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Abstract

In nature, microbial communities are inherent components of all ecosystems, actively shaping and being
shaped by complex eco-evolutionary feedback processes. Importantly, these communities have a
substantial impact on the health and disease of eukaryotic organisms. Genetic variation is the ultimate
driver of phenotypes and ecosystem functioning, and Horizontal Gene Transfer (HGT) plays a crucial role
in generating this variability. Nonetheless, a consequent knowledge gap remains in understanding the
dynamic role of HGT in biologically meaningful microbial communities, and detecting HGT in complex
microbial communities is challenging. Recent work has shown that Mobile Genetic Elements (MGEs)
impact the movement of ecologically relevant genes, influencing community function. Building upon
this, my thesis investigates HGT dynamics and its influence on community function in ecologically
relevant microbial communities. For this, | experimentally evolved the nematode Caenorhabditis elegans
with compost-derived microbial communities cultured on a single carbon source of cellulose paper.

Regular transfers of communities, incorporating pooled MGEs, enabled the tracking of HGT.

In Chapter 3, | demonstrate the effectiveness of a bioinformatic pipeline to identify and trace HGT
events facilitated by MGEs across diverse free-living communities, using metagenomic data from
cellulose paper-grown microbial communities. Chapter 4 explores the impact of HGT on the functioning
of host-associated communities. Periodic nematode counting in repeated evolution experiments
revealed fitness changes due to HGT, with both detrimental and beneficial effects observed. Microbial
community composition was unaffected by HGT. Approaches were then sought to follow HGT dynamics
in the nematode gut. Metagenomics proved challenging to use in this context. An in-house barcoded
library of Pseudomonas fluorescens SBW25 was not suitable to track single lineages due to the strain's
inability to establish a long-term association with C. elegans, despite observed beneficial interactions.
The gut was dominated by Ochrobactrum and Pseudochrobactrum, diverse genera with a high
propensity for gene gain. Individual genomes from these genera were successfully tracked in real-time,

and multiple horizontally transferred sequences carrying ecologically relevant genes were detected.

Overall, this thesis demonstrates the utility of simplified experimental designs in comprehending the
intricate eco-evolutionary dynamics of microbial communities, and paves the way for a deeper

understanding of the significance of HGT in shaping community function.
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Abstrakt

Translated by Manuela Spagnuolo and Christopher B6hmker

In der Natur sind mikrobielle Gemeinschaften ein fester Bestandteil aller Okosysteme, die sowohl durch
komplexe o©ko-evolutiondre Rickkopplungsprozesse geformt werden, diese aber auch selbst aktiv
gestalten konnen. Wichtig ist, dass diese Gemeinschaften einen erheblichen Einfluss auf Gesundheit und
Krankheit eukaryontischer Organismen haben. Genetische Variation ist die oberste Triebkraft fir
Phanotypen und das Funktionieren von Okosystemen und horizontaler Gentransfer (HGT) spielt eine
entscheidende Rolle diese Variabilitdt zu generieren. Dennoch besteht nach wie vor eine Wissensliicke,
um die dynamische Rolle von HGT in biologisch bedeutsamen mikrobiellen Gemeinschaften zu
verstehen und der Nachweis von HGT in komplexen mikrobiellen Gemeinschaften ist kompliziert. Neuste
Arbeiten haben gezeigt, dass Mobile Genetische Elemente (MGEs) die Bewegung 6kologisch relevanter
Gene und damit die Funktion von Gemeinschaften beeinflussen. Darauf aufbauend untersucht meine
Dissertation die Dynamik von HGT und deren Einfluss auf die Gemeinschaftsfunktionen in dkologisch
relevanten mikrobiellen Gemeinschaften. Zu diesem Zweck habe ich den Fadenwurm Caenorhabditis
elegans experimentell mit aus Kompost gewonnenen mikrobiellen Gemeinschaften, die auf
Zellulosepapier als einziger Kohlenstoffquelle kultiviert wurden, evolviert. RegelmaRige Transfers von

Gemeinschaften, die gepoolte MGEs enthielten, erméglichten die Verfolgung von HGT.

In Kapitel 3 zeige ich die Effektivitdt einer bioinformatischen Pipeline zur Identifizierung und
Nachverfolgung von HGT-Ereignissen, die durch MGEs in verschiedenen freilebenden Gemeinschaften
begilinstigt werden, unter Verwendung metagenomischer Daten mikrobieller Gemeinschaften, die auf
Zellulosepapier angeziichtet wurden. Kapitel 4 untersucht die Auswirkungen von HGT auf die Funktion
von wirts-assoziierten Gemeinschaften. Periodische Zdhlungen von Nematoden in wiederholten
Evolutionsexperimenten ergaben Anderungen der Fitness aufgrund von HGT, wobei sowohl schidliche
als auch positive Auswirkungen beobachtet wurden. Die Zusammensetzung mikrobieller
Gemeinschaften wurde nicht durch HGT beeinflusst. AnschlieRend wurde nach Ansatzen gesucht, um
die HGT-Dynamik im Fadenwurmdarm zu verfolgen. In diesem Zusammenhang erwies sich die
Verwendung von Metagenomik als schwierig. Eine hauseigene barcodierte Bibliothek von Pseudomonas
fluorescens SBW25 war nicht geeignet, um einzelne Linien zu verfolgen, da der Stamm keine langfristige

Verbindung mit C. elegans aufbauen konnte, obwohl positive Interaktionen beobachtet wurden. Der
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Darm wurde von Ochrobactrum und Pseudochrobactrum, diversen Gattungen mit einer hohen Neigung
zum Gengewinn, dominiert. Individuelle Genome dieser Gattungen wurden erfolgreich in Echtzeit

verfolgt und es wurden mehrere horizontal Gbertragene Sequenzen mit okologisch relevanten Genen

gefunden.

Insgesamt zeigt diese Doktorarbeit den Nutzen eines vereinfachten Versuchsaufbaus fiir das Verstandnis
komplizierter 6ko-evolutiondren Dynamiken mikrobieller Gemeinschaften und ebnet den Weg fiir ein

tieferes Verstandnis der Bedeutung von HGT bei der Gestaltung von Gemeinschaftsfunktionen.
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1 Introduction

7

“Complex is not sum of many simples, it is simply one complex.

Deepak Kripal, Sense of the Quiet

1.1 A World Ruled by Microorganisms

Microorganisms have evolved to adapt to almost all possible environmental niches'. They are a key
component in a wide range of biogeochemical processes on Earth’. Furthermore, their ability to

establish relationships with host organisms makes them very relevant in health and disease®.

1.2 Embracing the Complex Eco-Evolutionary Dynamics of Microbial Communities

In the early stages of microbiology, the ability to characterize microbes relied solely on the capacity to
grow cultures in the laboratory. This prevented access to the incredible phenotypic and genomic
microbial diversity we nowadays hold”. In fact, much of this technical limitation has been overcome by
extensively sequencing and profiling microbial communities®. On the down side, it is now easy to get lost
in the complexity and abundance of these data. To disentangle the stunning complexity of microbial
communities, it is necessary to put these systems back into their ecological and evolutionary context®.
Microorganisms can neither be separated from their ability to interact with the biodiversity they are
part of, nor from the structured and constantly changing environment where they establish niches. Very
importantly, microorganisms are deeply intertwined within the evolutionary framework from which
they are derived’. Although simplification through, for example, two-species experiments can give some
insights into the mechanistic interactions between species, such simplification may hamper the ability to
understand processes that are inherent to the complexity itself®°. Environmental samples grown under
well-controlled laboratory conditions are referred to as mesocosms. They provide a good trade-off
between overly complex natural environments and over-simplified experiments. This intermediate level
of environmental and genotypic complexity allows testing ecological theories on populations and

communities®™*?,



1.3 The Crucial Role of HGT in the Ecology and Evolution of Microbial Communities

1.3.1  HGT, the necessary source of variation for microorganisms

Bacteria divide via binary fission to give rise to cells that in the absence of mutation, are genetically
identical. However, short generation times and large population sizes generate a wealth of mutational
diversity. This allows bacteria to rapidly adapt to their environment®®. Nonetheless, the mutation-driven
variability in bacteria is not sufficient to explain the extent of bacterial evolution™. In fact, a process
similar to meiotic recombination in eukaryotes allows the acquisition of new genes and may compensate
for the accumulation of slightly deleterious mutations®. Horizontal gene transfer (HGT), the ability of
bacteria to acquire genes from sources other than their parents, the latter being called vertical gene
transfer, satisfies this condition®. Typically, essential housekeeping genes show a pattern of vertical
inheritance, whereas genes associated with more specialized functions tend to undergo horizontal

Y719 HGT plays a crucial role in shaping the course of microbial evolution and occurs at high

transfer
rates within microbial communities®*%. Moreover, emerging evidence strongly indicates that HGT exerts
a far greater influence than point mutations in driving the adaptive dynamics of bacterial

populations®*?>. Therefore, HGT certainly generates the variability necessary to fuel bacterial evolution.

1.3.2 MGEs, with their ability to self-sustain, are crucial vehicles for HGT

Mobile Genetic Elements (MGEs) serve as primary vehicles for HGT. For instance, plasmids and
bacteriophages can transport fragments of bacterial genomes through conjugation and transduction

2627 Recent studies have begun to unravel the diversity of MGEs and the

processes, respectively
mechanisms underlying their transfer?®. MGEs act as independent Darwinian entities capable of self-
replicating, and self-integrating into bacterial genomes?®. This means that their evolutionary trajectory
may deviate from that of the host. Nonetheless, the persistence of MGEs is often attributed to their

ability to transfer host-beneficial genes, as carrying cargo genes may also promote their own survival®~

31

1.3.3 Adirect link between HGT and community function

One central question to answer in microbial ecology and evolution focuses on the understanding of
ecosystem functioning and its link with biodiversity®>. While multiple levels of selection affect microbial
communities through complex eco-evolutionary feedback processes, genes are the primary entity that

determines the functioning of ecosystems®**. It has been shown that HGT maintains species diversity
2



3¢ Recently,

and helps against environmental disturbance, thereby promoting ecosystem stability
Quistad et al.’” further strengthened this notion by establishing a direct link between HGT and the

functioning of complex microbial communities.

1.4 HGT in Host-Associated Microbial Communities

1.4.1 Host-microbe interactions

Biotic interactions within ecosystems extend beyond interactions among microorganisms and also
include the interplay with higher organisms. The theory of endosymbiosis, which posits that eukaryotes
emerged through the engulfment of bacteria that subsequently evolved into mitochondria and
chloroplasts, highlights the essential role of these interactions in evolution®. Host-microbe interactions
exist along a parasitism-mutualism spectrum. At one extreme of this spectrum, mutualism characterizes
a reciprocal relationship where both the host and microbial symbiont rely on each other for their
survival. In contrast, parasitism describes a scenario in which the microbial parasite benefits at the
expense of the host, without providing any reciprocal benefits**. Whether positively or negatively, the

presence of microorganisms greatly impacts the health of eukaryotic organisms**™,

1.4.2  HGT within the gut microbiome

1.4.2.1 Influence of microorganisms in the gut

The gut serves as a vast habitat for microbial communities within a host. Microorganisms contribute to
various functions related to host health, including immune protection and digestion, and alteration of

the gut microbiome can lead to various host diseases®.

1.4.2.2 The Gut, a hotspot for HGT

The gut has been repeatedly shown to be a hotspot for HGT*****, In fact, the large microbial density and
diversity in this environment, and the presence of multiple niches, enhance interactions between
community members®. The extreme conditions encountered by microorganisms are both signals for
HGT and selection pressures for the maintenance of horizontally transferred ecologically relevant genes

within the gut*.



1.4.2.3  The effect of HGT on host-associated microbial communities

While the effect of HGT on the interaction of a single bacterial strain with a host has been considered,
this may not fully capture the implications of HGT in a natural and complex environment“. In the past
decade, the rise of metagenomics has enabled researchers to start disentangling the extensive diversity
of MGEs in vivo®®* ™. Interestingly, certain plasmids have been found to be enriched with genes of
ecological significance for bacterial life in the rumen of bovines®®. Moreover, studies have observed
specific HGT events among bacteria residing in the human gut®**%. Although research in this field is still in
its early stages, these recent advancements indicate the crucial role of HGT in the ecological dynamics of
microbial communities within hosts. However, the precise impact of HGT on the interaction between

these communities and their host remains relatively understudied.

1.4.3  C. elegans, a good model for microbiome research

Caenorhabditis elegans, an easily maintainable model organism in the laboratory, has been extensively
utilized to investigate various health-related processes®. As a result, there is now a comprehensive
understanding of the nematode's biology and life-history traits. C. elegans is a bacterivorous nematode,
and it has predominantly been studied in the context of single-strain bacterial nutrition. Nonetheless, in
recent years, it has repeatedly been shown to be associated with diverse microorganisms in nature>*°.
Consequently, there has been a growing emphasis on using C. elegans as a host model organism for
microbiome research. C. elegans is specifically useful to test the effects of the microbiome on host
fitness due to its ability to generate genetically homogeneous populations. This property allows for
clonal reproduction, therefore, eliminating the response of host genotypic variation®. Moreover, the
fitness of C. elegans has been found to be related to its microbial components, notably to its gut

colonizers®™ 8.

1.5 Detecting HGT in Microbial Communities

1.5.1 Limitations of current HGT detection methods

Detecting HGT poses a challenge, as distinguishing it from differential gene loss can be convoluted. To
address this difficulty, two primary approaches are commonly employed: sequence composition analysis
and phylogenetic tree comparisons. However, HGT detection can be hindered by small sample sizes and

the rapid adjustment of sequences following HGT events. Moreover, these approaches often focus on
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past instances of HGT, limiting our ability to directly observe the impact of HGT on microbial adaptation

to new environments™.

1.5.2 Leveraging the power of metagenomics to detect HGT

In recent years, the advent of metagenomics has provided unprecedented opportunities for detecting
HGT that may go undetected by traditional methods®. Metagenomic approaches utilize read-mapping
techniques that are capable of detecting more recent HGT events. By analysing structural variants (SVs)
in donor-acceptor pairs, read-mapping can provide evidence of HGT. Additionally, split mapping and
read pair information can enhance the detection of SVs. However, it is important to note that prior
knowledge about the donor and acceptor genomes is required with this method for accurate analysis.
Furthermore, determining the underlying cause and timing of SVs necessitates further investigation. It is
worth mentioning that SVs can be attributed to various mechanisms beyond HGT, including
chromosomal rearrangements, deletions, duplications, inversions, or translocations®. Consequently,

relying on information derived from SVs presents similar limitations, as addressed above.

1.5.2.1 Detecting HGT in real-time

Real-time identification and tracking of HGT events are crucial for comprehending the eco-evolutionary

1.’ have proposed an innovative experimental

dynamics of microbial communities. Recently, Quistad et a
evolution approach for detecting HGT in microbial communities. At the beginning of the experiment,
microbial communities were introduced into mesocosms consisting of nitrogen-limited media and
cellulose paper as the sole carbon source. After two weeks, they were divided into two separate
communities named "horizontal" and "vertical". These communities underwent bi-weekly transfers. To
monitor the progression of horizontally acquired sequences, DNA was selectively filtered and combined
from all "horizontal" communities during each transfer to introduce MGEs from other communities.
Conversely, the "vertical" communities were not exposed to this filtrate. Genomic DNA was extracted
from the communities at each transfer, and metagenomic analyses were conducted to trace the
dynamics of horizontally acquired genes, thereby identifying sequences unique to the "horizontal"
community compared to their ancestor. In contrast to conventional approaches, this design thus renders
possible read mapping across samples rather than within individual samples. Moreover, it allows the

detection of the movement of DNA between communities without the need for prior knowledge of the

community composition or specific donor and acceptor genomes. More recently, this approach has been



streamlined into a bioinformatic pipeline called Xenoseq®. Therefore, with this experimental design, and
the metagenomic data delivered by it, the complex role of HGT in evolving microbial communities can

begin to be disentangled.

community, communityy,

Vertical Horizontal Horizontal Vertical

Figure 1.1. A simple experimental design to manipulate MGEs in microbial communities (adapted from Quistad
et al.¥”). Multiple communities (from 1 to n) are grown in parallel in a minimum environment consisting of
nitrogen-limiting medium and cellulose paper as a sole carbon source. At initial time (Timel), communities are
split, and subsequently transferred on a bi-weekly basis. At each time of transfer, communities termed
“horizontal” are additionally treated with a pooled filtrate of all “horizontal” communities (MGEs mix).

1.6 Summary and Aims

Microbial communities mould ecosystems, and in turn, are influenced by them, resulting in intricate
eco-evolutionary dynamics. Previous studies have often dissected ecosystems to concentrate on
individual components, potentially overlooking the intricate nature of their interactions. This approach
may result in conclusions that lack applicability to real-world scenarios. Genetic variation is the primary

entity that ultimately shapes ecosystem functioning. It can arise through two main mechanisms in
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microorganisms: mutations and HGT. Previous research has provided valuable insights into the extensive
nature of HGT and its remarkable adaptive potential, both in the context of free-living and host-
associated microorganisms. In fact, HGT has emerged as a significant driving force behind microbial
adaptation, at times surpassing the impact of mutations. This growing body of evidence emphasizes the
importance of recognizing HGT as a major contributor to microbial evolution. However, despite the
rapid progress in newer and more sensitive sequencing technologies, the technical complexities
associated with real-time detection of HGT in complex systems pose one of the most formidable
challenges in microbial ecology and evolution, namely achieving a comprehensive understanding of the
role of HGT within environmentally-relevant communities.

In this thesis, | exploit an approach originally developed and demonstrated by Quistad et al.*’ to
follow the dynamics of HGT and its impact on community function, while maintaining the integrity of the
entire ecosystem. Specifically, | aim to demonstrate the utility of a newly developed pipeline, called
Xenoseq, for tracking HGT across complex microbial communities and to explore the link between the

presence of MGEs and community function in relation to the well-studied host nematode C. elegans.

1.6.1 Objective 1 —Tracing HGT in complex microbial communities using the Xenoseq pipeline

The first objective involves the use of the Xenoseq bioinformatics pipeline, which was developed in-
house by van Dijk et al.®?, to accurately detect horizontally transferred genetic material across complex
microbial communities. To achieve this, | employ the mesocosm-based approach previously established
by Quistad et al.*’ that allows the movement of MGEs between communities as a framework for
metagenomic sequencing, which serves as the input for the Xenoseq pipeline. Additional approaches are
applied to the sequences identified as horizontally transferred by Xenoseq with the aim to gain further

knowledge about the nature and function of these sequences.

1.6.2 Objective 2 — Investigating the impact of HGT on the functioning of gut microbiome communities

in Caenorhabditis elegans

1.7 is also applied to investigate the

Secondly, the mesocosm-based approach established by Quistad et a
potential impact of HGT on the functioning of microbial communities in their interaction with the host
nematode C. elegans. Different strategies are then investigated to track the real-time acquisition of HGT
within the nematode gut. Finally, single dominant lineages of the C. elegans gut microbiome are tracked

to follow the acquisition of MGE-driven HGT events.



2 Material and Methods

2.1 General Methods

2.1.1 Data availability

The raw data from this thesis, along with supplementary material that could not be included in the
manuscript, can be accessed through the following link:

https://doi.org/10.17617/3.NJO672

The provided dataset includes raw sequencing data from whole-genome sequencing of the main and
pilot experiments, 16S metabarcoding sequencing of gut-associated communities, metagenomics
sequencing of cellulose paper and gut-associated communities, and nanopore sequencing of individual
genotypes. Additionally, the raw data encompass all the assays conducted with P. fluorescens SBW25.
Furthermore, the link provides access to supplementary tables from Chapters 3 and 4, as well as the

scripts and files from Chapter 2 necessary for reproducing the analysis.

2.1.2 Nematode and bacterial strains

species strain genotype source
Caenorhabditis elegans N2 wild-type Caenorhabditis Genetics Center
Escherichia coli OP50 wild-type Caenorhabditis Genetics Center
Pseudomonas fluorescens | SBW25 | wild-type Two overnight cultures removed from PBR340%

Integrated Tn7 construct from plasmid pMRE-Tn7-
attTn7::Tn7-Pntpll-
Pseudomonas fluorescens | SBW25 145* into SBW25, itself from two overnight cultures
mScarlet-I-Gm
removed from PBR341, a second aliquot of PBR340

Pseudomonas lurida Myb11l | wild-type Natural isolate from Northern Germany>’

* https://www.addgene.org/118561/

2.1.3 Nematode maintenance

2.1.3.1 Nematode transfer

The N2 C. elegans strain was grown and maintained at 20°C on solid (2%) nematode growth media
(NGM) inoculated with the E. coli OP50 strain®. The OP50 lawns were prepared by inoculating liquid LB
media with a frozen stock of OP50, followed by an overnight incubation at 37°C. 700 pL of the overnight
culture were then spread on the NGM plate and left to dry before introducing the transfer of

nematodes.


https://doi.org/10.17617/3.NJO672

2.1.3.2  Synchronisation of nematode populations

Nematodes were cultured on NGM plates seeded with OP50, following the above-mentioned procedure.
To obtain synchronized nematode populations, when plates were crowded with nematode eggs, they
were washed with 5 mL of M9 buffer (1X M9 salts; 0.1 mM CaCl,; 2 mM MgS0,). The washed eggs were
then transferred to a sterile tube and mixed with 1 mL bleaching solution (0.5 mL 12% NaClO and 0.5 mL
5M NaOH). The tube was vortexed for 5-7 min until no more nematodes were visible. Next, the eggs
were centrifuged for 1 minute at 3500 rpm and washed three times in 5 mL of M9 buffer. The eggs were
then suspended in 2-5 mL of M9 buffer and incubated overnight at 20°C with gentle shaking until they
hatch.

2.1.4  Compost microbial communities sampling and acclimation

2.1.4.1 Sampling of compost communities

Compost matter was sampled from three independent compost heaps located in the German county of
PIon. 10 g samples from each compost heap were resuspended in 30 mL M9 buffer and vortexed with
20-30 glass beads for 2 min at maximum speed. The samples were prepared for storage by adding 500
uL of glycerol saline solution (70% glycerol + 8.5 g/L NaCl) to 1.2 mL aliquots of the resuspended
compost samples and frozen at -80°C. The communities were named after the owners of the compost

heaps they came from: Paul Rainey (P), Ines Schultz (1), and Norma Rivera (N).

2.1.4.2 Acclimation of the communities to the laboratory environment

Communities were acclimated prior to the commencement of the evolution experiments. For this, a
frozen aliquot was initially thawed, and 100 pL of the sample was pipetted onto a fresh mesocosm plate.
In this study, a mesocosm plate consists of a sterile 4cm2 square of cellulose paper placed in the centre
of a 1.5% solid agar M9 buffer plate. After incubating the community mesocosms for two weeks at 20°C,
the cellulose paper was removed from the M9 agar plates and placed in a tube with 20 mL M9 buffer.
The tube was vortexed for 2 minutes at maximum speed and centrifuged for 10 minutes at 3500 rpm.
The supernatant was discarded, and the tubes were refilled with 2 mL of M9 buffer. Next, 100 uL of the
cellulose slurry solution was transferred onto the cellulose paper from a fresh mesocosm. This process

was repeated for each community. After another two weeks of incubation, the cellulose paper was



processed in the same manner, and multiple frozen aliquots were prepared in 70% glycerol saline for

each community.

2.1.5 The evolution experiments

2.1.5.1 Reference genomes inoculation for the main evolution experiment

In the main evolution experiment, before introducing microbial communities, eight known genotypes
that were isolated from the pilot experiment were added to the mesocosms (Table 4.53). To prepare for
this, the isolates were individually cultured in 5 mL of Tryptic Soy Broth (TSB) at a 1/4™ dilution and
incubated overnight at 30°C. Then, 1 mL of each culture was combined and centrifuged for 10 minutes
at 5000 rpm. After removing the supernatant, the cells were washed three times in 8 mL of M9 buffer

and resuspended in about 100 pL. The entire cell suspension was placed on a fresh mesocosm plate.

2.1.5.2  Microbial community inoculation

After completing the washing and acclimatizing processes described in Chapter 2 sections 2.1.4.1 and
2.1.4.2), the microbial community inoculum was prepared. From each frozen cellulose slurry, 300 pL was
collected and thawed. The samples were then washed three times in 250 pL of M9 buffer and
centrifuged for 1 minute at 13,000 rpm after each wash. Next, 100 uL of the washed slurry from each
community was pipetted onto a fresh mesocosm plate. The three plates were then dried and incubated
at 20°C. To serve as a negative control for microbe contamination by nematodes, one plate was

incubated without microbial communities.

2.1.5.3  First time of transfer

2.1.5.3.1 Transfer of microbial communities

Following the inoculation of the microbial communities onto the mesocosms, the mesocosms were
incubated for a period of two weeks. After the incubation period, each community was transferred to a
15-mL tube containing 2 mL of M9 buffer. The tube was vortexed for 2 minutes at maximum speed to
ensure proper mixing. Subsequently, 100 pL of the resulting community paper slurry was transferred

onto two separate solid fresh mesocosm plates.
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2.1.5.3.2 Filtrates preparation and inoculation

Following the transfer of microbial communities, the remaining 1.8 mL of the paper slurry was
centrifuged for 5 minutes at 5000 rpm. The supernatant was then filtered using a 0.2 um pore size filter
and a 1-mL syringe. 105 pL of each filtered community were combined to create the MGEs mix. For each
pair of divided community plates, the "horizontal" treatment plate received a 100 pl aliquot from the
MGEs mix, while the "vertical" treatment plate received a 100 pL aliquot filtered from its original

community without inter-community mixing.

2.1.5.3.3 Storage of microbial communities and filtrates

After filtrate inoculation, any leftover filtrates were stored at -20°C. To store microbial communities, 4.8
mL of M9 buffer was added to the cellulose pellets. After thorough mixing, 1.2 mL of the mixture was
dispensed into three cryo-tubes pre-filled with 500 uL of 70% glycerol saline and stored at -80°C. The
remaining 1.2 mL was centrifuged for 5 minutes at 5000 rpm, and the pellet was stored at 4°C for a few

hours before DNA extraction, which was performed on the same day.

2.1.5.3.4 Nematode Inoculation

Approximately 100 nematodes were pipetted onto the cellulose paper of each plate after filtrate
inoculation. The number of nematodes was determined by counting the nematodes in five replicate 5 L
drops using a microscope. The developmental stage of the nematodes that were inoculated depended
on the particular experiment being conducted. For the pilot experiment, sterile L1 larvae of nematodes
were introduced to the mesocosms following their synchronisation using the procedure described in
Chapter 2 section 2.1.3.2. In the main evolution experiment, nematodes were introduced after being fed
a mixture of the eight genotypes isolated from the pilot experiments, which were prepared and mixed
as described in Chapter 2 section 2.1.5.1. A lawn was created on peptone-free nematode growth media
(PFM) plates using the entire pellet of the mixture, and sterile L1 nematodes were placed in the centre

and allowed to feed for three days.

2.1.5.4  Subsequent times of transfer

The community mesocosms were incubated at 20°C and underwent transfers every two weeks after the

initial division. In the pilot experiment, there were three transfers over a six-week period, while in the
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main experiment, which was conducted as two replicates on two separate days, there were seven

transfers over a 14-week period.

2.1.5.4.1 Nematode transfer

To separate the nematodes from the cellulose microbial community, 10 mL of M9 buffer was added to
the plates and gently shaken for 5 minutes at 88 rotations per minute. The liquid containing the
nematodes was then pipetted out and transferred into a 15-mL falcon tube. For each community, the

number of live worms was determined as previously explained.

2.1.5.4.2 Microbial communities transfer

The microbial communities grown on the cellulose paper were transferred vertically, as described
previously, and treated with either pulled (horizontal) or non-pulled (vertical) filtrates. The "horizontal"
treatment involved adding the MGEs mix from the three filtrated communities named "horizontal" at
the initial time of division, while the "vertical" treatment involved adding the filtrates from the

individually filtrated communities named "vertical".

2.1.5.4.3 Storage of microbial communities, filtrates, and nematodes
The microbial communities and filtrates were stored as stated above. An average of 100 nematodes
were transferred onto the cellulose paper of each corresponding plate, and nine aliquots of nematodes

were stored in a final concentration of about 15% glycerol saline.

2.2 Methods Chapter 3 - Cellulose microbiomes

2.2.1  DNA extraction and sequencing

At the initial time of division and every time of transfer, DNA extraction was performed on about 1/4™" of
the cellulose paper pellet using the DNeasy Powersoil kit from Qiagen. Subsequently, DNA underwent
in-house library preparation using a self-made Tn5 enzyme®. The prepared libraries were then

sequenced on an lllumina NextSeq platform, generating 150 bp paired-end short reads.

12



2.2.2 Xenoseq

2.2.2.1 Data preparation for Xenoseq

The raw reads were first copied to the working directory with simplified names, and unzipped (Script
2.81). Afterwards, the names of the raw reads were replaced with the corresponding sample names

(Script 2.52 and File 2.51). The samples are named as follows:

R#1_T#2_#3#4/Control

#1: the replicate experiment (1 or 2)
#2: the time point (from 0 to 7)

#3: the community (P, I, or N)

#4: the filtrate treatment (H or V)

For samples without any community, #3 and #4 are replaced with "Control" in the sample name.

2.2.2.2 Running Xenoseq

The renamed raw reads were organized into separate folders based on the experiment they belonged
to. For Xenoseq to detect novel sequences, it requires a reference library containing all samples from a
given community where no new DNA is introduced. The references used in this study consisted of
concatenated raw reads from the initial time point (TO) and all subsequent vertical time points (T1 to T7)
for each specific community. Xenoseq was used to query samples manipulated with MGE cocktails
(horizontal regime) for the emergence of novel sequences, hereafter referred to as unique. To establish
the sequence origin, Xenoseq was run with the linking option through a BLAST search with a minimum
alignment length of 500 base pairs and a minimum percentage identity of 98%. The sequences that were
linked to an origin are hereafter referred to as xenotypic. As a negative control, the run included
querying samples that have only received MGEs from their own community (vertical regime), using
concatenated raw reads from the initial time point and subsequent horizontal time points for each
community.

The analysis of sequences identified in the “horizontal” communities also involved the tracing
option, mapping reads from longitudinal samples to obtain sequence abundance estimates across
communities and in time (Script 2.53). For each experiment, a metadata file was utilised, containing the

relevant query and reference sample names (Files 2.52 and 2.S3).
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2.2.2.3 Xenoseq data analysis

2.2.2.3.1 Tracing of xenotypic sequences

The processed data output was utilized for visualizing the trajectories of the xenotypic sequences
identified in each of the three “horizontal” communities (Script 2.54). For each sample, the longest
contig with a 100% BLAST match to its corresponding reference was manually selected for each

community, based on the information provided in the output text and tabular files.

2.2.2.3.2 GCcontent analyses

For the GC analyses, only xenotypic sequences that were shorter than their corresponding sequences of
destination or origin were considered. The destination sequences of the xenotypic sequences were
subjected to a BLAST against a custom database consisting of the assembly of the community in which
they were identified, and the GC content of the alighnments was determined. The aligned portions of the
sequences of origin with the xenotypic sequences were directly extracted from the BLAST output
generated by the pipeline (.tbl files), and the GC content was calculated based on these alignments. For
the analysis of GC composition differences between xenotypic sequences and their respective sequences
of destination and origin, only the xenotypic sequences that had defined sequences of both destination
and origin were included in the analysis. The GC content analysis can be replicated using Script 2.S5

along with the instructions provided in File 2.54.

2.2.2.4 MGEs identification among xenotypic sequences

To predict plasmids, PlasClass was employed (Script 2.56), while VirSorter2 version 2.2.3 (Script 2.57)

was used for virus prediction®®®’.

2.2.2.5 Functional annotations of Genes encoded on xenotypic sequences

Xenotypic sequences were annotated using Prokka version 1.14.6 (Script 2.S8). The functional
annotation of genes was assigned based on the KEGG Orthology (KO) database

(https://www.genome.jp/kegg/pathway.html). The top six categories from the pathway maps were used

to assign the three annotation levels to each gene.
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2.3 Methods Chapter 4 - Nematode Gut Microbiomes

2.3.1 C elegans and SBW25 community: exploration of the use of metagenomics

2.3.1.1 Nematode feeding and microbiome extraction

Nematodes were cultured in the presence of either P. fluorescens SBW25 (hereafter SBW25) or the
washed and acclimatized microbial community P. After either a three-day (for nematodes fed on
SBW25) or a two-week (for nematodes fed on the microbial community P) incubation period, the
nematodes were harvested using 5 mL of M9 buffer, and pelleted by centrifugation at 5000 rpm for two
minutes. The supernatant was carefully removed, and the nematode pellet was treated with 1 mL of
0.5% NaClO. The tube was incubated for 2 minutes at room temperature, followed by three times in 1
mL M9 buffer with centrifugation steps of 1 minute at 5000 rpm. Nematodes counts were performed as
described in Chapter 2 section 2.1.5.3.4. Aliquots of either 100 (for nematodes fed on SBW25) or 1000
(for nematodes fed on the microbial community P) were prepared. To lyse the nematodes, a tissue lyser

(Tissuelyser I, Qiagen) was used for 5 minutes at a speed of 25s-1.

2.3.1.2 DNA extraction procedures

The impact of freeze-thaw treatments, microbiome compositions, and DNA extraction kits was

investigated in two separate trials.

2.3.1.2.1  First trial
In the first trial, two different treatments were applied after lysis:

- LFW (lysing-freezing-washing) treatment: Nematodes were subjected to a freeze-thaw cycle by
freezing them at -80°C for 5 minutes, followed by thawing at 42°C for 2 minutes. This freeze-
thaw process was repeated three times. Afterward, three washes with 1 mL of M9 buffer were
performed.

- L(lysis) treatment: Nematodes underwent lysis without any post-lysis treatment.

For DNA extraction, two different kits were used: the DNeasy Ultraclean Microbial kit from Qiagen and

the Nucleospin Blood & Tissue kit from Macherey and Nagel.
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2.3.1.2.2  Second trial
In the second trial, two treatments were applied after the lysis step. The cycles of freeze-thaw were
repeated either once (N1) or 10 times (N10). The specific details of each treatment are as follows:

- LFW treatment: Nematodes were subjected to a freeze-thaw cycle by freezing them in liquid
nitrogen for 10-15 seconds, followed by thawing at 42°C for 1.30 minutes. This freeze-thaw
process was repeated three times. Afterward, three washes with 500 uL of PBS 