with cow milk in a	Italy	(Spink & Moyer, 2011)
factory		(Caballero, Finglas, & Toldra,
		2015)[11, 7]

<i>Vol. 5 Iss. 1 Year 2023</i> B. Kamalapreetha /2022		
Imported Albanian Tomatoes are mixed with locally procured	Bari, Italy	(Moore, Spink, & Lipp, 2012)
tomatoes		(Johnson, 2014) [4,1]
Insecticide is added to the sweet has led to the death of 33 people.	Punjab, India	(Spink & Moyer, 2011)
		(Chan, Griffiths, & Chan,
		2008)[11,17]
Police raided counterfeiting of branded whiskey with local brand	China	(Fullerton 2015) [18]
at unhygienic condition		
In the market, 20% of Australian and European honey were	Australia and Europe	(Zhou et al. 2018) [19]
adulterated with sugar and sugar syrups		
About 5%, chicken and turkey sausage are substituted with beef	Canada	(Naaum et al. 2018) [20]
which is a carrier of <i>E.Coli</i> resulting in the risk of supply chain		
In the 190 tested samples of Milk and milk product, bacteria,	Bangladesh	(Neo 2019) [21]
lead, mold, aflatoxin and other adulterants were detected by		
Bangladesh Food Safety Authority tested.		
"The Largest recall of an allergen" by FDA in the spices in which	USA/EU/	(Agres 2015) and [22]
700 products - cumin and cumin containing foods contaminated	Canada	
with almonds and peanuts		
In the Canadian stores and restaurants, 44% of sea foods were	Canada	(Levin 2018) [23]
found to be tested mislabelled by Oceana		
76 Oregano samples were tested and found adulterated with higher	Across Europe	(Drabova et al. 2019) [24]
concentration insecticide residues		
Counterfeited Arabica coffee with Robusta or other ingredients	-	(Sezer et al. 2018)
like wheat, maize, coffee husks, stems, soybeans, brownsugar, rye,		(Toci et al. 2016) [25, 26]
barley, seeds		

Rising global concern about the number of problems encountered has impaired the China's reputation towards export and led to various safety warnings and prohibition of some imported items. In 2002, due to traces of veterinary drugs in the imports, the European Union excluded all the imports of animal produce from China. High levels of pesticide residues in frozen spinach, Japan banned the import in 2003. During 2007, live hood of the dog and cats got collapsed due to the consumption of adulterated ingredients imported from China in the US (Thompson & Ying, 2007).

Bogdan (2016) reported that based on the statistics from Russian State Statistical Service (Rosstat), the import of palm oil was shoot up to 37% than in 2014, in contradiction to the milk production was dropped down by 2% [27]. Cheese production increased by 33 per cent. It is obvious that Russia does not produce enough raw material for cheese production. At the end of 2015, market analysis of Federal Service for Veterinary and Phytosanitary Surveillance, Russia (Rosselkhoznadzor) revealed that 78% of all cheeses in the country were counterfeited. In these products, all of them has been substituted with palm oil instead of milk fat. In the same report, the share of fake goods in dairy industry ranged up to 40%. Andrei Danilenko, Head of the Russian Union of Milk Producers claims that the massive use of palm oil and related ingredients is linked to a decrease in profitability and an increase in the cost of production of the milk processing industry in the country over the last 2 years. As a result, manufacturers have resorted to such steps to remain profitable. In contradiction there is a huge impact on the overall market situation, as producers who are not using palm oil simply lose the fight and suffer huge losses [28]. stated that Food industrial fraudulent/counterfeiting was found to be the most profitable sector which accounts for 15.7% of the total counterfeiting activities in Italy.

Fox et al., (2018) [29] recognized that in Seafood Industries, fraudulent activities are done on the intention of profit which confuses the consumers. The report denotes that the supply chain of seafood is susceptible to nine types of fraud. This includes species substitution, fisheries substitution, illicit, non-reported and unauthorised adulteration, custody chain, theft by capture methods, and expansion of unreported goods, modern-day slavery and animal protection.

Walker et al., (2013) [30] summarized the press release on the investigation of horse and pig DNA in beef burger products by the Food Safety Authority of Ireland (FSAI) on 15 January 2013 about the meat substitution scandal which impacted most Europe and keyed high and long media and political visibility. They suggested that meat substitution will reoccur but not especially in the similar fashion. Continual regular vigilance can eventually defend against these fraudulent events.

The federal court of Australia penalized a sum of \$750,000 for Snow dale's labelling of its eggs as misleading 'free range' in May 2016. The Snow dale producer marketed the products with a misleading or deceptive representation from April 2011 to December 2013. The Court examined that most of the hens are from Snow dale's sheds. The Court has also made an order

preventing Snow dale from using the words 'free range' in connection with its eggs unless it is grazed outside.

Farshidi et al., (2018) [31] surveyed the mislabelled meat products available in Iran market using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). They examined a total of 31 samples from market out of which 100% of salami (total 6 sample), 60% of hamburger (total 15 sample) and 80% of minced meat (total 10 sample) were made of chicken meat. But it is not listed in ingredient labels. The aim of the intentional betray addition of meat is mainly for financial gain.

One of the most common adulterations in meat products is nondeclared animal protein addition. Meat replacement with an unidentified animal, typically of less quality, is an agricultural scam and may have financial and health consequences. In this survey, used an agar base gel immuno-diffusion assay to distinguish species of bovine, porcine, horses and aircraft in two leaked meat products, uncooked commercial hamburger and sausage (chorizo) [32]. A total of 40 samples have been analysed at local food stores in that 9 of 23 hamburger meat samples contains non-declared equine species and 5 of 17 unreported horses and porcines in Mexican sausages. These studies have indicated the violation of regional meat industry standards. To ensure that meat products are appropriately labelled to protect consumers, regulatory authorities should be proposing initiatives.

A study was conducted on the Australian honey brands apart from imported honey [33]. found 24 of 38 samples including premium brand Manuka honey were adulterated with cheaper alternatives. There is no harm in humans due to adulteration, but it is purely meant for financial gain. A more stringent testing regime need to be followed to figure out these criminals. Oregano fraud has been found especially in Australia. A test detected only 5 out of 12 sample were 100% oregano using Fourier Transform Infrared (FT-IR) spectroscopy and chemometric modelling in Australia [33].

3. Detection of food fraud

Detection of food fraud in any food product is the most technically challenging aspect of prevention. If the fraud occurred hasverified, detection and quantification of food constituents is the logical progression. Analytical techniques that provide physical, chemical, or biochemical information for foods are the front line to detect fraudulent practices and ultimately prevent their incidence [7]. The techniques whichhave been used to detect food fraud and adulteration in food are summarized below.

3.1 Chromatographic techniques

Chromatographic techniques provide specification and sensitivity owing to the resolution of the complex mixture into their constituents. Data acquired with a detector (UV, Mass spectroscopy) is used for targeted or non-targeted analysis. Later, the chromatogram obtained as a continuous signal can be examined with chemometrics to find the concentration of various components and thereby detecting adulteration [7].

High-Performance Liquid Chromatography (HPLC) procedures for individual components or many classes of compounds are used to check food adulteration. Some of the food fraud incidents detected by HPLC are: oligosaccharide determination is used to find addition of soy milk to cow's milk and industrial syrups to honey [7] determination of melamine in 300 samples of pasteurized and ultra-high temperature processed milk and dairy products [34] and triacylglycerol analysis may serve the detection of olive oil with canola oil [35].

Gas Chromatography (GC) is used to check the use of cheaper food ingredient substitute and used in the determination of geographical, botanical or species origin. It is used as a significant degree for spices, oils and organic foods [34]. The food fraud incidents detected by GC are:detection of extra virgin oil in sunflower, corn, peanut and coconut oil [7], through the characterization of fatty acids, butter adulteration can be detected and is also used for the study of volatile profiles like pyrazines, pyrroles and phenols of defective coffee seeds [36, 37].

3.2 Spectroscopic techniques

Spectroscopic techniques that employ electromagnetic radiation are taking a bite out of food fraud. Using spectroscopic techniques, authenticators can find the flow of deficient, mislabelled, and contaminated food and beverages.

Candoğan et al.,(2020) conducted research on detection of Beef adulteration using FTIR spectroscopy [38]. It seems to be the significant technique in the detection of beef mixtures mixed with pork, horse or donkey meat and deserves further study. The characteristic signals obtained in the study from FTIR spectral data could be effective in creating a biomarker for detection of suspicious meat mixtures.

Infra-Red Spectroscopy (IR) is popular, and the Fourier Transform (FT-IR) helps to measure various constituents in liquid and solid samples simultaneously. Penetration of Near – IR (NIR) in the sample is more and can be used to examine the samples in transparent packaging and also used in detecting adulteration like virgin olive oil with linoleic sunflower oil and canola [39], discriminate the geographical origin of green tea, detection of honey adulteration with beet invert sugar, high fructose corn syrup, detection of milk adulteration with urea, starch, dextrin and melamine and evaluating the difference between fresh and frozen-thawed shrimp [7, 40, 41].

Raman spectroscopy is another vibration technique, which authenticates the origin, identity, and purity of food. It is portable and doesn't require any sample preparation and analyse the sample packed in plastic or glass packaging. It capable of identifying the presence of Sudan I dye in chilli powder, detecting the addition of soybean, rapeseed, sunflower and corn oils in

olive oil detecting the adulteration of high fructose corn syrup and maltose syrup in honey and margarine in butter, and detecting the toxin paraffin addition in rice, melamine in milk and banned horse meat in beef with the aid of chemometrics [42-44, 7].

Nuclear Magnetic Resonance (NMR) Spectroscopy is a method that allows quick determination of molecular fingerprints of food and simultaneously provides a quantitative determination of compounds without prior separation. It is used in characterizing product such as beer, juice and infant formulas. Its uses are: detection of synthetic triacylglycerol in butter, Detection of refined olive oil adulteration with refined hazelnut oil and this technique is used for Sudan III and IV detection in culinary spices [7,47, 46].

3.3 Chromatography

McGrath et al., (2020) addressed the food fraud issue in rice supplies of China, India, Vietnam and Ghana [47]. They studied the effect of two-tiered testing regime of rapid screening using portable Near Infrared technology followed by second tier testing using mass spectrometrybased analysis for suspicious samples using combinations of LC-MS, GC-MS, and ICP-MS. Twotiered approach: using orthogonal detection modalities yields significant information than any single method called as "fingerprinting" techniques which employ models and authenticating it with adequate number reference samples for detecting the diversity of the food product.

Santanu Patra et al., (2017) reported Sudan I dye is classified as a carcinogenic and mutagenic compound by the International Agency for Research on Cancer which is added to foodstuffs and cosmetics for the color enrichment for Marketability [48]. This kind of adulteration led to the panic in the international market and need for the development of a rapid Sudan I sensing system. HPLC-mass spectrometry (HPLC-MS) has been widely used for direct determination of Sudan dyes. But it is a time-consuming and expensive technique.

3.4 Differential scanning calorimetry

Differential scanning calorimetry, a thermo analytical technique used to detect fats/oils and honey adulteration. It is fast and doesn't require sample preparation and solvent. The adulteration of hazelnut oil in olive oil and high oleic sunflower, refined olive, refined olive pomace, sunflower and corn oils in extra virgin olive oil has been detected [49]. It is used in the detection of the adulterated animal fat in butter and determination of honey admixtures with industrial syrup [50, 51].

3.5 Immunochemical methods

Enzyme Linked Immuno Sorbent Assay (ELISA) is an assay technique used for detecting substances such as proteins and antibodies. It uses antibodies to detect the specific proteins of meat. It is used in the determination of melamine in milk and milk powder, identification of meat of different animal species by using antibodies against animal protein [] and also in detecting the adulteration of sheep and goat milk with cow milk [7, 52, 53].

3.6 DNA technology

DNA analysis has been emphasized in recent years for determining the authenticity of the food. It can discriminate cooked or highly processed foods and distinguish the closely related food at the chemical level. DNA analysis makes use of Polymerase chain reaction (PCR) to detect the food by two methods. One is the detection of single nucleotide polymorphism (restricted fragment length) and the other is small sequence length polymorphism. DNA analysis used in the detection of pork in cooked meat products, determining the identity of fresh fish and fish species in processed products, distinguish between different varieties of basmati rice and long grain rice and determining the source of olive oil [54, 55].

3.7 FastFish-ID

Sanchez et al., (2019) reported that FASTFISH-IDTM's (Sample -in and response- out) a portable and cloud-based software analysis software helps in promoting, speeding up and costefficient authentication method of all types of fish species. Rapid and easy validation of species FASTFISH-IDTM can protect the fish sector from species substitution and mislabelling vulnerabilities. The same technology has been utilized in terms of creation of suitable PCR primers and probes comprising several genera and organisms to study virtually any category of animals, plants, or microbes on Earth [56]. FASTFISH-ID - a novel DNA-based authentication method, using qPCR and closed-tube barcoding technology will be the most promising, quick and reliable and first-screening step, in fish authentication.

3.8 Fingerprinting

Fingerprinting is a sensitive and accurate detection method to prevent the food fraud. It refers to the spectrum or image produced by certain instrumental tools. Examples are determining the traceability of food products and distinguishing cow's ear and meat to find whether the samples originate from the same animal [57].

Existing common analytical techniques are not always convenient and accessible, making it difficult to address the diverse ways of fraudulent practices in food. The simple methods can be easily employed to detect the food fraud and adulterants are summarized in Table 2.

The emerging food fraud warns about food safety and resulted in improvement in detection methods to analyse contaminants and adulterants [58]. A consumer can perform these simple detection methods at the household level, so as to have a broad picture of the status of adulteration in food and also bring this problem to an end for the victims, including millions of children in the developing countries.

S.no	Food category	Types of food	Adulterant	Method of detection	Distinguished observation
		source			
1.	Milk & Milk	Milk	Water	A drop of milk is dropped	If the milk is pure, it either stays or slowly
	Products			on a smoothened slanting	flows leaving a white trail behind and if
				surface.	not, it doesn't leave any traces.
		Milk	Detergent	A sample about 5 to 10 ml is	If the milk is pure, due to agitation, it
				taken with equal amount of	forms a thin foam layer and if not, it
				water and it is shaken	forms a dense lather.
				thoroughly	
		Milk and Milk	Starch	A sample of 2 to 3 ml with 5	If the color is blue, it indicates presence
		Products		ml of water is boiled and	of starch and if milk, addition and boiling
		(Khoya,		then 2 to 3 drops of tincture	is not required.
		chenna,		iodine is added and then	
		paneer)		cooled.	
		Ghee/ Butter	Mashed	A half teaspoon of	If the color is blue, it indicates the
			potatoes,	ghee/butter is taken in a glass	presence of mashed potatoes, sweet
			sweet potatoes	bowl and the tincture iodine	potatoes, and other starches.
			and other	is added up to 2 to 3 drops	
			starches		
2.	Oils and Fats	Coconut oil	Other oils	A glass with coconut oil is	Coconut solidifies after refrigeration and
				taken in a glass and placed in	if mixed, the other oils remain a layer.
				refrigerator for thirty	
				minutes.	

Table 2. Modest techniques for detection of several food adulteration and their distinguished changes

Vol. 5 Iss. 1 Year 2023

		Tri-Ortho-	Oils and Fats	A sample of 2ml oil is taken	If immediate red color appears, it
		Crestyl -		and a little amount of solid	indicates presence of TOCP.
		Phospate		yellow butter is added.	
		(TOCP)			
		Winterized	Winterization	A sample of 100ml oil is	After five and half hours, the bottle is
		Salad oils		taken in bottle and placed in	removed and examined oil.
				a bucket filled with cracked	If it is properly winterized, the sample is
				ice and water is filled till it	brilliant, clear and limpid and if not when
				reaches top, and it is kept	the sample is not properly winterized.
				solidified by ice and excess	
				water is removed.	
3.	Sugar &	Honey	Sugar	Method 1: A glass of water is	If the honey is pure, it will not disperse in
	Confectionery		Solution	taken, and a drop of honey is	water and if it disperses, it indicates
				added.	presence of added sugars.
				Method 2: A cotton wick is	If honey is pure, it burns and if it is not
				dipped in honey and ignited	pure, it doesn't burn, it produces a
				with matchstick.	cracking sound.
		Sugar, Pithi	Chalk powder	A water is taken in a glass	If it mixed with Chalk, the adulterant
		sugar, Jaggery		and a sample of 10g is	mixture would settle down at bottom.
				dissolved in it.	
		Silver leaves	Aluminium	1. Some part of leaf is taken	1. Silver leaves when pure gets crushed
			Leaves	and crushed between two	easily and collapse to powder form but
				fingers	aluminium leaves break to smaller pieces.
				2. The suspended silver	2. Silver leaves when pure burns away
				leaves is taken and made into	with shiny balls but aluminium leaves are
				a ball and burned with flame.	lessened to grey dust.

Vol. 5 1	lss. 1 Year 2023	В	. Kamalapreetha /	2022	
4.	Food Grains &	Food Grains	Extraneous	A small amount of sample is	Food grains when pure do not have any
	Its Products		matter (Dust,	taken in a glass plate and	impurities and if impurities are seen
			Pebble,	impurities are examined	when the food grains are tinted
			Stone, Straw,	visually.	
			Weed Seeds,		
			Damaged		
			Grain,		
			Weevilled		
			Grain, Insects,		
			rodent hairs		
			and excreta)		
		Food Grains	Dhatura	A small amount of food	Dhatura seeds are flat edged and blackish
				sample is taken in a glass	brown in color and can be separated out
				plate and impurities are	by keen examination and impurities are
				examined.	seen in tainted food grains.
		Wheat flour	Bran	A glass of water is taken, and	Wheat flour when pure doesn't show
				a spoon of wheat flour is	excess bran on the water surface and
				sprinkled on the water	impurities are seen in tainted food grains
				surface.	
		Dal (whole	Khesari Dal	A small amount of dal	Khesari dal has edged type appearance
		and Split)		(whole or split) is taken, and	with a slant on a side and square one are
				impurities are examined	separated by keen examination, also pure
				visually.	dal do not have any impurities.
		Food Grains	Added Colors	A glass of water is taken, and	Pure Food grains will not leave any color
				2 teaspoons of food grains is	and if any color appears, then it is tainted
				added and mixed	
		Sella Rice	Turmeric	A teaspoon full of rice is	Pure grains don't form red color, if red
				taken in a glass plate and a	color appears then it is tainted.

				small amount of soaked lime	
				is sprinkled on the rice	
		Ragi	Rhodamine B	A cotton ball soaked in water	If the color is absorbed, then it shows the
				or Vegetable oil is taken and	dilution of rhodamine B by the color
				the outer surface of ragi is	absorption of Ragi
				rubbed with it.	
		Pulses	Chakunda	A small number of pulses is	Chakunda beans can be separated out by
			Beans	taken in a glass plate and	keen examination
				impurities is examined.	
		Atta, Maida,	Sand Soil,	-	By visual examination, these are found
		Suji (Rawa)	insects, webs,		out.
			lumps, rodent		
			hairs and		
			excreta		
5.	Salt, Spices &	Asafoetida	Foreign Resin	Method 1: A small amount	Asafoetida when pure burns like
	Condiments	(hing)		of asafoetida is ignited in a	Camphor and if tainted, it doesn't
				stainless-steel spoon	produce flame like camphor.
			Foreign Resin	Method 2: A gram of	Pure asafoetida forms a Milky white
				asafoetida is powdered and	solution with no bottom products.
				taken in a glass container and	
				a teaspoon of water is added	
				and mixed by shaking	
		Black pepper	Papaya Seeds	Method 1: A small amount	Black pepper when pure, settles down
				of black pepper is added to a	and if impure, papaya seeds floats.
				glass of water	
			Papaya Seeds	Method 2: Spice is spreaded	Black pepper is brown, has wrinkled
				on a white paper and the	Surface, characteristic smell with pungent

1 1Cai 2020	1	. K amatapreenta /	2022	
			sample is observed with a	taste and as for papaya seeds, it has
			magnifying glass	shrunken smooth surface, oval shaped,
				greenish brown or blackish brown with a
				repulsive flavor.
	Black berries	Black pepper	Berries are pushed with	Light berries breaks easily whereas black
			fingers	berries of pepper don't break
	Asafoetida	Soap stone or	A small amount of sample is	Asafoetida when pure don't leave any
	(hing)	other earthly	shaken with water, and it is	soap stone or other matter at bottom and
		matter	made settled.	if tainted, the soap stone and other matter
				settles down
	Chilli Powder	Artificial/	Chilli powder is sprinkled on	The artificial color immediately settles
		water soluble	the surface of water in a glass	down in color stains
		synthetic		
		colors		
	Black pepper	Light black	The sample black pepper is	The matured ones will sink whereas light
		berries	made float in alcohol	one's floats
			(rectified spirit)	
	Chilli powder	Saw dust	Sample is added to water	Saw dust floats in water and chilli powder
				sinks
	Asafoetida	starch	Sample is added to water	Artificial colors settled down immediately
				in color stains
	Common salt	chalk	A spoonful of salt is stirred in	The chalk makes solution white and
			a glass of water	other impurities settles down
	Clove	Exhausted	Cloves are added on some	Pure cloves settle down whereas
		Clove	water	exhausted cloves float in surface
	Cinnamon	Cassia bark	A small amount of	Cinnamon barks are very thin which is
			cinnamon is taken in a glass	rolled around pencil or pen and also has
			plate	distinct smell and if tainted, on close

Front Adv Mat Res, 1-34 / 15

				examination, cassia bark has several
				layers between rough outer and inner
				smooth layers
	Cumin seeds	Grass seeds	A small amount of Cumin	If palm is black, then it is tainted.
			seeds is rubbed in palms	
	Mustard seeds	Argemone	A small number of mustard	Seeds which have smooth surface and
		seeds	seeds is taken in a glass plate	when pressed has yellow color inside is
			and examined for argemone	Mustard seeds also, seeds which are
			seeds	grainy, rough surface and black color are
				argemone seeds and inside is white color.
	Turmeric	Lead	A small amount of turmeric	Turmeric when pure, doesn't leave any
	(whole)	chromate	is added in a glass of water	color whereas tainted ones leave bright
				color immediately.
	Turmeric	Artificial color	A teaspoon full of turmeric	Turmeric powder when pure leaves
	powder		powder is added in a glass of	yellow color when settling down and if
			water	tainted, it leaves a strong yellow color in
				water when setting
	Powdered	Sawdust and	Powdered spices are	Pure spices don't leave sawdust on the
	spices	powdered	sprinkled in the surface of	water surface whereas in the tainted ones,
		bran	water	the sawdust /powdered bran floats on
				surface
	Iodized salt	Common salt	A piece of potato is cut, and	If the salt is iodized, it changes to blue
			salt is added and kept for a	color and if no blur color appears, then it
			minute and two drops of	is common salt
			lemon juice is added	
	Saffron	Maize cob	A small amount of saffron is	Pure Saffron don't break easily like
			added in a glass of water	artificial, and the artificial ones are

Vol. 5 I	ss. 1 Year 2023	?	P	3. K amalapreetha /	2022	
						prepared by soaking in sugar and colored
						with coal tar, also if tainted, artificial
						colors dissolve quickly and pure saffron
						stays saffron color long.
6.	Fruits	&	Bitter gourd,	Malachite	Method 1: A cotton piece is	The malachite green color is found to be
	Vegetables		Green Chilli,	green in green	soaked in water or vegetable	tainted ones when cotton turns green
			and others	vegetables	oil and the outer part of	
					green vegetable is rubbed	
					with it	
			Bitter gourd,	Malachite	Method 2: A small part of	The color impression indicated the
			Green Chilli,	green in green	sample is taken and placed	malachite green or any other artificial
			and others	vegetables	on a piece of soaked white	color if tainted
					blotting paper	
			Green peas	Artificial	A small amount of green is	Separation of color indicates dilution
				colors	taken in a glass plate and	
					water is added and mixed	
					and made stand still for half	
					an hour	
			Sweet	Rhodamine B	A cotton ball is soaked in	The color absorption in cotton indicated
			potatoes		water or vegetable oil is	the use of rhodamine B for coloring the
					taken and it is rubbed on the	outer surface of sweet potatoes
					outer surface of sweet	
					potatoes	
7.	Beverages		Coffee	Clay	A half teaspoon coffee	Coffee powder when pure doesn't leave
			powder		powder is added in a glass of	any clay at bottom and if tainted, it leaves
					water and stirred for a	clay particles at bottom
					minute and kept aside for	

			five minutes and it is	
			observed	
	Coffee	Chicory	A glass of water is taken, and	Coffee powder floats over water whereas
	powder	powder	a teaspoon of coffee powder	chicory powder sinks
			is added	
	Tea leaves	Exhausted	Method 1: A filter paper is	Tea leaves when pure don't stain the filter
		leaves	taken, and tea leaves are	paper whereas if stains appears then coal
			spreaded and water is	tar is present in it
			sprinkled to wet the paper,	
			then it is washed in tap water	
			and observed for stains	
		Exhausted	Method 2: A Small amount	If the tea leaves is tainted, water will
		leaves	of tea leaves/dust is taken	dissolve the added color and leaves stains
			and placed in center of filter	of color in the filter paper
			paper and water is added	
			drop by drop at the heap of	
			tea leaves/dust	
		Exhausted	Method 3: A little slaked	Pure tea dust shows slight greenish yellow
		leaves	lime is spreaded on white	color because of chlorophyll and if red,
			porcelain tile or glass and	orange or other color spreads over lime,
			little tea dust is sprinkled	then there is presence of chlorophyll
			over lime	
		Iron filings	A small amount of tea leaves	Tea leaves when pure don't show iron
			is taken in a glass plate and a	filings on magnet and if tainted, iron
			magnet is moved around tea	filings are seen on magnet.
			leaves	

Vol. 5 I	<i>Col. 5 Iss. 1 Year 2023</i> B. Kamalapreetha /2022				
8.	Sensory	Milk	Synthetic	It gives bitter after taste	If tainted, it shows soapy feel on rubbing
	evaluation		Milk		between fingers
	quick tests	Black	Coated with	Black pepper when coated	-
		pepper/Cloves	mineral oil	with mineral oil smells like	
				kerosene	
		Chilli powder	Brick powder,	A teaspoon of chilli powder	When rubbed, if shows any rawness, then
			salt powder or	is taken in a glass of water	it is brick powder or sand and if shows a
			talc powder	and examined for wastes	soapy and smoothness, then it is soap
					stone
		Cloves	Volatile oil	Exhausted cloves can be	Its pungency characteristic is pure cloves
			extracted	found out by its size and	is less in exhausted cloves
			cloves	shrunk appearance	
			(extracted		
			cloves)		
		Sugar	Urea	A little sugar is rubbed on	If tainted, urea in sugar smells like
				palm and smelled and it is	ammonia
				dissolved with small amount	
				of sugar in water	
		Wheat, rice,	Kernel Bunt	The non-Characteristic	Kernel bunt shows dull appearance and
		maize, jowar,		grains are separated out and	black in color and smells like rotten fish
		bajra, channa,		examined	
		barley, etc.			
		Atta	Resultant atta/	For resultant atta, dough	The taste of chapati is little sweet as
			Maida	requires less water	normal and the tainted ones are tasteless
					(insipid)
		Sago	Sand/ Talcum	A small quantity of sago is	If tainted, it has a raw feel
				put in mouth	

Vol.	5 Iss.	1	Year 2023
	·	-	1044 2020

	Powdered	Common salt	Taste	for	addition	of	It tastes salty when present
	Spices		commo	on salt			
	Sweet meats	Artificial	A smal	l amot	int of samp	le is	Artificial sweetener leaves a persisting
		Sweetener	tasted				sweetness on the tongue for a long time
							and leaves a bitter aftertaste.

*Source: www.fssai.gov.in

4. Food fraud vulnerability assessment

According to Global Food Safety Initiative (GFSI), "Food fraud vulnerability is the susceptibility to a food fraud risk, which could cause consumer health threat if not properly addressed [11]." Food fraud vulnerability can be explained by opportunity related fraud risk factors, Motivation related fraud risk factors and absence of fraud control measures [59]. The analysis of these three aspects helps to estimate food fraud vulnerability for any food product or ingredient.

Opportunities and Motivations, the potential risk factors are determined by internal and external environment. Opportunities are created by poor management, oversight and through the abuse of one's authority. For any product, the food fraud opportunity can be determined by the composition, qualities, production process, supply chain, and its geographic origin. Factors include physical characteristics and composition, the presence of adulteration and transparency of the supply chain [60].

Motivation is a need of a person who commits food fraud for economic profit [61]. It can take two forms: revenue or cost minimization and its factors are level of competition, financial strains, and economic health and condition. It is also affected by factors like blackmail, corruption level, ethical business culture, and personal gain. It is increased by commercial or personal desperation. The potential risk resulting from these two factors can be mitigated by fraud control measures, which is implemented for detecting and preventing food fraud.

Specific controls include fraud monitoring and verification system, legal framework, enforcement and traceability [60]. The vulnerability to food fraud will continue as long as the potential for profit exceeds the chance of getting caught and the potential consequences do not act as an obstacle [2].

5. Food fraud prevention

When the vulnerability is assessed, it is necessary to find the issue which includes the intervention, detection, and monitoring and to take immediate action and prosecute the fraudsters. Whenever the public health is threatened, Prevention is the next step after intervention and response [11]. Food fraud prevention is a challenging aspect since fraudsters are opportunistic and actively keen on avoiding the detection. It is necessary to understand the food fraud opportunity before put forwarding the efficient and effective control systems or countermeasures [62].

For perceiving the fraud opportunity, each incident should be analyzed for a specific or group of products, market channel, and type of consumer, company, industry, and country. Those incidents will give insights on who is perpetrating the fraud, with what technologies, on what scale, to which consumer and with what economic, public risk and subsequently the specific countermeasures can be assessed for the detection and deterrence of the specific incident.

Countermeasures or control systems which are intended to reduce fraud opportunity and degree of mitigation depend on the food fraud type and by the involvement of management to decrease the vulnerability to fraud. The key actions to reduce or counteract the fraud opportunity fall into five distinct (Figure 2) categories [63].

Table 3. International Food laws and regulatory bodies

S.no	International regulatory bodies	Roles & responsibilities	Sites
1.	WHO	Access to sufficient amounts of	https://www.who.int/health-topics/food-safety/
	Food Safety	safe and nutritious food for	
	Food Born Diseases	promoting sustained good	
	Genetically Modified	health.	
	Food		
	Food Additives		
2.	FAO	To achieve food security for all,	http://www.fao.org/home/en/
	• Food and Agricultural	eradicate hunger and	
	Organization	malnutrition	
	• Food Safety and		
	Quality Emergency		
	Prevention		
3.	Codex Alimentarius	Developed by FAO and WHO	http://www.fao.org/fao-who-
	commission	to develop food standards,	codexalimentarius/committees/cac/about/en/
		guidelines, codes of practice,	
		etc.	
4.	Sanitary and Phytosanitary	Agreement on how	https://www.wto.org/english/tratop_e/sps_e/sps_e.htm
	Measures (SPS)	governments can apply food	
		safety and animal and plant	
		health measures based on	
		World Trade Organization	
		(WTO)	

Vol. 5 1	ss. 1 Year 2023	B. Kamalapreetha /2022	
5.	FAOLEX	Comprehensive and up-to-date	http://www.fao.org/faolex/en/
		largest electronic collection	
		legislative database.	
		of national laws and regulations	
		on food, agriculture and	
		renewable natural resources.	
6.	International Plant Protection	To protect cultivated and wild	https://www.ippc.int/en/
	Convention	plants by preventing the	
		introduction and spread of pests	
7.	World Organization for	Aids in improving animal health	https://www.oie.int/
	Animal Health (OIE)	worldwide.	
8.	International Trade Centre's	To strengthen the capacity of	https://www.intracen.org/standardsMap/
	Standards Map	producers, exporters,	
		policymakers, and buyers, to	
		participate in more sustainable	
		production and trade.	
9.	OECD Agriculture and	To improve the economic and	https://www.oecd.org/agriculture/
	Fisheries - Organization of	social well-being of people	
	Economic Co-operation and	around the world.	
	Development		

FTT 1 1 4	<u> </u>	A .1 *.	1 1	1 1		• .	•	•	
L'able 4	Coverning	Authority	Hood	low ond	roporting	ottoc	110	VOPIOLIC	countrios
1 4010 4.	GOVERNING	AULIOIIUV.	roou	Taws and	TEDOLIUIS	SILCS	111	various	countries
	0 0								

Country	Governing food authority	Food law	Incident of adulteration/ complaint
			registration
Africa	National Agency for Food and drug	Sections 5 and 30 of NAFDAC	-
	administration and control	and Control Act Cap NI Laws	
	National Food Safety Situations in Africa	of the Federation of Nigeria	
		(LFN) 2004	
Australia and	Food Standards Australia New Zealand	Food Standards Australia New	https://www.foodstandards.gov.au/publications
New		Zealand Act 1991	/Pages/Report-on-Emerging-and-Ongoing-
Zealand		Food Standards Australia New	Issues-Annual-Report-2019.aspx
		Zealand Regulations 1994	
		Imported Food Control Act	
		1992	
		New Zealand legislation -	
		Food Act 2014	
Bangladesh	Bangladesh Food Safety Authority	Food Safety (Contaminants,	https://www.consumerbd.org/complaints/
	(BFSA)	Toxins and Harmful Residues)	To be launched hotline '333' for complain
		Regulations, 2017	against adulteration
		Food Safety Act 2013	
Burma	Food and Drug Administration (Burma)	National food law	-
Canada	Canadian Food Inspection Agency	Canadian Food Inspection	https://www.inspection.gc.ca/food-recall-
	Agriculture and Agri-Food Canada	Agency Acts & Regulations	warnings-and-allergy-
		Canada Agricultural Products	alerts/eng/1351519587174/1351519588221?a
		Act	y=0&fr=0&fc=0&fd=0&ft=2
		Canada Food Inspection	
		Agency Act	

Vol. 5 Iss. 1	Year 2023B. Kamalapreet	ha /2022	
		Consumer Packaging and	
		Labelling Act	
		Food and Drugs Act	
		Safe Food for Canadians Act	
China	Ministry of Agriculture of the People's	Food Safety Law of the People's	http://www.cca.cn/en/process.html
	Republic of China:	Republic of China	
	Agri-Product Quality and Safety	HFG Law & Intellectual	
	Animal Health	Property	
	Biotechnology	People's Republic of China	
	Laws and Regulations	Food Safety Law	
	General Administration of Quality		
	Supervision, Inspection and Quarantine		
	of the People's Republic of China		
Japan	Food Safety Commission of Japan	Food Safety Basic Law	https://www.caa.go.jp/en/
	Food and Agricultural Materials	Law on Special Measures	
	Inspection Center	Against Bovine Spongiform	
		Encephalopathy	
		Poultry Slaughtering Business	
		Control and Poultry Inspection	
		Law	
		Food Sanitation Act	
Hongkong	Centre for Food Safety	Part V of the Public Health and	https://www.cfs.gov.hk/english/rc/subject/fi_list
		Municipal Services Ordinance	.html
		(Cap. 132)	
		Food Safety Ordinance (Cap.	
		612)	

India	Food Safety and Standards Authority of	Food Safety and Standards Act,	https://foodregulatory.fssai.gov.in/grievance-
	India	2006	redressal
		Food Safety and Standards	https://www.onlinelegalindia.com/services/con
		Regulations	sumer-complaint/
			https://consumerhelpline.gov.in/faqdetails.ph
			p?fid=Food%20and%20Food%20Safety
Nepal	Department of Food Technology and	Food Regulation, 2027 (1970).	-
	Quality Control	Food Act, 2023	
Philippines	Food and Drug Administration	Food safety act 2013	-
South Korea	Ministry of Food and Drug Safety	Food Sanitation Act	https://www.kca.go.kr/eng/main.do
	Food Safety Bureau	Food Code	
European	Rapid Alert System for Food and Feed	General Food Law - Regulation	https://webgate.ec.europa.eu/rasff-
Union	(RASFF)	(EC) No. 178/2002	window/portal/?event=notificationsList&Start
	European Food Safety Authority	Treaty	Row=1
	(EFSA).	Functioning of the EU - Art. 168	
		- Public Health Protection	
		Functioning of the EU - Art.	
		169- Consumer Protection	
Belgium	Federal Agency for the Safety of the	-	-
	Food Chain		
Greece	Hellenic Food Authority	Food and Beverage code	https://www.efet.gr/index.php/el/consumers/k
			ataggelies
Germany	Federal Ministry of Food, Agriculture	German Food Law of Article 61	-
	and Consumer Protection	of Lebensmittel und	

Vol. 5 Iss. 1	Vol. 5 Iss. 1 Year 2023 B. Kamalapreetha /2022					
		Bedarfsgegenstaendegesetze				
		(LMBG)				
Netherland	Food and Consumer Product Safety	Food safety regulations in	-			
	Authority (NVWA) under Ministry of	commodity act				
	Economic Affairs, Agriculture and					
	Innovation					
Spain	Ministry of Agriculture, Food and	-	-			
	Environment					
UK	Food standard Agency,	Food and feed law	https://www.food.gov.uk/contact/consumers/r			
	Department for Environment, Food and	The Committee on Toxicity of	eport-problem			
	Rural Affairs	Chemicals in Food, Consumer				
		Products and the Environment				
		(COT)				
		Committee on Mutagenicity of				
		Chemicals in Food, Consumer				
		Products and the Environment				
USA	Food and Drug Administration (FDA)	FDA Food Safety	https://www.foodsafety.gov/recalls-and-			
	Center for Food Safety and Applied	Modernization Act (FSMA)	outbreaks -			
	Nutrition (CFSAN)	Retail Food Protection				
	International Food Protection Training	Federal/state food programs				
	Institute (IFPTI)					
	Joint Expert Committee on Food					
	Additives (JECFA)					
	United States Department of Agriculture					
	(USDA)					
	Under Secretary for Food Safety					
	Food Safety and Inspection Service					
	(FSIS)					

The control systems developed for this problem are the usage of unique serial numbers, traceability of the product and special inks, the hologram on the packaging of individual items. Also, Food fraud prevention relies on the presence of the well-resourced and capable guardian. The government can reduce the food fraud opportunity through a public-private partnership by bringing all the relevant enforcement agencies to work together with food industry resources [64]. Various regulatory and governing bodies are involved in framing the rules, preventative methods and mitigations, to reduce food fraud risk have been established. Some of the international regulatory bodies and their food law are summarized in the Table3 and 4.

6. Conclusion

Fighting fraud and adulteration will remain a race between the fraudsters and the scientists developing new methods to prevent them. Food fraud occurs from antiquity and is a concern for all food business. It can be an eminently commercial crime and contribute economic vulnerability for food manufacturers and food brand owners. Forecasting the food fraud incidents is difficult for consumers, as producers don't provide information about fraud practices. The countermeasure for this issue is to centralize on creating an innovative method for prevention and mitigation. To prevent the food fraud, issue each factor should be considered. Additionally, advanced systems of fraud deterrence that are cost-effectiveare being applied to address the emerging food quality issues and to create trust in food manufacturers, retailers, importers and consumers and thereby ensuring the protection of public health.

References

- [1] R. Johnson, (2014), Food fraud and economically motivated adulteration of food and food ingredients. *Congressional Research Service Informing the legislative dabates since*.
- [2] K. Everstine, J. Spink, S. Kennedy, Economically motivated adulteration (EMA) of food: common characteristics of EMA incidents, *Journal of food protection*, 76(4) (2013) 723-735. <u>https://doi.org/10.4315/0362-028X.JFP-12-399</u>
- [3] L.Manning, J.M. Soon, Food safety, food fraud, and food defense: A fast evolving literature, *Journal of food science*, 81(4) (2016). <u>https://doi.org/10.1111/1750-3841.13256</u>
- [4] J.C. Moore, J. Spink, M. Lipp, Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010, *Journal* of Food Science, 77(4) (2012). <u>https://doi.org/10.1111/j.1750-3841.2012.02657.x</u>
- [5] K. Robson, M. Dean, S. Brooks, S. Haughey, C. Elliott, A 20-year analysis of reported food fraud in the global beef supply chain, *Food Control*, 116 (2020). <u>https://doi.org/10.1016/j.foodcont.2020.107310</u>

- [6] C. Jia, D. Jukes, The national food safety control system of China A systematic review, Food Control, 32(1) (2013) 236–245. <u>https://doi.org/10.1016/j.foodcont.2012.11.042</u>
- [7] B. Caballero, P. Finglas, F. Toldra, (2015). Encyclopedia of food and health, *Academic Press*.
- [8] D.C. Moyer, J.W. DeVries, J. Spink, The economics of a food fraud incident-Case studies and examples including melamine in wheat gluten, *Food Control*, 71 (2017) 358-364. https://doi.org/10.1016/j.foodcont.2016.07.015
- [9] S.M Abress, Nateghi, L. (2015). Introduction to food frauds and their identification, *International Journal of Biology, Pharmacy and Allied Sciences, 4*(11), 6421-6437.
- [10] Nature world news. (2014). Retrieved from <u>http://www.natureworldnews.com/articles/6195/20140227/honey-fraud-pollen-is-</u> removed-from-75-percent-of-honey-sold-commercially-in-us.htm
- J. Spink, D.C. Moyer, Defining the public health threat of food fraud, Journal of Food Science, 76(9) (2011). <u>https://doi.org/10.1111/j.1750-3841.2011.02417.x</u>
- [12] C.W. Huck, C.K., Pezzei, V.A. Huck-Pezzei, An industry perspective of food fraud, Current Opinion in Food Science, 10 (2016) 32-37. https://doi.org/10.1016/j.cofs.2016.07.004
- [13] D. Burges, (2012), Cargo theft, loss prevention, and supply chain security, *Butterworth-Heinemann*, https://doi.org/10.1016/B978-0-12-416007-1.00013-3
- [14] Food logistics. (2017) Retrieved from <u>www.foodlogistics.com/news/.../qa-cargo-theft-in-</u> <u>the-food-and-beverage-industry</u>
- [15] D. Goel, R. Gupta, (2014), Welfare impact of the grey market: Consumer's perspective, International journal of emerging research in management and technology.
- [16] Birmingham news. (2017). Retrieved from http://www.birminghammail.co.uk/news/midlands-news/
- [17] E.Y. Chan, S.M. Griffiths, C.W. Chan, Public-health risks of melamine in milk products, *The Lancet*, 372(9648), (2008) 1444-1445 <u>https://doi.org/10.1016/S0140-6736(08)61604-9</u>
- [18] J. Fullerton, (2015), Bathtub Booze and Knock-off Whisky: Inside China's Fake Alcohol Industry, *The Guardian* 16.
- [19] X. Zhou, M.P.Taylor, H. Salouros, S. Prasad, Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements, *Scientific Reports*, 8(1), (2018). <u>https://doi.org/10.1038/s41598-018-32764-w</u>
- [20] A.M. Naaum, H.R. Shehata, S. Chen, J. Li, N. Tabujara, D. Awmack, C. Lutze-Wallace,
 R. Hanner, Complementary Molecular Methods Detect Undeclared Species in Sausage

Products at Retail Markets in Canada, *Food Control*, 84 (2018) 339-44. https://doi.org/10.1016/j.foodcont.2017.07.040

- [21] P. Neo, (2019), Dangerous Dairy: Bangladesh Milk Adulteration Report Delayed despite 'Large Majority' of Samples Tainted, *Food Navigator Asia.*
- [22] T. Agres, The Cumin Scandal: Accidental or Fraudulent, *Food Quality and Safety*, 2015 1–2.
- [23] J. Levin, (2018), Seafood Fraud and Mislabelling across Canada, Oceana, Washington.
- [24] L. Drabova, G. Alvarez-Rivera, M. Suchanova, D. Schusterova, J. Pulkrabova, M. Tomaniova, V. Kocourek, O. Chevallier, C. Elliott, J. Hajslova, Food Fraud in Oregano: Pesticide Residues as Adulteration Markers, *Food Chemistry*, 276 (2019) 726–34. https://doi.org/10.1016/j.foodchem.2018.09.143
- [25] B. Sezer, H. Apaydin, G. Bilge, I.H. Boyaci, Coffee Arabica Adulteration: Detection of Wheat, Corn and Chickpea, *Food Chemistry*, 264 (2018) 142–148. <u>https://doi.org/10.1016/j.foodchem.2018.05.037</u>
- [26] A.T. Toci, A. Farah, H.R. Pezza, L. Pezza, Coffee Adulteration: More than Two Decades of Research, *Critical Reviews in Analytical Chemistry*, 46 (2) (2016) 83–92. <u>https://doi.org/10.1080/10408347.2014.966185</u>
- [27] E. Bogdan, (2016), Media framing of the Russian dairy policy after the reciprocal sanctions- a framing analysis of the Russian media 2014-2015, *Wageningen University*.
- [28] B. Rocchi, D. Romano, A. Sadiddin, G. Stefani, Assessing the economy-wide impact of food fraud: A SAM-based counterfactual approach, *Agribusiness*, 36(2) (2020)167–191. <u>https://doi.org/10.1002/agr.21633</u>
- [29] M. Fox, M. Mitchell, M. Dean, C. Elliott, K. Campbell, The seafood supply chain from a fraudulent perspective, *Food Security*, 10(4) (2018) 939–963. <u>https://doi.org/10.1007/s12571-018-0826-zF</u>
- [30] M.J. Walker, M. Burns, D.T. Burns, Horse Meat in Beef Products- Species Substitution 2013, *Journal of the Association of Public Analysts*, 41 (2013) 67–106.
- [31] M. Farshidi, R. Mohammadi, M.R. Sehatkhah, B. Ebrahimi, Identification of Mislabeling Some Meat Products Sold on the Iran Market Using PCR-RFLP, Current Nutrition & Food Science, 16(2) (2018) 170–175. https://doi.org/10.2174/1573401314666181011121539
- [32] M. Flores-Munguia, M. Bermudez-Almada, L. Vazquez-Moreno, A Research Note: Detection of Adulteration in Processed, *Journal of Muscle Foods*, 11 (2000) 319–325. <u>https://doi.org/10.1111/j.1745-4573.2000.tb00435.x</u>

- [33] Choice (2016), Does your spice rack contain fake oregano?, *Choice*.available at: <u>https://www.choice.com.au/food-and-drink/groceries/herbs-and-spices/articles/oregano-fraud</u>
- [34] E. Hong, S.Y. Lee, J.Y. Jeong, J.M. Park, B.H. Kim, K. Kwon, S.H. Chun, Modern analytical methods for the detection of food fraud and adulteration by food category, *Journal of the Science of Food and Agriculture*, (2017). <u>https://doi.org/10.1002/jsfa.8364</u>
- [35] E. Salivaras, A.R. McCurdy, Detection of olive oil adulteration with canola oil from triacylglycerol analysis by reversed-phase high-performance liquid chromatography, *Journal of the American Oil Chemists' Society*, 69(9), (1992) 935-938. https://doi.org/10.1007/BF02636347
- [36] A. Kuksis, M. J. McCarthy, Triglyceride gas chromatography as a means of detecting butterfat adulteration, *Journal of the American Oil Chemists Society*, 41(1) (1964)17-21. https://doi.org/10.1007/BF02661894
- [37] A.T. Toci, A. Farah, The volatile fingerprint of Brazilian defective coffee seeds: corroboration of potential marker compounds and identification of new low-quality indicators, *Food Chemistry*, 153 (2014) 298-314. https://doi.org/10.1016/j.foodchem.2013.12.040
- [38] P.D.K. Candoğan, E. Deniz, E. Güneş Altuntaş, N. Iğci, D. Özel Demiralp, Sigireti Karisimlarinda Domuz, At Ve Esekettagsisinin Fourier Determination of the conversion process by spectroscopy, *Gida / The Journal of Food*, (2020) 369–379. https://doi.org/10.15237/gida.GD19146
- [39] G. Downey, P. McIntyre, A.N. Davies, Detecting and quantifying sunflower oil adulteration in extra virgin olive oils from the Eastern Mediterranean by visible and nearinfrared spectroscopy, *Journal of Agricultural and Food Chemistry*, 50(20) (2002) 5520-5525. <u>https://doi.org/10.1021/jf0257188</u>
- [40] L.G. Zhang, X. Zhang, L.J. Ni, Z.B. Xue, X. Gu, S.X. Huang, Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near-infrared spectroscopy, *Food Chemistry*, 145, (2014) 342-348. https://doi.org/10.1016/j.foodchem.2013.08.064
- [41] D. Cozzolino, I. Murray, A review of the application of infrared technologies to determine and monitor composition and other quality characteristics in raw fish, fish products, and seafood, *Applied Spectroscopy Reviews*, 47(3) (2012) 207-218. <u>https://doi.org/10.1080/05704928.2011.639106</u>
- [42] S. A. Haughey, P. Galvin-King, Y.C. Ho, S.E. Bell, C.T. Elliott, The feasibility of using near-infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye, *Food Control*, 48 (2015) 75-83. <u>https://doi.org/10.1016/j.foodcont.2014.03.047</u>

- [43] M.Q. Zou, X.F. Zhang, X.H. Qi, H.L. Ma, Y. Dong, C.W. Liu, X. Guo, H. Wang, Rapid authentication of olive oil adulteration by Raman spectrometry, *Journal of agricultural and food chemistry*, 57(14) (2009) 6001-6006. https://doi.org/10.1021/jf900217s
- [44] S. Li, Y.Shan, X. Zhu, X. Zhang, G. Ling, Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy, *Journal of food composition and analysis*, 28(1) (2012) 69-74. https://doi.org/10.1016/j.jfca.2012.07.006
- [45] A. Agiomyrgianaki, P.V. Petrakis, P. Dais, Detection of refined olive oil adulteration with refined hazehut oil by employing NMR spectroscopy and multivariate statistical analysis, *Talanta*, 80(5) (2010). 2165-2171. <u>https://doi.org/10.1016/j.talanta.2009.11.024</u>
- [46] C.V. Di Anibal, I. Ruisanchez, M.P. Callao, High-resolution 1 H nuclear magnetic resonance spectrometry combined with chemometric treatment to identify adulteration of culinary spices with Sudan dyes, *Food Chemistry*, 124(3) (2011) 1139-1145. https://doi.org/10.1016/j.foodchem.2010.07.025
- [47] T.F. McGrath, M. Shannon, O.P. Chevallier, R. Ch, F. Xu, F. Kong, H. Peng, E. Teye, S. Akaba, D. Wu, L. Wu, Q. Cai, L.N.D. Duy, L.V.V. Man, S. Pandor, A.P. Kapil, G. Zhang, M. McBride, C.T. Elliott, Food Fingerprinting: Using a two-tiered approach to monitor and mitigate food fraud in rice, *Journal of Aoac International*. 104(1) (2020) 16-28. <u>https://doi.org/10.1093/jaoacint/qsaa109</u>
- [48] S. Patra, E.Roy, R. Madhuri, P.K. Sharma, (2017), A technique comes to life for security of life: the food contaminant sensors, *In book: Nanobiosensors*. <u>https://doi.org/10.1016/B978-0-12-804301-1.00017-5</u>
- [49] E. Chiavaro, E. Vittadini, M.T. Rodriguez-Estrada, L. Cerretani, A. Bendini, Differential scanning calorimeter application to the detection of refined hazelnut oil in extra virgin olive oil, *Food Chemistry*, 110(1) (2008) 248-256. https://doi.org/10.1016/j.foodchem.2008.01.044
- [50] E. Coni, M. Di Pasquale, P. Coppolelli, A. Bocca, Detection of animal fats in butter by differential scanning calorimetry: a pilot study, *Journal of the American Oil Chemists Society*, 71(8) (1994) 807-810. https://doi.org/10.1007/BF02540453
- [51] C. Cordella, J.F. Antinelli, C. Aurieres, J.P. Faucon, D. Cabrol-Bass, N. Sbirrazzuoli, Use of differential scanning calorimetry (DSC) as a new technique for the detection of adulteration in honey, *Journal of agricultural and food chemistry*, 50(1) (2002) 203-208. https://doi.org/10.1021/jf010752s
- [52] R.G. Berger, R.P. Mageau, B. Schwab, R.W. Johnston, Detection of poultry and pork in cooked and canned meat foods by enzyme-linked immunosorbent assays, *Journal-Association of Official Analytical Chemists*, 71(2) (1987) 406-409. https://doi.org/10.1093/jaoac/71.2.406

- [53] L.M. Reid, C.P. O'donnell, G. Downey, Recent technological advances in the determination of food authenticity, *Trends in Food Science & Technology*, 17(7) (2006) 344-353. <u>https://doi.org/10.1016/j.tifs.2006.01.006</u>
- [54] M. Woolfe, S. Primrose, Food forensics: using DNA technology to combat misdescription and fraud, *Trends in biotechnology*, 22(5) (2004) 222-226. https://doi.org/10.1016/j.tibtech.2004.03.010
- [55] S. Primrose, M.Woolfe, S. Rollinson, Food forensics: methods for determining the authenticity of foodstuffs, *Trends in Food Science & Technology*, 21(12) (2010) 582-590. https://doi.org/10.1016/j.tifs.2010.09.006
- [56] Maleeka singh (2020) Thesis. Improving traceability and detection of food fraud: An exploration of current seafood authentication methods and validation of a novel qPCR and closed-tube barcoding method for commercial species of fish, Fastfish-Id. https://atrium.lib.uoguelph.ca/server/api/core/bitstreams/99e27d8d-9d5d-400f-baf8-e90edd93094d/content
- [57] J. Zhang, X. Zhang, L.Dediu, C. Victor, Review of the current application of fingerprinting allowing detection of food adulteration and fraud in China, *Food Control*, 22(8) (2011) 1126-1135. <u>https://doi.org/10.1016/j.foodcont.2011.01.019</u>
- [58] S. Bansal, A. Singh, M. Mangal, A.K. Mangal, S. Kumar, Food adulteration: Sources, health risks, and detection methods, *Critical reviews in food science and nutrition*, 57(6) (2017) 1174-1189. <u>https://doi.org/10.1080/10408398.2014.967834</u>
- [59] S. M. Van Ruth, W. Huisman, P.A. Luning, Food fraud vulnerability and its key factors. Trends in food science and technology, 67 (2017) 70-75. https://doi.org/10.1016/j.tifs.2017.06.017
- [60] I.C. Silvis, S.M. Van Ruth, H.J. Van der Fels-Klerx, P.A. Luning, Assessment of food fraud vulnerability in the spices chain: An explorative study, *Food Control*, 81 (2017) 80-87. <u>https://doi.org/10.1016/j.foodcont.2017.05.019</u>
- [61] A.M. Pustjens, Y. Weesepoel, S.M. Van Ruth, Food fraud and authenticity: emerging issues and future trends, *f*, 1 (2015) 3-20. <u>https://doi.org/10.1016/B978-1-78242-447-5.00001-0</u>
- [62] J. Spink, D.L. Ortega, C. Chen, F. Wu, Food fraud prevention shifts the food risk focus to vulnerability, *Trends in Food Science & Technology*, 62 (2017) 215-220. https://doi.org/10.1016/j.tifs.2017.02.012
- [63] J.W. Spink, (2016) Food fraud prevention. *Springer Nature*, New York, NY
- [64] J. Spink, D.C. Moyer, P. Whelan, The role of the public-private partnership in food fraud prevention—includes implementing the strategy, *Current opinion in food science*, 10 (2016) 68-75. <u>https://doi.org/10.1016/j.cofs.2016.10.002</u>

Conflict of interest: The Authors has no conflicts of interest to declare that they are relevant to the content of this article.

About The License: © 2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License which permits unrestricted use, provided the original author and source are credited.