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A B S T R A C T   

Mineral prospectivity mapping constitutes an efficient tool for delineating areas of highest interest to guide 
future exploration. Multiple knowledge-driven approaches have been applied for the creation of prospectivity 
maps for deep-sea ferromanganese (Fe-Mn) crusts over the last decades. The results of a data-driven approach 
making use of an extensive data collection exercise on occurrences of Fe-Mn crusts in the World Ocean and recent 
increase in global marine datasets are presented. A Random Forest machine learning algorithm is applied, and 
results compared with previously established expert-driven maps. Optimal predictive conditions for the algo-
rithm are observed for (i) a forest size superior to a hundred trees, (ii) a training dataset larger than 10%, and (iii) 
a number of predictors to be used as nodes superior to two. The confusion matrix and out-of-bag errors on the 
remaining unused data highlight excellent predictive capabilities of the trained model with a prediction accuracy 
for Fe-Mn crusts of 87.2% and 98.2% for non-crusts locations, with a Kohen’s K index of 0.84, validating its 
application for prediction at the World scale. The slope of the seafloor, sediment thickness, sediment type, 
biological productivity, and abyssal mountain constitute the five strongest explanatory variables in predicting 
the occurrence of Fe-Mn crusts. Most ‘hand-drawn’ knowledge-driven prospective areas are also considered 
prospective by the random forest algorithm with notable exceptions along the coast of the American continent. 
However, poor correlation is observed with knowledge-driven GIS-based criterion mapping as the Random Forest 
considers un-prospective most target areas from the GIS approach. Overall, the Random Forest prediction per-
forms better in predicting a high chance of Fe-Mn crust occurrence in ISA licensed area than the GIS approach, 
which constitutes an external validation of the predictive quality of the random forest model.   

1. Introduction 

Mineral prospectivity mapping (MPM) is a complex multi-criteria 
decision task aimed at delineating prospective areas for exploring un-
discovered mineral deposits (Carranza and Laborte, 2015). Over the last 
two decades the abundance of high-resolution remote sensing data and 
expansion of digitised regional geological and geophysical surveys have 
sparked the development of GIS-based solutions for MPM. Methods have 
evolved drastically from simple logical or arithmetic operators to com-
plex mathematical functions incorporating an ever-increasing amount of 
geophysical, structural, geochemical, and environmental data, taking 
advantage of increasing computational power and diversity of tools in 
GIS-related applications (Rodriguez-Galiano et al., 2015; Wang et al., 
2020). A broad range of methodologies exists giving more or less weight 
to the influence of experts and/or being dominantly data-driven. Each 

approach was initially developed for a specific exploration case 
reflecting various stages of mineral exploration (green or brown field), 
scale (national, local), and the amount of available data. 

Knowledge-driven models rely on experts’ deep understanding of ore 
deposits for the attribution of a weight to each data layer, reflecting a 
subjective, albeit informed, judgement on the association of spatial in-
formation with the mineral deposit investigated. As such, a knowledge- 
driven approach is considered best-suited for green-field exploration in 
geologically permissive terrains where no or few occurrences of mineral 
deposits are known (Carranza and Laborte, 2015; Lusty et al., 2012; 
McKay and Harris, 2016). This approach relies on inputs and knowledge 
of geologists with adequate experience. It is advantageous as it does not 
require any extensive datasets or controls but is at the expense of 
introducing human bias in the predictions. In contrast, data-driven ap-
proaches for MPM makes use of mathematical functions and algorithms 
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using bivariate (weights-of-evidence, evidential belief modelling) or 
multivariate (logistic regression, artificial neural networks) analysis. 
The weights assigned to individual layers are estimated on the spatial 
association of datasets of prospective recognition criteria, also referred 
to as predictors, and known mineral deposit locations (Carranza and 
Laborte, 2015). Data-driven models are probabilistic and variations of 
multivariate logistic regression analyses such as gradient-boosting and 
bagging are the most common. The reason for such diversity is found in 
the capacity of these multivariate MLA to deal more efficiently with the 
non-linearity and high complexity of spatial relationship between pre-
dictors and mineral deposit occurrences. The Random Forest algorithm, 
making use of bagging methodology, currently dominate the methods 
available in machine learning algorithms (MLA) for MPM. However, not 
all approaches offer the same transparency and ease of training. 
Notably, artificial neural networks, considered as deep machine learning 
methods, rely on a ‘black box’ for the attribution of coefficients repre-
senting the degree of spatial association between deposits and evidential 
data that cannot be evaluated by the operator, whilst logistic regression 
analysis (shallow machine learning) can be scrutinized (Carranza and 
Laborte, 2015). Deep learning methods such as convolutional neural 
network (CNN) or graph convolutional network (GCN) have far more 
complex architectures containing multiple sequential layers (Zuo and 
Carranza, 2023). The CNN will be capable of integrating neighbouring 
pixel’s information within its evidence base giving it more power to 
capture spatial coupling relationship between geological features. 
Alternatively, GCN are an emerging method relying on a pre-established 
graphic relationship of deposits and their evidential geological features 
enabling better capture of spatial anisotropic characteristics of the 
mineralisation (Zuo and Carranza, 2023). This is notably of interest 
when the mineral system of interest is related to anisotropic features 
such as faults and fluid circulations. In the context of this study and the 
mineral system of ferromanganese crusts, use of random forest is justi-
fied as a first application of machine-learning methodology for deposits 
unrelated to anisotropic structures. For more details on shallow and 
deep-learning methods, the reader is referred to a special edition dedi-
cated to machine-learning-based mapping for mineral exploration (Zuo 
and Carranza, 2023). 

The applicability and efficiency of the random forest algorithm for 
MPM has been recently evaluated against other knowledge- and data- 
driven methods such as regression trees, artificial neural networks, 
support vector machines, weights-of-evidence, logistic regression and 
evidential beliefs for epithermal gold deposit in Rodalquilar, Spain 
(Rodriguez-Galiano et al., 2015), the Baguio Gold District, Philippines 
(Carranza and Laborte, 2015) and gold deposits in Nunavut, Canada 
(McKay and Harris, 2016). All these studies conclude that Random 
Forest models are more stable and reproducible, using various dataset 
sizes and subsets, and outperform other methods in terms of success- and 
prediction-rate. Similar conclusions were reached when comparing 
performances of Random Forests with those methods using fuzzy 
weights of evidence for MPM for skarn and porphyry-epithermal de-
posits in the southwestern Fujian metallogenic belt, China (Gao et al., 
2016; Zhang et al., 2016), and Yangtze River Valley metallogenic Belt, 
China (Xiang et al., 2020). The Random Forest algorithm is now 
commonly employed for spatial predictive mapping of mineral pro-
spectivity on land for various commodities including Au, Cu, Fe, W 
(Carranza and Laborte, 2016; Hariharan et al., 2017; Li et al., 2020; 
Parsa et al., 2018; Wang et al., 2020; Xiang et al., 2020). 

The continuously increasing demand for minerals and metals in the 
context of decarbonizing societies is pushing mineral exploration into 
new frontiers (Lusty and Murton, 2018). Notably, the large-scale 
deployment of technologies capable of harnessing renewable sources 
of energy and the ongoing electrification of transport and supporting 
infrastructures are creating an unprecedented demand for a range of 
critical raw materials such as Ni, Co, Cu, rare earths (REE), Mn, Li, 
graphite (C), Te, and Pt (Hein et al., 2013). Over the last decades, the 
interest in the potential for deep-ocean mineral deposits such as 

polymetallic nodules, ferromanganese (Fe-Mn) crusts, and seafloor 
massive sulfide deposits to make a significant contribution to global 
future raw material supply has increased dramatically. Industries have 
gained exploration licenses for polymetallic nodules, ferromanganese 
crusts and seafloor massive sulfide deposits in both the high-seas and 
exclusive economic zones (EEZ), with economic assessment produced 
for deposits of polymetallic nodules in the Clarion-Clipperton Zone 
(AMC Consultants, 2021a; AMC Consultants, 2021b) and seafloor 
massive sulfides in the EEZ of Papua New Guinea (AMC Consultants, 
2018). The drive towards the deep-ocean is a response to the growing 
global demand as a matter of increasing population, urbanization and 
living standards, coupled to concerns about the security of supply of 
critical raw materials and the increasing challenges of land-based min-
ing (Calas, 2017; Lusty and Murton, 2018). The ocean covers more than 
70% of the surface of the planet and has an average depth of 3700 m 
(Charette and Smith, 2010), making exploration of deep-ocean mineral 
deposits a technologic and economic challenge. Consequently, deter-
mining areas of high prospectivity is of paramount importance to opti-
mize exploration efforts and investments. 

The access to a large range of high-resolution aerial and satellite 
remote sensing data has made data-driven MPM of on-land deposits an 
inexpensive and effective method for the determination of prospects in 
green- and brown-field exploration. Unfortunately, the deep ocean is 
opaque to most satellite remote sensed data, preventing large-scale, 
high-resolution, multi-physics imaging of the seafloor and rapid char-
acterization of its lithologies, structures, and other physical properties. 
These obstacles play a significant role as to why solely knowledge-driven 
predictive maps exist at a global scale for deep-sea minerals. The most 
commonly used maps presenting prospective areas for hydrogenetic 
ferromanganese (Fe-Mn) crusts have been produced by Hein et al. 
(2013) and were recently updated by Mizell et al. (2022). These high-
light regions in the global ocean where samples have been recovered and 
the ‘permissive areas’ are subsequently extended around the major local 
geomorphological features known to host these deposits. Petersen et al. 
(2016), refined these hand-drawn ‘permissive areas’ by GIS-mapping of 
all portions of the oceans cumulating exploration criteria commonly 
accepted for these deep-sea mineral deposits, i.e. for Fe-Mn crusts; (i) 
morphological features such as seamounts, guyots, and ridges peaking 
between 800 and 3000 mbsl, (ii) a sedimentation rate of less than 2 cm/ 
1000 years with less than 500 m total sediment accumulation, and (iii) 
seafloor older than 10 Ma. 

However, a compilation of known occurrences of ferromanganese 
crust deposits by the authors (Fig. 1) shows that numerous samples fall 
outside of knowledge-driven MPM areas defined previously for Fe-Mn 
crusts (1.7 million km2, Petersen et al. (2016)), suggesting an underes-
timation of the prospective zones for future exploration of these de-
posits. The main reason for this difference relates to the choice of 
parameters which follow the traditional deposit model established for 
Pacific Seamounts, fitting a majority but not all geomorphological and 
oceanographic context in the world ocean. Furthermore, the depth range 
exclude any geomorphological feature shallower than 800 m or deeper 
than 3000 m based on economic considerations relative to variation in 
the content of metal of economic interests with depth, as well as feasi-
bility of extraction (Hein et al., 2009). 

This study presents the results of MPM based on Random Forest data- 
driven methods for Fe-Mn crust deposits at the global scale excluding 
constraints including economic feasibility that is constantly fluctuating 
as a matter of commodity prices, technological development, socio- 
economic and geopolitical factors. Establishing a map of known loca-
tion and area of potential occurrences is necessary prior to further 
filtering locations based on economic factors relevant to time and 
location. Furthermore, establishing a predictive map of locations where 
ferromanganese crusts can be encountered in the world ocean, of eco-
nomic interest or not, is of further interest to a larger community by 
providing an updated coverage of Fe-Mn oxide of the seabed. This could 
be used for evaluating global cycles of metals between continent and 
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oceans, stocks of metal stored on the seabed, and informing future 
paleoceanographic campaigns given these deposits provide faithful re-
cords of ocean paleo-environments (Koschinsky and Hein, 2017). Here, 
we present the performance of the Random Forest machine-learning 
algorithm and compare its output with previously established 
knowledge-driven approaches. 

2. Random Forest algorithm 

The random forest algorithm was pioneered in its modern version by 
Breiman (2001) as an iterative and randomized succession of regression 
tree analysis. A decision tree constitutes a powerful tool to efficiently 
classify a dataset based on its most discriminative features. However, 
this approach is sensitive to over-fitting and predictions on unknown 
samples usually result in models with medium bias and high variance. 
The former represents the model’s flexibility to fit unknown data to its 
trained model, whilst the latter informs on the robustness of the model 
based on varying training datasets. These parameters are akin to the 
precision (bias) and accuracy (variance) of any geochemical dataset. 
Although bias and variance can be optimized by pruning a decision tree, 
this usually reduces their predictive power. A Random Forest compen-
sates for the shortfalls of individual regression tree classification via two 
processes. First, a ‘bootstrapped dataset’ is created for each tree of the 
Random Forest by sampling with replacement from the input training 
dataset. This creates a unique dataset where its size does not necessarily 
equal that of the whole data set and where a data point can be picked 
more than once. This randomness over many trees ensures that over-
fitting of each decision tree is compensated by their own uniqueness, 
therefore, making the model less sensitive to the original training 
dataset and potential outliers, achieving greater stability, and increasing 
prediction accuracy (Breiman, 2001; Rodriguez-Galiano et al., 2015). 
Secondly, the ‘random feature selection’ minimizes the statistical cor-
relation between all decision trees by forcing them to use a randomly 
selected subset of predictors for their nodes. As the Random Forest al-
gorithm grows a new tree, it uses the best feature within this randomised 
subset of predictors to split points, therefore increasing variation be-
tween trees and diversification in the classification and prediction pro-
cess (Carranza and Laborte, 2015). Commonly, the number of nodes 
each tree uses in a Random Forest model is close to the square root of the 

total number of predictors. Although limiting the number of usable 
discriminative features tends to decrease the strength of each single tree, 
this also reduces the generalization error (Breiman, 2001; Rodriguez- 
Galiano et al., 2015). 

The combined process of bootstrapping and aggregation of random 
feature selection (also called “bagging” for short) repeated on many 
decisions tree enforces a randomness and prediction diversity by com-
mittee that results in robust and more accurate models. The precision of 
this model is internally evaluated by the algorithm which makes use of 
randomly non-sampled data to create a new out-of-bag (OOB) subset 
and use it to evaluate the model’s performance. This OOB approach is 
beneficial for two reasons; (i) it allows an examination of the perfor-
mance of the model without the need for an external validation data set, 
and (ii) it permits an assessment of the relative importance of the 
different predictors (McKay and Harris, 2016). Breiman (2001) 
demonstrated that through bagging and the OOB errors, the RF models 
do not overfit the data as the generalisation error converges as the 
number of trees in the forest increases. 

The next stage of the machine learning process concerns the aggre-
gation of all the decision trees’ predictions, which is made following two 
routes depending on the type of variable to be modelled. In a regression 
situation, when the variable to predict is numerical for instance, the 
average prediction of all decision tree is used. In a classification situa-
tion, where the data to predict is categorical, the prediction can be made 
either using the statistical mode of all decision trees or given as an index 
of relative proportion between the two categories which can be inter-
preted as an index of the prediction varying between 0 and 1. Either 
output can be used, although usually prospective vs. non-prospective 
maps are produced using a probability threshold of 0.5. 

A RF algorithm presents the advantages of being simple to imple-
ment and capable of dealing with large, uneven datasets, and producing 
robust and accurate predictions with metrics of uncertainty available for 
evaluation of model’s performance (Graw et al., 2021). However, the 
downside of this machine learning algorithm is the processing power 
required to produce the numerous decision trees and compute the pre-
dictions depending on the size of the forest, input data, scale of inves-
tigation, and desired resolution of output. In addition, as with all 
supervised or machine learning algorithms, a RF model will be limited 
by the range of the data it is trained with and cannot extrapolate out of 

Fig. 1. Compilation of all locations used for the machine learning Random Forest algorithm with Fe-Mn crusts shown in red (n = 4,423) and other non-deposit 
locations; sediments, nodules, massive sulfides, presented in green (n = 42,600) (See main text for complete reference list for compilation, bathymetric data 
from GEBCO Compilation Group (2021)). 
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it, which constitutes an issue mostly for regression modelling rather than 
for classification modelling. 

3. Ferromanganese crusts 

Ferromanganese crusts are chemical precipitates formed by the 
accumulation of Fe and Mn oxides colloids precipitating from ambient 
cold seawater and depositing on any indurated substrate on the seafloor 
(Lusty and Murton, 2018). This hydrogenetic precipitation constitutes 
one of the slowest processes on the planet with accumulation rates on 
the order of 1–10 mm/Ma with crusts ranging in thickness from 1 to 400 
mm (Friedrich and Schmitz-Wiechowski, 1980; Hein et al., 2013; Josso 
et al., 2019; Lusty et al., 2018). Therefore, Fe-Mn crusts develop in stable 
environments with low sedimentation rates and non-erosive physical or 
chemical conditions over tens of millions of years anywhere in the ocean 
between 400 and 7000 m (Hein et al., 2013; Josso et al., 2020b). They 
commonly form pavements or encrustation on seamounts, ridges, and 
plateaus where precipitation, deposition and preservation of Fe and Mn 
oxide is possible (Josso et al., 2020a; Lusty et al., 2018). Open-ocean 
settings constitute an optimal environment with low sedimentation 
rate and strong upwelling currents on the flanks of seamounts keeping 
hard rock substrate exposed and clean of particles, although reports on 
occurrences of Fe-Mn crusts in more diversified oceanic setting have 
increased recently (Charles et al., 2020; Conrad et al., 2017; Kon-
stantinova et al., 2017; Yeo et al., 2018; Zhong et al., 2017). Owing to Fe 
and Mn oxides physio-chemical properties, slow accumulation rate on 
the seafloor and high porosity, Fe-Mn crusts constitute effective scav-
enger of dissolved metals in seawater, building up to economically 
attractive concentrations of Co, Cu, Ni, REE, Pt and Te (Hein et al., 2013; 
Josso et al., 2021; Lusty et al., 2018). Regional trends in the composition 
of Fe-Mn crusts are now clearly identified as more data becomes avail-
able from the Atlantic, Arctic, and Indian Ocean, allowing comparison 
with the large body of work available on occurrences from the Pacific 
Ocean. Fe-Mn crust composition is influenced by their depth of forma-
tion as a reflection of the natural distribution of dissolved metals in the 
water column, oceanic water properties, biological activity, proximity to 
other sources of metals into the ocean such as continental land masses 
and hydrothermal systems, in turn influenced by climate evolution 
through time (Josso et al., 2021; Mizell et al., 2020; Verlaan and Cronan, 
2022). Notably, deposits closer to continental masses or proximal to 
major sources of detrital material (riverine, aerosols) tends to be richer 
in Fe, Ti, V, Li, Pt, Te, and Ta, whilst open-ocean settings are richer in Mn 
and Co (Hein et al., 2017; Hein et al., 2013; Josso et al., 2021). 

There are currently five contractors holding International Seabed 
Authority (ISA) exploration licences for Fe-Mn crusts, sponsored by 
Japan (JOGMEC), China (COMRA), Brazil (CPRM), Russia (Ministry of 
Natural Resources and Environment of the Russian Federation), and The 
Republic of Korea. Although Fe-Mn crusts are considered a complex 
seabed mineral deposit to explore for and potentially extract due to their 
two-dimensional occurrence on rough terrains, partial cover by sedi-
ment, and indurated substrate, preliminary collector and excavation 
tests have already been carried out in the Pacific (JOGMEC, 2020). 
Despite the interest in Fe-Mn crusts, their distribution on the many 
thousands of seamounts, submarine ridges and plateaus is poorly un-
derstood largely as a result of the sparse data and lack of detailed seabed 
exploration required to verify the presence and volume of Fe-Mn crusts 
present. Hence the need to develop a quantifiably reliable predictive 
method to focus future exploration effort. 

4. Data sources and predictors 

The objective of the Random Forest model is to predict the occur-
rence of ferromanganese crusts in the world ocean using spatial asso-
ciation between known location of Fe-Mn crusts and other 
environmental predictors. Therefore, the target variable and inputs 
constitute a categorical variable, either a deposit or a non-deposit. For 

deposit locations, a review of available literature was conducted and 
incorporate the databases from GeoERA - MINDeSEA (2019), NOAA 
(Frazer and Fisk, 1981), USGS (Manheim and Lane-Bostwick, 1988), and 
JAMSTEC (JAMSTEC, 2021), as well as samples from peer-reviewed 
literature in key locations (Baturin and Dubinchuck, 2011; Charles 
et al., 2020; Frank et al., 2002; Guan et al., 2017; Hein et al., 2017; 
Konstantinova et al., 2020; Konstantinova et al., 2021; Ren et al., 2019; 
Zhong et al., 2017) and locations of samples currently under study and 
not yet published obtained via personal communications. In total, more 
than four thousand Fe-Mn crust occurrences were compiled and cover 
most oceans of the planet (Fig. 1). 

Non-deposit locations are as important for the algorithm to train the 
model in identifying the range of spatial signatures where deposits are 
not present and do not solely correspond to locations where data is 
lacking. Any ocean sampling location having not recovered a Fe-Mn 
crust forms a potential non-deposit candidate. These include sediment 
samples from the world ocean (n = 41,340, Diesing (2020)) as well as 
locations of polymetallic nodules (n = 856, Frazer and Fisk (1981)) and 
seafloor massive sulfides (n = 405, Petersen et al. (2016)). Note that 
only samples contained within the common geographic extent covered 
by all continuous predictors (Figs. S1-S6) are kept for this analysis and 
sources cited above may provide data outside of the range presented in 
Fig. 1. Available predictors limited the geographic extent of the pre-
diction to roughly 80 N to 65S. Despite reports of Fe-Mn crusts in the 
Arctic and Antarctic Oceans (Hein et al., 2017; Konstantinova et al., 
2017; Konstantinova et al., 2020), these locations are excluded from the 
study due to the lack of data coverage for a reliable prediction of the 
model. 

In this configuration, the number of non-deposits outnumber the 
amount of deposit locations 10:1, although this parameter is compen-
sated in the random forest algorithm for training the model and 
constitution of the out-of-bag dataset. To optimise identification of the 
multivariate spatial data signature of Fe-Mn crust locations, any non- 
deposit locations within a 20 km radius of each Fe-Mn crust were 
filtered out (Carranza and Laborte, 2015). A good areal coverage is 
obtained in the Pacific, Atlantic and Indian Oceans, less in the Southern 
Oceans and the Arctic Ocean is poorly or not covered. 

In total, thirty-two predictors were used in the random forest algo-
rithm for their general relevance to exploration criteria for Fe-Mn crusts 
and global coverage (Table 1). These include the categorical layers from 
the geomorphic features map of the global ocean (Harris et al., 2014), 
providing the major subdivision of oceanic domains and location of 

Table 1 
List of predictors and data source used in the random forest model (Figs. S1-S6).  

Predictors Variable Source 

Geomorphological classification of the 
seafloor (n = 23; abyssal hills, abyssal 
plains, abyssal mountains, canyons, 
seamounts, guyots, troughs, glacial 
troughs, trenches, bridges, sills, shelf 
valleys, rift valleys, ridges, spreading 
ridges, terraces, fans, rises, plateaus, 
escarpments, shelf, hadal, shelf slope) 

Categorical Harris et al. (2014) 

Average seafloor kinetic energy Continuous pers. Comm. Andrew 
Coward (NOC) 

Surface productivity Continuous NASA Ocean Biology 
(OB.DAAC) (2014) 

GEBCO Bathymetry Continuous GEBCO Compilation 
Group (2021) 

Slope Continuous Derived from GEBCO 
Compilation Group 
(2021) 

Sediment thickness Continuous Straume et al. (2019) 
Dissolved oxygen Continuous Garcia et al. (2006) 
Seafloor lithologies (n = 5; Radiolarian 

ooze, lithic sediment, diatom ooze, clay 
sediment, calcareous sediment) 

Continuous Diesing (2020)  
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geomorphological features to be associated with deposits and non- 
deposit spatial signature by the model. These are complemented by 
continuous datasets on bathymetry (GEBCO Compilation Group, 2021), 
from which slope gradients were derived, data on surface bio- 
productivity (NASA Ocean Biology (OB.DAAC), 2014), sediment thick-
ness (Straume et al., 2019), dominant sediment types (Diesing, 2020), 
dissolved oxygen (Garcia et al., 2006), and a model of the average 
seafloor kinetic energy (Coward Pers. Com.). These evidence layers 
(Figs. S1-S6) were used for their relevance in the formation process of 
Fe-Mn crusts. Forming in oxidising areas onto exposed rocky surface 
with low sedimentation rate, evidence layers on the type of outcropping 
seabed (geomorphological features), surface bio-productivity, sediment 
types and their cumulated thickness on the seafloor, the dissolved oxy-
gen content of seawater, as well as ocean current strength and slopes 
affecting deposition or transportation of sediments, are relevant pa-
rameters to the mineral system of Fe-Mn crusts and, more importantly, 
are available in the published literature. 

Although commonly considered an important parameter for the 
exploration of Fe-Mn crusts in relation to their slow growth, the age of 
the seafloor was excluded from the model for three reasons. Firstly, the 
age of geomorphological features commonly hosting Fe-Mn crusts such 
as seamounts, ridges, and plateaus, cannot be assigned to that of their 
surrounding basaltic seafloor because they are always built on existing 
seafloor, and no coherent dataset exists for the ages of seamounts in the 
world ocean. Including this variable from a global age model of the 
seafloor would bias the dataset as non-representative ages would be 
associated to deposits and non-deposit locations. Secondly, seafloor age 
models established on magnetic reversals recorded by the oceanic crust 
at spreading centres can only cover the oceanic floor. This leaves large 
swaths of the seabed without age constraints, such as continental mar-
gins and intra-continental basins. Whilst historically most Fe-Mn crusts 
were recovered in open-ocean settings, an increasing number of studies 
have reported data on Fe-Mn crusts proximal to continental settings for 
which the age of the substratum is in doubt or not known (Hein et al., 
2017; Staszak et al., 2022; Zhong et al., 2017). Finally, the age of the 
seafloor is commonly used as a cut-off for economically viable deposits 
as an indirect proxy for the thickness of the deposits. This work aims at 
modelling areas where Fe-Mn crust might be actively forming, and 
therefore such limits are irrelevant for this study. 

The continuous raster predictors have varying degrees of pixel res-
olution from 2 arcminutes (~3.7 km) to ¼ arcminutes (~0.5 km). All 
raster datasets were snapped and resampled at the highest resolution of 
¼ arcminutes with a bilinear interpolation. 

5. Random forest model 

Random Forest models are ensemble learners, with final predictions 
being made based on the most common prediction made from a forest of 
separate model runs. The number of these separate models – or rather 
the number of decision trees (ntrees) within the forest – is pre-defined by 
the user. A key component of the random forest algorithm is that each 
individual tree considers a random selection of the input data available 
to it, therefore establishing each tree as being unique. The random forest 
model approach applied for this study is adapted from that developed in 
Williams et al. (in. prep). The implementation of the algorithm was 
through the ‘H2O’ Python library (LeDell and Poirier, 2020). The code as 
used in this study will be available under an open license (Williams 
et al., in. prep). 

The input data with which the model was trained consisted of an 
input table for deposit and non-deposit location with the value or 
attribute of both numerical and categorical predictors; examples of the 
former being bathymetric terrain slope and of the latter, terrain feature 
classifications. Our implementation of the random forest algorithm H20 
enabled these different data types to be used with no pre-processing 
necessary. More than 46,000 data records were available to develop 
the model for the purposes of predicting Fe-Mn crust locations. 

Optimisation of the model’s hyperparameter such as the test/train data 
ratio, number of trees and number of predictors is described in the 
following paragraphs. Output predictions were generated over a grid of 
0.03 decimal degree (3.3 km) spatial resolution for which attributes of 
the predictors were extracted. This resolution was selected as a 
compromise between processing time and resolution at a world scale. 

6. Results and discussion 

6.1. Effect of training sample set size and forest size 

Predictive bias and variance of Random Forest models are sensitive 
to hyperparameters of the algorithm. The main parameters the operator 
influences, and which impact the quality of the model output are the 
number of trees, the split between the training dataset and data kept for 
model evaluation (OOB), and the number of predictors each tree can use 
for its nodes. Using a suite of metrics including the confusion matrix, 
Cohen’s K index and the OOB, Breiman (2001) demonstrated that all 
models converged in their predictive capability beyond certain hyper-
parameter thresholds. The spatial distribution of data points selected for 
being part of the training and validation set, as well as the spatial dis-
tribution of the deposit vs non-deposit datapoint are presented in sup-
plementary material (Figs. S7, S8). Both shows the randomise selection 
maximise spatial coverage of the training and validation (OOB) datasets. 
During the random selection of the data subset from the training set, the 
algorithm is coded to maintain the relative proportion of deposit and 
non-deposit locations. 

The influence of the forest size (‘ntrees’) was evaluated against the 
training log-loss score (Fig. 2), indicative of how close the model’s 
prediction probability is to the true value associated with the OOB 
samples. The algorithm was tested for a forest size up to 1,000 trees 
using 90% of the data randomly selected by the algorithm. The log-loss 
score sharply decreases over the first increments of testing to stabilise 
close to a value of 0.2 for a forest of 100 trees or more (Fig. 2). 

The size of the randomly selected training set to be used by the al-
gorithm, expressed as a per cent of the total input data, was tested be-
tween 1 and 90 %. The log-loss score stabilises close to 0.2 for all models 
run with more than 10% of the training data set (Fig. 2). The stability of 
the Random Forest models on data sets of largely different sizes is likely 
derived from (i) an initially large datasets (n = 46000) assuring statis-
tical representativity of spatial association even using 10% of the data, 
(ii) utilisation of an optimised number of trees (i.e. ‘ntrees’ > 100), and 
(iii) bagging of the training dataset, consistent with findings from Car-
ranza and Laborte (2015). However, for this series of tests the Cohen’s k 
index, a measure of the prediction’s reliability accounting for the pos-
sibility of the agreement between the OOB data and the prediction to 
occur by chance, demonstrate a continuous improvement increasing 
from 0.59 to 0.86 over the 1 – 90 % range (Fig. 2). This trend transcribes 
the more robust statistical treatment of observed values and plausible 
causal underlying spatial relationship with predictors, drastically 
improving the precision of the prediction and reducing rates of false 
positive and false negatives (Gazis et al., 2018). 

Testing for the effect of the number of predictors (‘mtries’ = 1 – 10) 
using hyperparameters above identified thresholds for the number of 
trees and training set size, we find no significant improvement in the log- 
loss score or Cohen’s K index. As a result, the final model was run with 
the commonly accepted ‘mtries’ value equivalent to the square root of 
the number of predictors used by the model, in this case 5 (Breiman, 
2001; Carranza and Laborte, 2015). 

6.2. Model performance 

The model was parameterized to train 600 trees bagging on 75% of 
the data and compensating for imbalance between categorical data 
classes. A value well-above the 100 trees threshold was selected to 
compensate for the larger OOB dataset, which was set at 25% to improve 
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reliability of the model’s evaluation (Table 2). Iterations of the training 
process were done to successively eliminate strongly correlated pre-
dictors from the model to avoid bias in the prediction. From the 
geomorphological classification (Harris et al., 2014), “Escarpments” and 
“Glacial troughs” were removed due to strong correlation (r > 0.8) with 
“Slope” and “Shelf Valley”, respectively. The “Bridge” predictor was 
excluded by default by the model as its limited geographic extent 
resulted in no location having the attribute. Once removed, all r values 
in the Pearson correlation matrix of predictors on the training data set 
were r2 < 0.25, except for the “Bathymetry” and “Lithic sediments” 
variables, correlated at r2 = 0.34, and considered acceptable for use in a 
predictive model. 

The relative importance of each predictor is evaluated internally by 
the model by ranking the effect each predictor has on the prediction 
whilst holding other predictors constant, which is similar to a bi-variate 
correlation coefficient between the predictor and the predicted variable 
(Carranza and Laborte, 2015). The ranking of all predictors used in the 
model is presented in Fig. 3. The “Slope” predictor derived from GEBCO 
Compilation Group (2021) appears as the strongest explanatory variable 
in predicting the occurrence of Fe-Mn crusts, followed by “Sediment 
thickness”, “Radiolarian oozes” and “Productivity” (Fig. 3). Of the cat-
egorical geomorphological features, “Abyssal mountains”, “Ridges”, and 
“Seamounts” are the most impactful in the model. These predictors are 
in good agreement with the general exploration model for Fe-Mn crusts 
emphasizing areas of rocky outcrops (e.g., strong slopes, abyssal 
mountains, ridges, seamounts) with low sedimentation (slope again, 
negative correlation with sediment thickness and productivity). 

To evaluate the model’s performance, an output confusion matrix 
was generated using the remaining 25% of the data (OOB, n = 11,517) 
not used for the model’s creation (Table 2, Figs. S8, S9). The trained 
model correctly predicts 949 Fe-Mn crusts samples out of 1,088 yielding 
a prediction accuracy of 87.2% (Fig. S9). No spatial clustering of false 
positive or false negative is observed (Fig. S9). The prediction accuracy 
for non-deposit locations reaches 98.2% with therefore a 1.8% false 

positive rate (Table 2, Fig. S9). For this model, the machine learning 
algorithm returned a Cohen’s k index equals to 0.84. Although there is 
no general agreement on cut-offs for the interpretation of this index, 
commonly used scales consider thresholds > 0.75 or > 0.81 to represent 
strong, or excellent agreement of the model with the OOB data set 
(Fig. S10), validating the use of this model for prediction of Fe-Mn crusts 
occurrence in in the world ocean (Bakeman and Quera, 2011; Landis and 

Fig. 2. (a) Effect of the training sample set size in log-loss score and Cohen k index on the Random Forest model. (b) Effect of the forest size on the log-loss score of 
the random forest model. 

Table 2 
Confusion matrix produced on the OOB testing subset by the random forest 
model.   

Prediction of the model (n) 

Non-deposit Fe-Mn crust 

Actual (n) Non-deposit 10,244 185 
Fe-Mn crust 139 949  

Prediction accuracy for “Non-deposit” = 98.2 % False negative = 12.8 % 
Prediction accuracy for “Fe-Mn crust” = 87.2 % False positive = 1.8 %  

Fig. 3. Rescaled predictor importance in the trained random forest model.  
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Koch, 1977). 

6.3. Random Forest prediction 

The predictions of the random forest model are presented as a 
probability gradient for the occurrence of Fe-Mn crusts, and as a cate-
gorical prospective/non-prospective map using a 50% probability, or 
0.5, threshold (Figs. 4, 5). The raster of the prediction is accessible for 
download from the National Geoscience Data Centre (NGDC) repository 
(https://doi.org/10.5285/4c8419b9-5ee4-4db4-b279-18d3ec75c3c4). 
Although the prospective/non-prospective approach constitutes an easy 
result to interpret, associating an uncertainty to the prediction and 
delivering the information in an accessible way for such a scale is 
complex. Therefore, the probability gradient map carries more infor-
mation highlighting how many trees from the Random Forest concluded 
on the prospectivity of a given location based on the combination of the 
model’s predictors, allowing to better prioritise exploration targets 
(Fig. 4). This notably differentiates areas classified as prospective with 
likelihood of Fe-Mn crust occurrence ranging anywhere between 50 and 
91% (Figs. 4, 5). For each pixel of the grid, the prediction is made 
independently of the presence, or absence, of a sample in the training 
dataset. An extraction of the random forest model probability of 
occurrence for each location of the training dataset (Fig. 6), demon-
strates the strong consistency of the Random Forest model with field 
observations and sampling with Fe-Mn crusts having higher probability 
than non-crust locations. 

Relatively high probability of occurrence for Fe-Mn crusts are asso-
ciated with geomorphological features (seamounts, ridges, cliffs, rift 
valleys, abyssal mountains) that generate important bathymetric gra-
dients, or slope (Fig. 3). Thus, findings of the Random Forest model 
corroborate the generally accepted model of occurrence of Fe-Mn crusts, 
which in this case includes most mid-oceanic ridges as no age limitation 
have been imposed. Another indirect validation of the accuracy of the 

Random Forest model is the zonal statistic for the prediction of pixels 
located in the ISA licenced areas for Fe-Mn crust exploration (Fig. 7). 
These zones were requested for mineral exploration based on their high 
potential for Fe-Mn crusts by contractors. The Random Forest model 
predicts that the licenced areas have a probability of Fe-Mn crust 
occurrence of 77% on average (median = 81%, standard deviation =
11%, Fig. 7). This result can be regarded as an excellent validation of the 
accuracy of the Random Forest model as a combination of environ-
mental parameters and geomorphological features. By comparison, 
close up maps on the ISA licensed areas (Figs. 8, 9) highlights the oc-
casional mismatch between the GIS-based criteria analysis (Petersen 
et al., 2016) and locations of exploration licences on the Rio Grande Rise 
and in the Pacific Prime Crust Zone. All ISA licences containing pixels 
considered as non-prospective by the Random Forest model (i.e. inferior 
to 50%, Fig. 7) are located on the Rio Grande Rise, except for one li-
cenced block in the Pacific Ocean. The general agreement between the 
model and licenced areas (Figs. 8, 9) demonstrates the improvement this 
data-driven method represents over previous knowledge-driven ap-
proaches at higher resolution and scales. Whilst this is clear in both 
Pacific and Atlantic ISA licence locations, the supervised classification of 
the seabed at Rio Grande Rise produced by Lisniowski et al. (2019) 
(Fig. 8) shows an excellent match between their Fe-Mn crust outcrop 
distribution ground-truthed by video transects with the predicted pres-
ence of Fe-Mn crusts from the Random Forest model. This match further 
enforces the quality of the world-scale prediction from the Random 
Forest model and the difference with the GIS-based approach. 

It is notably interesting to observe that the flat top summits of large 
seamounts are generally considered of lower prospectivity than the 
edges and flanks (Figs. 8, 9). This is in good agreement with direct 
seabed observations by remotely operated vehicles (Lusty et al., 2018; 
Usui et al., 2017; Yeo et al., 2019) showing the common presence of 
sedimented areas in these regions. Although the presence of Fe-Mn 
crusts buried under a veil of sediments has been demonstrated 

Fig. 4. Probability of Fe-Mn crust occurrence (data available at https://doi.org/10.5285/4c8419b9-5ee4-4db4-b279-18d3ec75c3c4). Previously published mineral 
prospective maps for Fe-Mn crusts from Mizell et al. (2022) and Petersen et al. (2016) (raw data provided by the authors) are shown in map A. Note that data from 
Petersen et al. (2016) is displayed with some transparency and may therefore appears in different shades depending on background. Bathymetric data from GEBCO 
Compilation Group (2021). 
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previously and efforts are being made to detect and measure their extent 
with AUV geophysics (Neettiyath et al., 2022), the model reflects direct 
observations, but also potentially the sampling bias that exists for these 
locations. Indeed, apart for locations visited by ROV equipped with a 
drill or saw blade, most dredging operation will fail to grab a purchase 
on flat Fe-Mn crust pavements (Lusty et al., 2018). 

The model predicts that 34 million km2 of seafloor have a proba-
bility > 50% of hosting Fe-Mn crusts, of which 16 million km2 are in 
countries’ exclusive economic zones (EEZ). Comparing these values with 
previous estimates of prospective area for Fe-Mn crusts from Hein et al. 
(2013) and Mizell et al. (2022) (23 million km2) and Petersen et al. 
(2016) (3.1 million km2) is difficult given differences in scope and 
methodology. Notably, the surface reported by Mizell et al. (2022) 
represents that of the hand-drawn polygons, in which large portions of 
the seabed are abyssal plain unlikely to host Fe-Mn crusts. Predictions 

from Petersen et al. (2016) were limited to geomorphological features 
located between 800 and 3000 mbsl, and areas with seafloor older than 
10 Ma on the basis of economic criteria not considered in this data- 
driven approach. It is worth noting that Fig. 5 highlights a limitation 
of previous approaches as numerous samples fall outside of the 
800–3000 mbsl range and could constitute a mineral resource under the 
appropriate market and legal context. 

Overall, a good agreement is observed with the general ‘permissive 
areas’ from Mizell et al. (2022). Most polygons contain high Fe-Mn 
crusts occurrence probability from the random forest model, albeit at 
various density, directly reflecting the difference between the pixel-by- 
pixel prediction and the hand-drown delineation of prospective areas. 
However, noticeable disagreements include ‘permissive areas’ located 
off the West coast of South America close to Ecuador and Peru, and the 
Blake Ridge in the northwest Atlantic where the Random Forest model 

Fig. 5. Prospective versus non-prospective area as defined by the random forest model. The threshold for prospectivity is a probability of Fe-Mn crust occurrence 
superior to 50%. Bathymetric data from GEBCO Compilation Group (2021). 

Fig. 6. Random Forest prediction for training locations for Fe-Mn crusts (red) and non-deposit locations (green) as function of bathymetry.  
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predict very low probability of Fe-Mn crust occurrence. These might 
reflect the legacy use of lower resolution bathymetric maps and other 
predictors when such areas were first delimited decades ago, high-
lighting the need of critically considering the presence/absence, but also 
extent of the other ‘permissive areas’ reported in these maps. 

Whilst assessing the fit between the ‘permissive areas’ (Mizell et al., 
2022) and the Random Forest model remains qualitative, the output 
generated by the method used by Petersen et al. (2016) allows for a more 
robust evaluation of the concordance between the two approaches. The 
match between the Random Forest model and the knowledge-driven GIS 
selection from Petersen et al. (2016) is statistically poor (Fig. 7). This 
disagreement on the designation of zones of high prospectivity is evi-
denced by the overall low probability of Fe-Mn crust occurrence pre-
dicted by the Random Forest model in areas from the selective criteria 
GIS analysis (Figs. 7, 8, 9). Indeed, most of the surface covered by the 
polygons overlay areas considered as low probability (<50%) for the 
occurrence of Fe-Mn crusts according to the Random Forest model 
(Fig. 7). A possible reason for this divergence in prediction may come 
from the criteria for the exploration of Fe-Mn crusts commonly estab-
lished for the mining of Fe-Mn crusts from Pacific Seamounts, though 
such cumulated criteria do not necessarily represent the optimal 
geographic selection process at the world scale and true combination of 
environmental, geologic, and geographic factors favouring the forma-
tion of Fe-Mn crusts. It is likely that such a combination of criteria is not 
discriminative enough and large portion of oceans are wrongly incor-
porated into potential prospective areas. This is further reinforced by the 
fact that out of all samples catalogued in this compilation, 2,765 Fe-Mn 
crusts are shallower than 3000 mbsl but only 931 intersect with the 
polygons defined as prospective by Petersen et al., 2016. Therefore, two 
third of known crust occurrences, within the depth restrictions imposed 

by their selection, are not represented by the GIS approach (Petersen 
et al., 2016). In addition, most ISA licenced areas for exploration are not 
covered by the polygons resulting from this GIS selection (Figs. 8, 9), 
further questioning the validity of the approach, or that of the param-
eters used in a cumulative fashion and reinforce the need to explore 
alternative methods including data-driven approaches. 

Large areas of plateaus or ridges, considered as promising target for 
the exploration of Fe-Mn crusts by Petersen et al. (2016) are notably 
discarded by the Random Forest model and highlighted in purple in 
Fig. 10. This is the case for most of the Ninety East Ridge, the Seychelles 
Arc, south of Madagascar, the northeastern end of the Walvis Ridge, the 
Hatton Bank, the North of Iceland, the Azores, offshore Peru – Ecuador – 
California, the Manihiki Plateau, and a large portion of the Tuamotu 
Archipelago. The reasons for which each of these regions were not 
considered prospective by the Random Forest model, albeit presenting 
favourable geomorphological attributes, is complex to evaluate. Deci-
phering if this divergence relates to the model approaching its limits due 
to input data resolution, absence of existing sample in these regions, 
added value from an expert perspective or represent a true improvement 
in our capacity to classify an area with a data-driven approach, remains 
to be validated by direct observations in these locations. 

7. Discussion 

7.1. Model limitations and improvements 

Any data-driven model is inherently limited by the quality and 
amount of data used for the training as well as the quality, and resolu-
tion of the predictors used for fingerprinting spatial associations. The 
model is notably restricted by the shared geographic extent of all 

Fig. 7. Frequency of the probability of occurrence of Fe-Mn crusts by the Random Forest model in (A) the ISA licences, and (B) the areas from the GIS-study from 
Petersen et al. (2016). 
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continuous predictors. Whilst the prediction covers a respectable 
portion of most oceans and represents a large diversity of environments, 
the Arctic and Antarctic Oceans are poorly represented and locations 
from these regions cannot be included in the training set, creating a bias 
as data is excluded. Although these two oceans could be considered 
minor in terms of geographic extent, oceanic properties in these regions 
are vastly different (surface productivity, bottom-current strength, 
salinity) from the more temperate, tropical, and equatorial settings. This 
therefore limits the predictor’s amplitude, or range, against which 
spatial relationship are evaluated and consequently the conclusion that 
could be drawn from the output predictions in regions not covered by 
the model. 

Despite these issues, a positive aspect of this data-driven method is 
that the model and prediction can be easily and rapidly updated as new 
data are made available, either from samples or other predictors, of-
fering a large flexibility and responsive updates. For example, the model 
could be further improved by adding new relevant oceanographic 
datasets to the list of predictors which would refine the quality of the 
prediction. The model could be taken into other directions by adding 
more restrictive datasets, potentially related to economic consider-
ations. An important way forward would be to complement this data 
compilation with information on sample thickness, geochemistry, and 
age derived from robust dating methods when available. This would 
provide the opportunity to produce predictive maps of metal content 
and thicknesses, which cross-referenced with the presented prediction of 
occurrence would further delineate the strongest prospects for the 
exploration of elements of interest. The random forest model could be 
improved by implementing gradient-boosted trees using complementary 
algorithm such as XGBoost or LightGBM. 

The prediction of occurrence between 0 and 100% could be 
considered as a representation of the spatial coverage of crusts on the 
seafloor, therefore balancing the outcrop density versus sedimented 
areas commonly observed at the outcrop scale (Lusty et al., 2018; Yeo 
et al., 2018). Global estimates of metal content could then be derived 
from the combination of these three parameters providing another 
improvement on the latest calculations from Mizell et al. (2022). 

7.2. Exploration recommendations 

Most licenced areas for the exploration of Fe-Mn crusts have an 
equivalent prediction from the Random Forest model superior to 70%. 
Although all areas with a Fe-Mn crust occurrence probability superior to 
50% are considered prospective, recommendation for prospects of 
equivalent interest to the existing licenced areas could be determined 
using a threshold > 70%. Numerous discrete locations in the world 
ocean are underlined by the model as highly prospective but cannot be 
all referenced here, and the reader is referred to the online dataset 
(https://doi.org/10.5285/4c8419b9-5ee4-4db4-b279-18d3ec75c3c4) 
to explore them. Major ‘underexplored areas’ could be regarded as large 
locations with probability of Fe-Mn crust occurrence > 70% that do not 
fall within the ‘permissive areas’ (Mizell et al., 2022). These underex-
plored areas constitute mostly geographic extensions of these polygons 
and include the Pitcairn Islands, the Louisville Seamount Chain, the 
northeast of Kiribati, the Musician Seamount Chain, north of the Sey-
chelle Plateau, the south-eastern junction of the Ninetyeast Ridge and 
Broken Ridge, the north of the New Caledonian basin, the Mariana 
Ridge, the Blake Plateau, and southern seamounts of the Walvis Ridge, 

Fig. 8. Close up on the ISA licensed area for Fe-Mn crust exploration at the Rio Grande Rise, South Atlantic Ocean. Note that data from Petersen et al. (2016) 
(provided by the authors) is displayed with some transparency and may therefore appears in different shades depending on background. Top right inset (to scale with 
map on the left hand side, aligned with latitude) presents the substrate type of Rio Grande Rise obtained from supervised classification of slope, backscatter intensity 
ground-truthed by video transect (Lisniowski et al., 2019). 
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8. Conclusion 

The Random Forest algorithm has been demonstrated by numerous 
studies to capture successfully spatial relationships between predictors 
and deposit/non-deposit locations for applications in mineral predictive 
mapping and prospectivity analysis (Carranza and Laborte, 2015; Gazis 
et al., 2018; Li et al., 2020; Xiang et al., 2020; Zhang et al., 2016). This 

study presents the first application of this data-driven machine learning 
approach to the occurrence of Fe-Mn crusts in the World Ocean. A 
compilation of more than 4,000 Fe-Mn crusts locations and more than 
42,000 non-deposit locations was used to train the model against 30 
predictors, 11 of which were continuous datasets. Owing to the large 
size of the input dataset, the bias and variance of the trained model were 
found to be stable when using 100 or more trees in the forest and a 

Fig. 9. Close up on the northern (A) and southern (B) Pacific Ocean ISA licensed area for Fe-Mn crust exploration. Note that data from Petersen et al. (2016) 
(provided by the authors) is displayed with some transparency and may therefore appears in different shades depending on background. 
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training set size superior to 10% of the complete data set. When using 
these two hyperparameters above identified thresholds, the number of 
predictors used for the nodes of the trees was observed to be of marginal 
importance to improve the prediction power of the model and a default 
setting of the square root of the number of predictors was used in the 
algorithm. Evaluation of the model using the out-of-bag dataset 
demonstrate a predictive accuracy of 87.2% on deposit-location and 
98.2% on non-deposit location, with a Cohen’s k index of 0.84. 

The Random Forest model highlight the importance of the bathy-
metric slope as a major explanatory variable for the occurrence of Fe-Mn 
crusts. This in turn is consistent with the strong association of geomor-
phological features such as abyssal mountains, seamounts, and ridges 
with deposit locations. 

Comparison of the Random Forest prospectivity output (https://doi. 
org/10.5285/4c8419b9-5ee4-4db4-b279-18d3ec75c3c4) with previous 
knowledge-driven approaches demonstrates the improved success-rate 
of mineral prospectivity prediction on ISA licenced areas for Fe-Mn 
crust exploration compared to previous knowledge-driven GIS-selec-
tion approaches. Therefore, owing to the stability of the model and high 
success rate in its predictions, the Random Forest constitutes a net 
improvement in delineating areas of Fe-Mn crust occurrences, which can 
be continuously improved as more sample or predictors are added to the 
model. 

Funding 

This work was supported by internal funding of the British Geolog-
ical Survey and UKRI Exploring the frontier grant NE/X011690/1 
awarded to Pierre Josso. 

CRediT authorship contribution statement 

Pierre Josso: Conceptualization, Methodology, Formal analysis, 
Investigation, Data curation, Writing – original draft, Visualization, 
Validation, Project administration. Alex Hall: Methodology, Data 

curation, Validation. Christopher Williams: Methodology, Writing – 
review & editing. Tim Le Bas: Methodology, Writing – review & editing. 
Paul Lusty: Writing – review & editing. Bramley Murton: Writing – 
review & editing. 

Declaration of Competing Interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: A 
full disclosure of Bramley Murton deep-sea mineral related activities is 
produced in the interest of transparency. 

Data availability 

Data used in the model is publicly available in the literature. The 
machine learning code and output will be made public upon acceptation 
of the manuscript in the NGDC and in an upcoming publication. 

Acknowledgements 

PJ, AH, CH, and PL publish with the permission of the Executive 
Director, British Geological Survey (UKRI). The authors thanks Kira 
Mizell, Sven Petersen, and Uni Árting for their authorisation to use some 
of their unpublished data on Fe-Mn crust locations as well as the work of 
reviewers and editors who contributed to the publication process of this 
study. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.oregeorev.2023.105671. 

Fig. 10. Comparison of the Random Forest prediction with previous knowledge-driven prospective maps from Petersen et al. (2016) and Mizell et al. (2022). Note 
that areas from the GIS-based criteria analysis from Petersen et al. (2016) considered as non-prospective by the Random Forest model are highlighted in purple. 

P. Josso et al.                                                                                                                                                                                                                                    

https://doi.org/10.5285/4c8419b9-5ee4-4db4-b279-18d3ec75c3c4
https://doi.org/10.5285/4c8419b9-5ee4-4db4-b279-18d3ec75c3c4
https://doi.org/10.1016/j.oregeorev.2023.105671
https://doi.org/10.1016/j.oregeorev.2023.105671


Ore Geology Reviews 162 (2023) 105671

13

References 

AMC Consultants, 2018. Preliminary Economic Assessment of the Solwara Project 
Bismarck Sea, PNG for Nautilus Minerals Niugini Ltd. Technical Report AMC Project 
317045, 274 pp. 

AMC Consultants, 2021a. Initial assessment of the NORI Property, Clarion-Clipperton 
Zone. Technical Report AMC Project 321012, 338 pp. 

AMC Consultants, 2021b. TOML Mineral Resource, Clarion-Clipperton Zone, Pacific 
Ocean. Technical Report AMC Project 321012, 223 pp. 

Bakeman, R., Quera, V., 2011. Sequential Analysis and Observational Methods for the 
Behavioral Sciences. Cambridge University Press. 

Baturin, G.N., Dubinchuck, V.T., 2011. Mineralogy and chemistry of ferromanganese 
crusts from the Atlantic Ocean. Geochem. Int. 48 (6), 578–593. 

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. 
Calas, G., 2017. Mineral resources and sustainable development. Elements: Int. Mag. 

Mineral. Geochem. Petrol. 13 (5), 301–306. 
Carranza, E.J.M., Laborte, A.G., 2015. Data-driven predictive mapping of gold 

prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. 
Ore Geol. Rev. 71, 777–787. 

Carranza, E.J.M., Laborte, A.G., 2016. Data-driven predictive modeling of mineral 
prospectivity using random forests: a case study in Catanduanes Island (Philippines). 
Nat. Resour. Res. 25 (1), 35–50. 

Charette, M.A., Smith, W.H., 2010. The volume of Earth’s ocean. Oceanography 23 (2), 
112–114. 
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