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Abstract
In this work an efficient algorithm for a fully implicit single crystal plasticity rou-
tine including twinning and secondary plasticity is presented and implemented
for the example of magnesium. The material model uses the volume fraction
transfer scheme for the evolution of twinning, that is, plastic slip in newly
formed twins (“secondary plasticity”) is resolved. This is considered particularly
important, if the volume fractions of some twins reach the order of magnitude
of the parent phase. However the resolution of secondary plasticity also implies
a large number of unknowns, which is significantly reduced by a newly pro-
posed algorithm. For magnesium a hardening model based on basal, prismatic,
pyramidal ⟨a⟩ and pyramidal ⟨c+a⟩ slip modes as well as a tension and a com-
pression twinning mode and yields a total of 18 slip systems and 12 twinning
systems. As a special feature of the proposed algorithm, the total amount of 246
unknowns, due to simultaneous slip in the parent phase and the twinned phases,
is reduced to only 31 unknowns. Additionally, thermodynamic consistency is
ensured by including the second law with the Clausius–Duhem equation, which
considers the change of free energy upon twinning as an additional driving force
for twinning. Further, the setup of the time discrete nonlinear equation system
using midpoint rule, as well as the analytical solution of the algorithmic tangent
are given in detail. Finally, the implemented model is tested in finite element
simulations and compared to single- and polycrystal compression and tension
experiments.
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1 INTRODUCTION

Material modeling of metals that deform by both slip and twinning and the related complex hardening mechanisms are a
long-standing challenge. Especially in hcp metals like magnesium, titanium, and zirconium, where the lower symmetry
of the hexagonal crystal structure impedes slip deformation in c-axis direction, twinning plays an important role and, in
some cases, even is the dominant deformation mechanism.1-6 The result is a highly anisotropic deformation behavior.
One challenge for including twinning into material models is the reorientation of the lattice, which in turn changes the
orientation of slip planes and elastic properties of the crystal. To handle this problem, different approaches have been
developed. In his pioneering work van Houtte7 used a statistical criterion to select grains to be reoriented into the twin
orientations. Based on this method, Tomé et al.8 proposed a predominant twin reorientation scheme, in which the parent
grain orientation is replaced by the orientation of the most active twin as soon as the twin volume fraction exceeds a
critical value. Although this approach makes it possible to efficiently describe the deformation in cases where a single
twin system dominates, it has the drawback of neglecting the influence of all other twins, which is problematic in cases
where multiple twinning systems contribute similarly to the deformation. An alternative proposed by Tomé et al.8 is
the volume fraction transfer (VFT) scheme dividing euler space into cells representing an orientation and containing
a volume fraction. A reorientation due to slip and twinning is this way represented by a transfer of volume fractions
from one cell to another. Kalidindi9 later adapted this scheme by describing the deformation in the relaxed intermediate
configuration and introducing each twinning variant as a differently oriented grain with a respective volume fraction.
Thus, each twinning system is considered to contribute to the deformation and can grow by a transfer of volume fraction
from the parent grain. However, the drawback of this scheme is, of course, that the simultaneous deformation in all these
grains is elaborate and thus many studies, that consider twinning, neglect reorientation due to twinning10,11 or make use of
a reorientation scheme allowing only one orientation per grain.12-18 Others have developed methods to introduce discrete
twins.19-22 Studies considering multiple twinning systems simultaneously allow the formation of either one or multiple
child grains.23-26 All these studies have in common that they either reorient or create a new grain at the end of a discrete
time step when a certain criterion is fulfilled. This explicit formulation poses the challenge of handling possible abrupt
changes in yield stress and plastic flow due to the newly available slip planes. As an alternative, we present an efficient
fully implicit crystal plasticity finite element routine using the volume transfer scheme of Kalidindi9 for magnesium
considering 18 slip systems in the parent and in 12 twinned grains simultaneously.

As a lightweight metal with a high ratio of strength and stiffness to mass, magnesium and its alloys have become
a highly researched material as they offer the opportunity to replace steel, titanium and even aluminum to obtain a
significant weight reduction.27 This is especially appealing for structural applications, e.g. in automotive and aerospace
industry.28,29 Furthermore, due to its nontoxicity toward the environment and the human body magnesium is considered
an excellent candidate for medical applications such as biodegradable orthopedic or cardiovascular implants.30,31

Like in most hcp metals, in magnesium the main plastic deformation mechanism, with the lowest critical resolved
shear stress (CRSS), is dislocation slip on the basal plane {0001}⟨1120⟩, for example, References 32 and 33. The next easi-
est slip systems are prismatic slip {1100}⟨1120⟩ and pyramidal ⟨a⟩ slip {1101}⟨1120⟩32,34 but like the basal slip, they both
do no allow for deformation in direction along the c-axis. Only when pyramidal ⟨c+a⟩ slip {1122}⟨1123⟩ is activated, the
Taylor criterion of a minimum of five independent slip systems necessary for arbitrary deformations is fulfilled.1 However,
at room temperature, the CRSS of the pyramidal ⟨c+a⟩ system is orders of magnitude higher than for the basal system.33

Thus, as an additional deformation mechanism magnesium exhibits deformation twinning. The most common is the ten-
sion twinning mode {1102}⟨1101⟩ observed under c-axis tension which has a CRSS only slightly higher than the basal slip.
Additionally, a compression twinning mode {1101}⟨1102⟩ observed under c-axis compression plays an important role.35

Of course, this variety of slip and twinning systems leads to manifold interactions and thus a very complex hardening.
In this work we present the algorithm for a fully implicit crystal plasticity finite element model based on the

rate-dependent framework of Kalidindi9 using the VFT scheme. That is, secondary plasticity in the newly formed twins
is also resolved. This feature is required, for example, to capture the significant contribution of basal slip in twins to the
overall deformation in situations, where the parent phase’s orientation is unfavorable for basal slip for a given stress state.
The routine is implemented for magnesium and hardening is included by partly adapting a hardening model proposed
by Zhang and Joshi14 based on basal, prismatic, pyramidal ⟨a⟩, and pyramidal ⟨c+a⟩ slip modes as well as a tension and
compression twinning mode. Incorporating the Clausius–Duhem inequality ensures thermodynamic consistency and
identifies the change of elastic energy due to lattice rotation as an additional driving force for twinning. The model is
explained in detail and a new solution algorithm for the nonlinear equation system, reducing the plastic deformation
on 13 × 18 slip systems and 12 twinning systems (in total 246 unknowns) to 31 unknowns, is presented. Finally, FEM
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4720 DITTMANN and WULFINGHOFF

simulation results are compared to experimental compression of single-crystal and polycrystal results from Kelley and
Hosford36 and polycrystal tension experiments from Jessen et al.37

2 GEOMETRICALLY NONLINEAR CRYSTAL PLASTICITY INCLUDING
TWINNING

2.1 Kinematics

The model is based on the multiplicative decomposition of the deformation gradient F = 𝜕x∕𝜕X, where X denotes the
position in the reference configuration and x(X, t) denotes the position in the current configuration, into elastic and plastic
parts38,39:

F = FeFp
. (1)

From that follows the additive decomposition of the velocity gradient l:

l = ḞF−1 = ḞeFe−1 + FeLpFe−1 = le + lp
. (2)

The plastic deformation rate with respect to the elastically relaxed intermediate configuration Lp = ḞpFp−1 of a
single-crystal considers slip and twinning in the initial parent phase and additionally slip inside the twinned regions.
Twinning is mathematically treated as a pseudo slip mechanism that leads to rotation of the lattice. Each twin that forms
from the parent phase is considered to be a separate phase with its own slip systems (compare Kalidindi9):

Lp =
Ntw∑

𝛽=0
c𝛽

Nsl∑

𝛼=1
𝜈
𝛽

𝛼M𝛽

𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

slip

+
Ntw∑

𝛽=1
𝜈𝛽M𝛽

⏟⏞⏟⏞⏟

twinning

. (3)

Here, 𝛼 denotes the slip system index, 𝛽 the phase index, c𝛽 the volume fractions, Nsl the number of slip systems in each
phase, described by M𝛽

𝛼 , and Ntw the number of twinning systems, described by M𝛽 . The total number of phases is Ntw+1
and the parent phase is denoted by the index 𝛽 = 0. The slip and twinning deformation rates are denoted by 𝜈𝛽𝛼 and 𝜈𝛽 ,
respectively, and the slip and twinning systems are given by the direction d and the plane normal n:

M𝛽 = d𝛽 ⊗ n𝛽 ; M𝛽

𝛼 = d𝛽𝛼 ⊗ n𝛽

𝛼. (4)

The deformation rate due to twinning 𝜈𝛽 is assumed to be given by a constant twinning shear parameter 𝛾 tw
𝛽

and the phase
transformation rate ċ𝛽 :

𝜈𝛽 = 𝛾 tw
𝛽

ċ𝛽 . (5)

The rotation tensor R𝛽 , that transfers the slip systems of the parent phase into the slip system orientations of the twinned
phase 𝛽, is given by

R𝛽 = −I + 2n𝛽 ⊗ n𝛽 . (6)

The corresponding slip systems can then be calculated by

d𝛽𝛼 = R𝛽d0
𝛼; n𝛽

𝛼 = R𝛽n0
𝛼; M𝛽

𝛼 = R𝛽M0
𝛼R⊤

𝛽
. (7)

The fourth-order stiffness tensor of each phase C𝛽 is obtained by

C𝛽 = (R𝛽

s
□ R⊤

𝛽
) ∶ C0 ∶ (R⊤

𝛽

s
□ R𝛽), (8)
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DITTMANN and WULFINGHOFF 4721

where (⋅
s
□ ⋅) is a fourth-order tensor with the property (A

s
□ C) ∶ B = A sym (B)C. Note that we consider for this model

primary and secondary slip and primary twinning. That means that twins in twins are currently not considered. In the
present model for magnesium Nsl = 18 slip systems and Ntw = 12 twinning system are considered which means 𝛼 ∈ [1, 18]
and 𝛽 ∈ [0, 12]. The orientation of the parent phase is not updated.

2.2 Dissipation

To obtain a thermodynamically consistent theory, the dissipation density per unit reference volume is evaluated using
the purely mechanical form of the Clausius–Duhem equation:

 = P ∶ Ḟ − �̇� ≥ 0. (9)

Here, P is the first Piola-Kirchhoff stress tensor and𝜓 is the free energy density per unit reference volume. The free energy
is assumed to be dependent on the elastic strains and on the volume fractions of the phases and is chosen as

𝜓 = 𝜓e(Ee
, c) = 1

2
Ee ∶ C(c) ∶ Ee

, (10)

where c = (c0, c1 … , cNtw)
⊤ is the vector notation of the volume fractions, Ee = (Fe⊤Fe − I)∕2 represents the elastic

Green-Lagrange strain tensor and C denotes the effective stiffness tensor. The effective stiffness is assumed to take the
form:

C(c) =
Ntw∑

𝛽=0
c𝛽C𝛽 , (11)

with the following conditions:

c0 = 1 −
Ntw∑

𝛽=1
c𝛽 ; c𝛽 ∈ [0, 1]. (12)

Inserting Equation (10) into the dissipation density one can reformulate Equation (9) as follows

 = P ∶ Ḟ − 𝜕𝜓
e

𝜕Ee ∶ Ėe −
Ntw∑

𝛽=1

𝜕𝜓
e

𝜕c𝛽
ċ𝛽

=
(

P − Fe 𝜕𝜓
e

𝜕Ee Fp−⊤
)

∶ Ḟ + Ce 𝜕𝜓
e

𝜕Ee ∶ Lp −
Ntw∑

𝛽=1

𝜕𝜓
e

𝜕c𝛽
ċ𝛽 ≥ 0, (13)

with Ce = Fe⊤Fe as the elastic right Cauchy–Green tensor. For virtually frozen internal variables (Fp, c) it is assumed that
the dissipation vanishes:


|
|
|Fp

,c
=
(

P − Fe 𝜕𝜓
e

𝜕Ee Fp−⊤
)

∶ Ḟ = 0. (14)

Using P = 𝝉F−⊤ and Se = Fe−1
𝝉Fe−⊤, where 𝝉 is the Kirchhoff stress and Se is the second Piola Kirchhoff stress tensor

with respect to the intermediate configuration, it is possible to identify

Se = 𝜕𝜓
e

𝜕Ee . (15)
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4722 DITTMANN and WULFINGHOFF

Defining the Mandel stress with respect to the intermediate configuration 𝚺e = CeSe, and its projection onto the slip and
twinning systems 𝜏𝛽𝛼 = 𝚺e ∶ M𝛽

𝛼 and 𝜏𝛽 = 𝚺e ∶ M𝛽 and using Equations (3) and (5) the dissipation reads

 = 𝚺e ∶ Lp −
Ntw∑

𝛽=1

𝜕𝜓
e

𝜕c𝛽
ċ𝛽

=
Ntw∑

𝛽=0
c𝛽

Nsl∑

𝛼=1
𝜈
𝛽

𝛼 𝜏
𝛽

𝛼 +
Ntw∑

𝛽=1

(

𝛾
tw
𝛽
𝜏𝛽 −

𝜕𝜓
e

𝜕c𝛽

)

ċ𝛽 ≥ 0. (16)

And finally, defining

𝜉𝛽 = 𝛾 tw
𝛽
𝜏𝛽 − 𝜕𝜓e∕𝜕c𝛽 , (17)

one obtains

 =
Ntw∑

𝛽=0
c𝛽

Nsl∑

𝛼=1
𝜈
𝛽

𝛼 𝜏
𝛽

𝛼 +
Ntw∑

𝛽=1
𝜉𝛽 ċ𝛽 ≥ 0. (18)

Note, that from Equation (17) follows that in general the driving force for twinning is not only given by the projection of
the stress onto the twinning system but also by the change of elastic energy due to the lattice rotation, which is usually
neglected when formulating the twin evolution equations (leading to thermodynamic inconsistency). The influence of
this additional term on twinning is later discussed in Section 3.4.

Guided by the reduced dissipation inequality (Equation 18), the shear rate 𝜈𝛽𝛼 and phase transformation rate ċ𝛽 are
assumed to follow the Norton power law as follows

𝜈
𝛽

𝛼 = sg
(
𝜏
𝛽

𝛼

)
𝜈r

⎛
⎜
⎜
⎝

|
|
|
𝜏
𝛽

𝛼

|
|
|

𝜏
c𝛽
𝛼

⎞
⎟
⎟
⎠

ps

ċ𝛽 =
⎧
⎪
⎨
⎪
⎩

c0ċr

(
𝜉
𝛽

𝜉
c
𝛽

)pt

if 𝜉𝛽 > 0

0 if 𝜉𝛽 < 0
, (19)

where 𝜈r, ċr are the reference slip and twin evolution rates, respectively, ps and pt are the rate sensitivity exponents and
𝜏

c𝛽
𝛼 and 𝜉c

𝛽
are the critical stresses for slip and twinning, respectively. Note that in our case the phase transformation

rate depends on the concentration of the parent phase c0 which automatically impedes further twinning when no parent
phase exists anymore. This ensures that the constraints from Equation (12) are satisfied. Furthermore, as can be seen
from Equation (19), de-twinning is not considered in this example but could be included by using an appropriate law for
the case 𝜉𝛽 < 0.

2.3 Deformation mechanisms and hardening in hcp magnesium

Magnesium has a hexagonal close-packed structure with a transverse isotropic elastic behavior. The elastic properties can
be characterized by the five elastic constants C11, C12, C13, C33, and C44 which were taken from Slutsky and Garland40 and
are given in Table 1. The fourth-order stiffness tensor in Mandel notation C is given by Equation (20).

T A B L E 1 Elastic constants Mg.40

C11 59.40 GPa

C12 25.61 GPa

C13 21.44 GPa

C33 61.60 GPa

C44 16.40 GPa
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DITTMANN and WULFINGHOFF 4723

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 (C11 − C12)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (20)

Plastic deformation in magnesium occurs due to dislocation slip and deformation twinning. The relevant slip and twin-
ning systems for this work are basal slip {0001}⟨1120⟩, prismatic slip {1100}⟨1120⟩, pyramidal ⟨a⟩ slip {1101}⟨1120⟩ and
pyramidal ⟨c+a⟩ slip {1122}⟨1123⟩ as well as a tension twinning {1102}⟨1101⟩ and compression twinning {1101}⟨1102⟩
mode as suggested in the model by14 and explained in the introduction. The respective slip and twinning systems are
summarized in Table 2 and depicted in Figure 1. The constant twinning shear 𝛾TT and 𝛾CT for tension twinning (TT) and
compression twinning (CT) respectively are given by1

𝛾
tw
𝛽
=
⎧
⎪
⎨
⎪
⎩

𝛾
TT =

√
3
𝜒
− 𝜒

√
3
= 0.129 (tension twinning)

𝛾
CT = 4𝜒2−9

4
√

3𝜒
= 0.137 (compression twinning)

(21)

where 𝜒 = c∕a denotes the ratio between the lattice parameters. The lattice parameters and twinning shear are also
summarized in Table 2.

To include hardening and to satisfy the complex interactions between the different slip and twinning modes three
kinds of accumulated plastic shear deformation are introduced: the accumulated slip deformation in each phase 𝛾𝛽acc
and the accumulated tension twinning and accumulated compression twinning deformation 𝛾TT

acc and 𝛾CT
acc. The evolution

equations are given by

�̇�
𝛽

acc =
Nsl∑

𝛼=1

|
|
|
𝜈
𝛽

𝛼

|
|
|
, �̇�

TT
acc =

∑

𝛽∈ITT

𝛾
TTċ𝛽 , �̇�

CT
acc =

∑

𝛽∈ICT

𝛾
CTċ𝛽 , (22)

where ITT denote the indices of tension twinning and ICT denote the indices of compression twinning. In the following,
the critical shear stress 𝜏c𝛽

𝛼 is additively decomposed into three parts that each depend on a different kind of accumulated
plastic shear deformation, compare Reference 14:

𝜏
c𝛽
𝛼 = A𝛽

(
𝜏

c𝛽
sl→sl(𝛾

𝛽

acc) + 𝜏c
tt→sl(𝛾

TT
acc) + 𝜏c

ct→sl(𝛾
CT
acc)

)
, (23)

with

𝜏
c𝛽
sl→sl =

⎧
⎪
⎨
⎪
⎩

𝜏0 + h0𝛾
𝛽

acc (Basal)

𝜏0 + (𝜏s − 𝜏0) tanh h0𝛾
𝛽

acc
𝜏s−𝜏0

(Non basal)
. (24)

T A B L E 2 Slip/twinning systems, lattice parameters and twinning shear of magnesium.

Type Plane Direction Systems

Basal {0001} ⟨1120⟩ 3

Prismatic {1100} ⟨1120⟩ 3 a 0.321 nm

Pyramidal ⟨a⟩ {1101} ⟨1120⟩ 6 𝜒 1.624

Pyramidal ⟨c+a⟩ {1122} ⟨1123⟩ 6 𝛾
TT 0.129

Tension twin {1102} ⟨1101⟩ 6 𝛾
CT 0.137

Compression twin {1101} ⟨1102⟩ 6
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4724 DITTMANN and WULFINGHOFF

(A) (B) (C) (D)

(E) (F) (G)

F I G U R E 1 Slip systems (A–D) and twinning systems (E–F) of magnesium considered in this study. (A) Basal; (B) prismatic; (C)
pyramidal ⟨a⟩; (D) pyramidal ⟨c+a⟩; (E) Tension twin (TT); (F) Compression twin; (G) Cartesian coordinates.

𝜏
cβ
tt→sl = 𝜏s tanh

h0𝛾
TT
acc

𝜏s
. (25)

𝜏
c
ct→sl = h0

√

𝛾
CT
acc. (26)

A𝛽 =

(

a + 1 − a
√

c𝛽

)

. (27)

Additionally, a factor A𝛽 dependent on the concentration impedes the slip deformation in twinned phases with very low
concentration. This improves the numerical convergence and is physically related to the Hall–Petch effect. In case of
the critical stress for twinning 𝜉c

𝛽
only self hardening is considered. Similar to the slip case twinning is impeded for low

concentrations of the parent phase by a concentration dependent term. The constitutive equations here are given by:

𝜉
c
𝛽
=
⎧
⎪
⎨
⎪
⎩

A0𝛾
TT

(
𝜏0 + (𝜏s − 𝜏0) tanh h0𝛾

TT
acc

𝜏s−𝜏0

)
(TT)

A0𝛾
CT h0(𝛾CT

acc)
b+1

(b+1)(𝛾CT)b
(CT)

. (28)

Note that the hardening model does not yet include any inheritance of slip hardening in the parent phase to forming
twins. The parameters of the model are listed in Table 3. They are obtained by a refitting of the parameters given by Zhang
and Yoshi.14 Note that the rate sensitivity exponents ps and pt are chosen such that quasi rate-independent behavior is
obtained which is reasonable for comparison to the experiments in this work but especially for slip not generally true.

2.4 Discretization and midpoint rule

The time discretization using midpoint integration is adopted from Steinmann and Stein41 and reads as follows:

Ḟp = LpFp ≈ 1
Δt
(Fp − Fp

n). (29)
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DITTMANN and WULFINGHOFF 4725

T A B L E 3 Fitted model parameters.

Type Index h0 (MPa) 𝝉0 (MPa) 𝝉s (MPa)

Basal B 15 1.0 —

Prismatic P 5000 10 80 𝜈r 10−3s−1

Pyram. ⟨a⟩ ⟨a⟩ 5000 10 80 ċr 10−4s−1

Pyram. ⟨c+a⟩ ⟨c+a⟩ 4000 20 150 ps 20

TT on slip tt → sl 2000 — 11 pt 20

CT on slip ct → sl 10 — — a 0.9

TT TT 100 2.0 20 b 0.05

CT CT 5000 55 —

Introducing hp = ΔtLp one obtains:

Fp − Fp
n =

1
2

hp(Fp + Fp
n). (30)

Introducing fp = FpFp−1
n one can rearrange Equation (30) into

fp =
(

I − 1
2

hp
)−1 (

I + 1
2

hp
)

⇔ fp−1 =
(

I + 1
2

hp
)−1 (

I − 1
2

hp
)
. (31)

Additionally, introducing Fetr = FFp−1
n and Cetr = Fetr⊤Fetr one finds

Ce = fp−⊤Cetrfp−1
. (32)

Note that this integration scheme does not exactly fulfill det Fp = 1 but the deviations are sufficiently small to consider
the plastic deformation isochoric (see Section 3.5). Finally, the discretized plastic slip and twin increments Δ𝛾𝛽𝛼 and Δ𝛾𝛽
are given by

Δ𝛾𝛽𝛼 = Δt𝜈𝛽𝛼 , Δ𝛾𝛽 = Δt𝛾 tw
𝛽

ċ𝛽 , (33)

and the vector vector notation Δ𝛾 of the accumulated plastic slip deformations and (not accumulated) twinning
deformations is introduced:

Δ𝛾 =

⎛
⎜
⎜
⎜
⎜
⎝

Nsl∑

𝛼=1

|
|Δ𝛾

0
𝛼
|
|

⏟⏞⏞⏟⏞⏞⏟

Δ𝛾0
acc

, … ,

Nsl∑

𝛼=1

|
|
|
Δ𝛾Ntw

𝛼

|
|
|

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Δ𝛾Ntw
acc

, Δ𝛾1, … , Δ𝛾Ntw

⎞
⎟
⎟
⎟
⎟
⎠

⊤

. (34)

In this case the vector contains Ntw + 1 = 13 entries for the accumulated slip deformation and Ntw = 12 entries for the
twinning deformation.

2.5 Residuals and algorithmic tangent

In most numerical algorithms for the treatment of crystal plasticity, the plastic slip incrementsΔ𝛾𝛽𝛼 are treated as primary
unknowns (which would have to be extended by the twin deformation increments Δ𝛾𝛽 in the presence of twinning). A
natural choice for the nonlinear equation to be solved would then be the time-discrete versions of Equation (19), where
𝜏
𝛽

𝛼 , 𝜏c𝛽
𝛼 , 𝜉𝛽 , and 𝜉c

𝛽
would be expressed in terms of the primary unknowns. However, the resulting number of 246 primary

unknowns in case of Mg seems to be highly unattractive for the numerical solution. One remedy consists in neglecting
secondary slip in the twins and thus reducing the number of unknowns to 18 + 12 = 30. However this approach may
become inaccurate once the twin volume fractions reach the order of magnitude of the parent phase, which requires
further algorithmic treatment like switching the “plastically active” phase from the parent phase to, for example, the
twin with the highest volume fraction. In order to circumvent inaccuracies resulting from such approximations we keep
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4726 DITTMANN and WULFINGHOFF

all 246 slip/twin increments, but reduce significantly the number of primary unknowns. Instead of the plastic slip/twin
increments we choose the pair (Se

,Δ�̃�) as primary unknowns, where Δ�̃� is further specified below. It is emphasized that
the algorithm is neither restricted to Mg nor to the hexagonal symmetry or the hardening model outlined in Section 2.3.

Note that the entries ofΔ𝛾 in Equation (34) are dependent on the stress and the plastic deformation itself, as described
in the following. The formulation of Equation (33) in terms of the primary unknowns (Se, Δ�̃�) is given by:

Δ𝛾𝛽𝛼 (Se
,Δ�̃�) = Δt sg

(
𝜏
𝛽

𝛼 (Se)
)
𝜈r

⎛
⎜
⎜
⎝

|
|
|
𝜏
𝛽

𝛼 (Se)||
|

𝜏
c𝛽
𝛼 (Δ�̃�)

⎞
⎟
⎟
⎠

ps

, (35)

Δ𝛾𝛽(Se
,Δ�̃�) = Δt𝛾 tw

𝛽
c0(Δ�̃�)ċr

(
𝜉𝛽(Se)
𝜉

c
𝛽
(Δ�̃�)

)pt

, (36)

with

Δ�̃� =
(

Δ�̃�0
acc, … , Δ�̃�Ntw

acc , Δ�̃�1, … , Δ�̃�Ntw

)⊤
. (37)

The tilde in this case indicates that Δ�̃� is a vector of unknowns which are mathematically distinct from Δ𝛾 , which is a
function of Se andΔ�̃� . In analogy to Equation (34)Δ�̃� contains 25 entries in this example. Furthermore, the elastic strain
in Equation (32) is dependent on the overall deformation and the plastic deformation, which again is dependent on the
unknowns introduced above. Based on this reasoning, we can write:

Ee(Cetr
, Se
,Δ�̃�) = 1

2
(
fp−⊤Cetrfp−1 − I

)
, (38)

where fp = fp(Se
,Δ�̃�) (see Equations 3,31,33,35, and 36). Considering Equation (15) one additionally finds Ee = C−1 ∶ Se,

and with S = C−1 the residuals for the Newton iteration rS and r𝛾 read:

rS = Ee(Cetr
, Se
,Δ�̃�) − S(Δ�̃�) ∶ Se

, r𝛾 = Δ𝛾(Se
,Δ�̃�) − Δ�̃� , (39)

where Δ𝛾(Se
,Δ�̃�) corresponds to Equation (34) expressed in terms of Equations (35) and (36). In case of a given

deformation gradient, the linearization of the nonlinear equation system reads:

rS + ΔrS = rS +
(
𝜕Ee

𝜕Se − S

)

∶ ΔSe +

(
𝜕Ee

𝜕Δ�̃�
− Se ∶ 𝜕S

𝜕Δ�̃�

)

ΔΔ�̃� = 0; (40)

r𝛾 + Δr𝛾 = r𝛾 +
𝜕Δ𝛾

𝜕Se ∶ ΔSe +

(
𝜕Δ𝛾

𝜕Δ�̃�
− I

)

ΔΔ�̃� = 0. (41)

The partial derivatives are given in the Appendix. Introducing the vector notation r for the residuals and x for the
unknowns as well as the Mandel-notations rS and Se, the linearization of the Newton-scheme is given by:

r +
𝜕r
𝜕x
Δx = 0 with r =

(
rS

r𝛾

)

; x =

(
Se

Δ�̃�

)

. (42)

The algorithmic tangent Calgo (see Appendix) for the global iteration is calculated by:

FetrΔS
e
Fetr⊤ = Fetr

s
□ Fetr⊤ ∶ 𝜕S

e

𝜕x
𝜕x

𝜕Cetr ∶ Fetr⊤
s
□ Fetr

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Calgo

∶ dd, (43)

where S
e
= Fetr−1

𝝉Fetr−⊤ is the second Piola–Kirchhoff stress tensor with respect to the intermediate trial configuration
and dd = sym

(
ΔFF−1). As before, the partial derivatives are given in the Appendix.
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DITTMANN and WULFINGHOFF 4727

3 SIMULATION RESULTS AND DISCUSSION

The material routine was implemented into the finite element analysis program FEAP42 and tested in FEM simulations
using quadratic tetrahedral elements and hexahedral elements with reduced integration and hourglass stabilization. In
this section the simulation results are compared to experimental data of single-crystal and polycrystal deformation. Since
the model does not resolve individual twins, the focus lies on the effective material response rather than on the material
behavior on the subgrain scale. One of the most sophisticated characterizations for crystal plasticity of magnesium are
the experiments of Kelley and Hosford36 in which single-crystal as well as polycrystal compression experiments were
performed for several different loading directions and constraints which were designed to activate and impede different
slip and twinning modes. Furthermore, the influence of the change of elastic energy upon twinning and the compliance
to plastic incompressibility are discussed.

3.1 Single crystal compression

In case of single-crystal compression the loading directions and constraints are listed in Table 4 and the stress-strain
relation obtained with a mesh consisting of one cubic element is given and compared to the experimental data in
Figure 2. Note, that simulations performed with meshes consisting of 4 × 4 × 4 elements and 16 × 16 × 16 elements
showed identical results.

Apparently, the present model is capable of representing the highly anisotropic stress-strain behavior for all seven
loading cases correctly with good accuracy. Further, it should be noted that the algorithm shows quadratic convergence

T A B L E 4 Loading directions and constraints for single crystal compression Cases A–G.

A B C D E F G

Loading direction ⟨0001⟩ ⟨0001⟩ ⟨1010⟩ ⟨1210⟩ ⟨1010⟩ ⟨1210⟩ ⟨0001⟩@45◦

Constraint ⟨1010⟩ ⟨1210⟩ ⟨0001⟩ ⟨0001⟩ ⟨1210⟩ ⟨1010⟩ ⟨1010⟩

Simulations
Exp. Kelley and Hosford36

Load

Constraint

Deformation

F I G U R E 2 Comparison of simulated single crystal compression stress-strain behavior to experiments from Kelley and Hosford36 for
different loading directions (A–G).
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4728 DITTMANN and WULFINGHOFF

except for stages of extreme nonlinear behavior, for example, at the abrupt stress increase of Cases E and F. To make sure
that the contributions from the different deformation mechanisms are plausible the relative activity 𝛾 i

rel of each slip and
twinning mode with index i is calculated as follows:

𝛾
i
rel =

⎧
⎪
⎨
⎪
⎩

∑Ntw
𝛽=1

∑
𝛼∈Ii c

𝛽

|
|
|
Δ𝛾𝛽𝛼

|
|
|

∑Ntw
𝛽=1 c

𝛽
Δ𝛾𝛽acc+

∑Ntw
𝛽=1 Δ𝛾𝛽

(slip modes)
∑
𝛽∈Ii Δ𝛾𝛽

∑Ntw
𝛽=1 c

𝛽
Δ𝛾𝛽acc+

∑Ntw
𝛽=1 Δ𝛾𝛽

(twinning modes)
, (44)

where Ii denotes all indices 𝛼 of one slip mode or indices 𝛽 of one twinning mode. The relative activity as well as the twin
volume fraction c𝛽 for each loading Cases A–G are given in Figure 3.

In Cases A and B the loading is applied in direction of the c-axis, perpendicular to the basal plane, which impedes
activation of basal, prismatic and pyramidal ⟨a⟩ slip as well as tension twinning in the parent phase. In the beginning, this
leaves only pyramidal ⟨c+a⟩ slip and compression twinning as possible deformation modes, but as soon as compression
twinning starts, the rotation of the lattice inside the twins allows for the activation of other slip modes. At this point
activation of basal slip is observed which is plausible due to the very low CRSS (see Table 3). However, due to the low twin
concentration, hardening inside the twinned regions is increased (see Equations 23 and 27), which results in the decrease
of basal slip activity at higher strains.

(A)

(C)

(E)

(G)

(F)

(D)

(B)

F I G U R E 3 Relative activity and twin volume fractions for single crystal compression.
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DITTMANN and WULFINGHOFF 4729

In Cases C and D the load is applied parallel to the basal plane and the deformation is constrained in c-axis direction.
This again impedes basal slip in the parent phase but in contrast to A and B now allows for prismatic and pyramidal ⟨a⟩ slip
which are both easier to activate than pyramidal ⟨c+a⟩ slip and are therefore dominating the deformation. Additionally, in
the beginning tension twinning is predicted although it seems to be impeded due to the constraint c-axis. An explanation
why it still occurs is the low CRSS and the possibility to compensate for a c-axis elongation by slip in opposite direction
inside the twins.

In Cases E and F the load is applied parallel to the basal plane which again impedes basal slip but this time the
elongation in c-axis direction is not constrained which makes both cases favorable for tension twinning. Indeed, tension
twinning is the dominating deformation mechanism until the concentration of the parent phase has reached zero and no
further twinning is possible. At this point the stress rapidly increases until a threshold is reached at which slip inside the
twinned regions can be activated. Note, that the transition is not abrupt but smooth due to the concentration dependent
hardening factor (see Equation 27). A noticeable difference between the Cases E and F is, that the orientation of the twins
in Case F are more favorable for basal slip which leads to an earlier onset of slip and the much lower observed maximum
stress.

In Case G the orientation of the parent phase is optimal for basal slip which leads to the very low observed stress and
the absence of any other deformation mode.

Note that although basal slip is initially impeded in Cases A–F, it plays a significant role in all cases except C due to
the reorientation of the lattice inside twinned regions and its very low CRSS.

3.2 Polycrystal compression

To simulate the compression of polycrystalline textured magnesium a cube consisting of approximately 12,500 quadratic
tetrahedral elements and 100 grains with different orientations was investigated (see Figure 4). The mesh was created
using the tesselation software Neper.43,44

The orientation of the basal pole was chosen to resemble the texture of roll-textured magnesium from Kelley and
Hosford.36 A representative polefigure indicating the orientations of the basal pole is given in Figure 5B. Six different
loading direction and constraints (ZT, ZR, TR, RT, TZ, RZ), related to the single-crystal Cases A-F were investigated.
Here, the first letter denotes the loading direction and the second letter denotes the unconstrained direction, where Z is
the thickness direction, R is the rolling direction, and T is the transverse direction. The predicted stress-strain behavior
is given in Figure 5A. Note that no grain shape, grain size or grain boundary effects are considered and all parameters
are kept as in the single crystal compression. As in the single-crystal compression the contributions to deformation are
calculated by the relative activity and the average of all elements is given in Figure 6.

Even without a refitting of parameters or considering any additional effects, the polycrystalline stress strain behavior
coincides well with the experimental data. Due to the misalignment of the grains in comparison to the single crystal case
there are no slip or twinning systems strictly impeded in any case. Thus, it is reasonable that almost all deformation modes
contribute to some extend to the deformation but basal slip is the most prominent.

Loading

(M
Pa

)

Constraints

F I G U R E 4 Polycrystal compression on representative volume element with 100 grains and approximately 12,500 elements.
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4730 DITTMANN and WULFINGHOFF

(A) (B)Simulations
Exp. Kelley and Hosford36

F I G U R E 5 (A) Stress-strain behavior for textured polycrystal with different loading direction and constraints and (B) representative
polefigure for orientation of the basal pole.

F I G U R E 6 Relative activity and twin volume fractions for polycrstalline compression.
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DITTMANN and WULFINGHOFF 4731

3.3 Polycrystal tension of sputter deposited columnar thin films

Finally, the possibility to incorporate solid solution hardening into the model was investigated. Tensile test simulations of
polycrystalline sputter deposited magnesium-silver (Mg-Ag) thin films that exhibit a columnar grain structure and c-axis
alignment were compared to experimental data by Reference 37. As depicted in Figure 7, for pure magnesium the grain
structure is approximated by a quasi two-dimensional (2D) Voronoi-structure with 200 grains and a mesh consisting of
316 × 316 × 1 elements. Each grain is oriented with the c-axis perpendicular to the plane and has a random rotation angle
about the c-axis. The tension is applied perpendicular to the c-axis. For the Mg-Ag alloy films the mesh size was reduced to
10 × 10 × 1 elements with 100 grains to decrease computational effort. Figure 8A shows that the reduction is reasonable
and leads to almost identical results.

(M
Pa

)

F I G U R E 7 (A) Schematic structure of sputter deposited c-axis aligned columnar thin-film, (B) mesh of 200 grains with different
orientation consisting of 316 × 316 × 1 hexahedral elements representing thin-film cross section and (C) Cauchy stress 𝜎zz in tensile direction.

(A) (B)

Simulation
Exp. Jessen et  al.37

F I G U R E 8 (A) Mesh size reduction of Voronoi-structure for polycrystal c-axis aligned Mg thin film and (B) stress-strain behavior for
Mg-Ag thin-films including solid solution hardening.
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4732 DITTMANN and WULFINGHOFF

In general, solid solution hardening is given by the following relation:

𝜏
c = 𝜏c

0 + k
√

c, (45)

where 𝜏c denotes the critical resolved shear stress, k is a material constant and c denotes the concentration of the alloying
material. To obtain this relation the parameters 𝜏0, 𝜏s and h0 in the hardening laws were modified as follows:

𝜏
Mg-Ag
0 = 𝜏0(1 + k

√
cAg), (46)

𝜏
Mg-Ag
s = 𝜏s(1 + k

√
cAg), (47)

hMg-Ag
0 = h0(1 + k

√
cAg)2, (48)

with the fitting parameter k = 3.2. The resulting stress-strain behavior for a silver concentration of 2, 6, 8, and 10 wt% is
given in Figure 8B.

For pure magnesium the predicted stress-strain behavior coincides very well with the experimentally obtained results.
Note that the decrease in stress is no softening effect but is found because it is given here as the component of the
first Piola–Kirchhoff stress Pzz in compression direction to make it comparable to the experiments. For the Mg-Ag thin
films the deviations are more pronounced but still show a reasonably accurate estimate. Of course, for a more pre-
cise prediction the simple implementation of solid solution hardening would need to be replaced by a more elaborate
model.

3.4 Evaluation of elastic energy change upon twinning

The requirement of consistency with the second law, leads to the finding that the driving force for twinning is not only
given by the projected stress on the twinning systems 𝜏, but additionally by the change of elastic energy 𝜕c

𝛽
𝜓

e due to the
rotation of the lattice and therefore the rotation of the effective stiffness tensor (see Section 2.2). Of course, the influence of
this term strongly depends on the degree of anisotropy of the stiffness tensor and will completely vanish for an elastically
isotropic material. To determine the anisotropy of the stiffness tensor a 3D Young’s modulus surface (YMS) is calculated
by determining the elastic modulus for uniaxial tension with different orientations. The direction dependent Young’s
modulus E(n) is calculated according to the following equation:

E(n) = ((n⊗ n) ∶ S ∶ (n⊗ n))−1
. (49)

The resulting 3D YMS-plot and the 2D projection onto the xz-plane, displayed in Figure 9A,B, shows for Mag-
nesium an almost spherical shape, indicating close to isotropic elastic behavior. Thus, it is not surprising, that
the influence of the elastic energy change is negligibly small. The proportion of the elastic energy change in the
total driving force for the single crystal simulations, depicted in Figure 9C, is less than 2% for all loading cases
and therefore does not contribute significantly to the observed stress-strain behavior. However, for other materi-
als, for example zinc, exhibiting a much higher elastic anisotropy (cf, Reference 45), we expect the term to be
relevant.

3.5 Evaluation of plastic incompressibility using midpoint rule

To be consistent with the experimentally observed plastic incompressibility, appropriate time integration methods
have been discussed by many authors.46-48 The midpoint rule from Steinmann and Stein41 used in this work (see
Section 2.4) in general does not exactly fulfill the plastic incompressibility condition det Fp = 1. The development
of det Fp is shown in Figure 10A for the single crystal compression simulations in Section 3.1 and in Figure 10B
for the maximum and minimum values of det Fp for the polycrystal compression simulations in Section 3.2. The
deviations from 1 are for all cases in the order of 10−8 which we consider sufficiently close to the isochoric
case.
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DITTMANN and WULFINGHOFF 4733

(A)

(B) (C)

F I G U R E 9 (A) Three-dimensional Young’s modulus surface plot for Mg and Zn and (B) two-dimesional projection onto the xz-plane,
showing almost isotropic elastic behavior for Mg and strong anisotropy for Zn. (C) Proportion of the elastic energy change due to rotation of
the lattice in the total twinning driving force is less than 2% for all single crystal loading Cases A–F.

(A) (B)

F I G U R E 10 (A) Development of det Fp for single crystal compression simulations and (B) maximum and minimum values of det Fp

for polycrystal compression simulations.
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4734 DITTMANN and WULFINGHOFF

4 CONCLUSION

In this work, a single-crystal plasticity finite element model for magnesium including slip and twinning at finite strains
was presented. The implemented algorithm uses a volume transfer scheme, considers 18 slip systems with 13 orientations
(parent + 12 twinning systems) simultaneously and is fully implicit. By a special choice of the primary unknowns and
residuals, it was possible to reduce the number of nonlinear equations to be solved from 246 to 31. This enabled to resolve
important secondary slip in all twins at a reasonable computational cost. Thermodynamic consistency is ensured by deriv-
ing the model from the Clausius–Duhem inequality, which identifies the change of elastic energy with the lattice rotation
upon twinning as an additional driving force for twinning. Considering basal, prismatic, pyramidal ⟨a⟩ and pyramidal
⟨c+a⟩ slip modes as well as a tension and a compression twinning mode, the simulations of single-crystal compression
reproduce the highly anisotropic behavior and are in excellent agreement with the experimental data. Furthermore, with-
out including any additional effects or refitting of parameters, the model is also capable to reproduce polycrystalline
stress-strain behavior with good accuracy. Additionally, an easy modification of the hardening parameters allows for a
reasonable estimate of solid solution hardening. The volume transfer scheme with implicit update exhibits robust behav-
ior even for the strong assumption of quasi rate-independent slip and twinning behavior and smooth transitions when
slip inside newly developed twins becomes possible. Thus, there are no sudden “jumps” in stress which we assume to
be advantageous for larger polycrystalline simulations. The limitations of the approach are that individual twins are not
explicitly modeled, which of course neglects important physical mechanisms on the micro-scale but on the other hand
allows to approximate grains in a polycrystalline material by single elements with good accuracy. The model therefore is
not suited for detailed microscopic predictions, such as nucleation and propagation of individual twins but predicts the
mechanical material behavior on a larger scale.
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APPENDIX A. LINEARIZATIONS

To obtain the linearization of the residuals in Equations (40) and (41) the linearizations of S, Ee and 𝛾 are needed.
The linearization of the compliance S is given by:

dS = −
Ntw∑

𝛽=1

1
𝛾

tw
𝛽

S ∶
(
C𝛽 −C0

)
∶ S d𝛾𝛽. (A1)

The partial derivatives of Ee with respect to the unknowns Se andΔ�̃� needed for the linearization of the residual are given
by:

𝜕Ee

𝜕Se =
Ntw∑

𝛽=0

Nsl∑

𝛼=1

𝜕Ee
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𝜕Δ𝛾𝛽
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𝜕Se . (A2)
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𝜕Δ�̃�
=

Ntw∑

𝛽=0

Nsl∑
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𝜕Δ𝛾

)

. (A3)

They are derived by the linearization of Ee as follows:

dEe = 1
2

d(fp−⊤Cetrfp−1 − I) = sym
(
Cefpdfp−1) + 1

2
fp−⊤

s
□ fp−1 ∶ dCetr

. (A4)

With

fpdfp−1 = −
(

I − 1
2

hp
)−1

dhp
(

I + 1
2

hp
)−1

, (A5)

and

dhp =
Ntw∑

𝛽=0
c𝛽

Nsl∑
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M𝛽
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dΔ𝛾𝛽, (A6)

and
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(
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𝛼

(
I + 1

2
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)−1

M̃𝛽 =
(

I − 1
2
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)−1

M𝛽

(
I + 1

2
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)−1
, (A7)

one obtains the partial derivatives of Ee with respect to the plastic shear and twinning increments Δ𝛾𝛽𝛼 and Δ𝛾𝛽 and the
elastic trial Green strain tensor Cetr

𝜕Ee

𝜕Δ𝛾𝛽𝛼
= −c𝛽 sym

(
CeM̃𝛽

𝛼

)
. (A8)
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𝜕Ee

𝜕Δ𝛾𝛽
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The partial derivatives of Δ𝛾𝛽𝛼 and Δ𝛾𝛽 are given by
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The linearization for 𝜏c𝛽
sl→sl, 𝜏

c
tt→sl, and 𝜏c

ct→sl reads:

d𝜏c𝛽
sl→sl =

⎧
⎪
⎨
⎪
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d𝛾𝛽. (A17)

d𝜏c
ct→sl = 0.5h0

(
𝛾

CT)−0.5d𝛾𝛽. (A18)

The partial derivatives then read:
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with
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The partial derivative of 𝜉𝛽 is given by:
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The linearization of 𝜏𝛽𝛼 and 𝜉𝛽 reads:

𝜕𝜏
𝛽

𝛼

𝜕Se =
(

2S ∶ sym
(

M𝛽

𝛼Se
)
+ sym

(
CeM𝛽

𝛼

))
. (A23)
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𝜕Se = 𝛾
tw
𝛽

(
2S ∶ sym

(
M𝛽Se) + sym

(
CeM𝛽

))
. (A24)

The partial derivatives of 𝛾 with respect to the unknowns Se and Δ𝛾 needed for the linearization of the residual are given
by:

𝜕Δ𝛾

𝜕Se =
Ntw∑

𝛽=0

Nsl∑

𝛼=1

𝜕Δ𝛾

𝜕Δ𝛾𝛽𝛼

𝜕Δ𝛾𝛽𝛼
𝜕𝜏

𝛽

𝛼

𝜕𝜏
𝛽

𝛼

𝜕Se +
Ntw∑

𝛽=1

𝜕Δ𝛾

𝜕Δ𝛾𝛽
𝜕Δ𝛾𝛽
𝜕𝜉𝛽

𝜕𝜉𝛽

𝜕Se . (A25)

𝜕Δ𝛾

𝜕Δ�̃�
=

Ntw∑

𝛽=0

Nsl∑

𝛼=1

𝜕Δ𝛾

𝜕Δ𝛾𝛽𝛼

𝜕Δ𝛾𝛽𝛼
𝜕𝜏

c𝛽
𝛼

𝜕𝜏
c𝛽
𝛼

𝜕Δ�̃�
+

Ntw∑

𝛽=1

𝜕Δ𝛾

𝜕Δ𝛾𝛽

(
𝜕Δ𝛾𝛽
𝜕𝜉

c
𝛽

𝜕𝜉
c
𝛽

𝜕Δ�̃�
+
𝜕Δ𝛾𝛽
𝜕c0

𝜕c0

𝜕Δ𝛾

)

. (A26)

The partial derivatives are then given by:

𝜕Δ𝛾
i

𝜕Δ𝛾𝛽𝛼
= 𝛿i𝛽 sg

(
𝜏
𝛽

𝛼

)
. (A27)

𝜕Δ𝛾
i

𝜕Δ𝛾𝛽
= 𝛿ij with j = Ntw + 1 + 𝛽. (A28)

APPENDIX B. ALGORITHMIC TANGENT

For the linearization of the weak form of the linear momentum balance

∫V0

𝝉 ∶ d𝛿dV −
∫
𝜕V0t

t ⋅ 𝛿udA = 0, (B1)

with d𝛿 = sym (l𝛿) = sym
(
𝛿FF−1) and the traction vector t given on 𝛿V0t, we consider the well-known result

d(𝝉 ∶ d𝛿) = (ld𝝉l⊤
𝛿
) ∶ I + d𝛿 ∶ C

algo ∶ dd, (B2)

where ld = dFF−1 and Calgo is given in Equation (43).
For the global iteration one has:

dr =
𝜕r
𝜕x

dx +
𝜕r

𝜕Cetr ∶ dCetr = 0. (B3)

From that one finds the partial derivative

𝜕x

𝜕Cetr = −
(
𝜕r
𝜕x

)−1
𝜕r

𝜕Cetr , (B4)

with

𝜕rS

𝜕Cetr =
𝜕Ee

𝜕Cetr ; (B5)

𝜕r𝛾

𝜕Cetr = 0. (B6)
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The partial derivative of S
e

with respect to the vector of unknowns x is given by:

𝜕S
e

𝜕Se =
Ntw∑

𝛽=0

Nsl∑

𝛼=1

𝜕S
e

𝜕Δ𝛾𝛽𝛼

𝜕Δ𝛾𝛽𝛼
𝜕𝜏

𝛽

𝛼

𝜕𝜏
𝛽

𝛼

𝜕Se +
Ntw∑

𝛽=1

𝜕S
e

𝜕Δ𝛾𝛽
𝜕Δ𝛾𝛽
𝜕𝜉𝛽

𝜕𝜉𝛽

𝜕Se + fp−1
s
□ fp−⊤; (B7)

𝜕S
e

𝜕𝛾
=

Ntw∑

𝛽=0

Nsl∑

𝛼=1

𝜕S
e

𝜕Δ𝛾𝛽𝛼

𝜕Δ𝛾𝛽𝛼
𝜕𝜏

c𝛽
𝛼

𝜕𝜏
c𝛽
𝛼

𝜕𝛾
+

Ntw∑

𝛽=1

𝜕S
e

𝜕Δ𝛾𝛽

(
𝜕Δ𝛾𝛽
𝜕𝜉

c
𝛽

𝜕𝜉
c
𝛽

𝜕Δ�̃�
+
𝜕Δ𝛾𝛽
𝜕c0

𝜕c0

𝜕Δ𝛾

)

. (B8)

It is calculated from the linearization of S
e

as follows:

dS
e
= d

(
fp−1Sefp−⊤) = fp−1

s
□ fp−⊤ ∶

(
dSe + 2 sym

(
Se(fpdfp−1)⊤

))
. (B9)

In analogy to Equations (A4)–(A6), (A8), and (A9) one finds for the partial derivatives of S
e
:

𝜕S
e

𝜕𝛾
𝛽

𝛼

= −fp−1
s
□ fp−⊤ ∶ 2 sym

(
SeM̃𝛽

𝛼

⊤
)
; (B10)

𝜕S
e

𝜕𝛾𝛽

= −fp−1
s
□ fp−⊤ ∶ 2 sym

(

Se

(

M̃⊤

𝛽 +
1
𝛾

tw
𝛽

Nsl∑

𝛼=1

(
M̃𝛽

𝛼

⊤

Δ𝛾𝛽𝛼 − M̃0
𝛼

⊤

Δ𝛾0
𝛼

)
))

. (B11)

The linearization of Cetr is given by:

dCetr = 2Fetr⊤
s
□ Fetr ∶ dd. (B12)
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