
A First Look at Digital Rights Management
Systems for Secure Mobile Content Delivery

Amir Rafi
Information Security Group

Royal Holloway, University of London
Egham, Surrey, United Kingdom

amir.rafi.2019@live.rhul.ac.uk

Carlton Shepherd
School of Computing
Newcastle University

Newcastle-upon-Tyne, United Kingdom
carlton.shepherd@ncl.ac.uk

Konstantinos Markantonakis
Information Security Group

Royal Holloway, University of London
Egham, Surrey, United Kingdom

k.markantonakis@rhul.ac.uk

Abstract—Digital rights management (DRM) solutions aim to
prevent the copying or distribution of copyrighted material. On
mobile devices, a variety of DRM technologies have become
widely deployed. However, a detailed security study comparing
their internal workings, and their strengths and weaknesses,
remains missing in the existing literature. In this paper, we
present the first detailed security analysis of mobile DRM
systems, addressing the modern paradigm of cloud-based content
delivery followed by major platforms, such as Netflix, Disney+,
and Amazon Prime. We extensively analyse the security of three
widely used DRM solutions—Google Widevine, Apple FairPlay,
and Microsoft PlayReady—deployed on billions of devices world-
wide. We then consolidate their features and capabilities, deriving
common features and security properties for their evaluation.
Furthermore, we identify some design-level shortcomings that
render them vulnerable to emerging attacks within the state of
the art, including micro-architectural side-channel vulnerabilities
and an absence of post-quantum security. Lastly, we propose
mitigations and suggest future directions of research.

Index Terms—Digital rights management (DRM), media
streaming, trusted execution environments, mobile security

I. INTRODUCTION

Video streaming consumes over half of the global Internet
bandwidth [1]. The market share of over-the-top (OTT) media
services—those offered directly to viewers via the Internet, by-
passing cable, broadcast, and satellite television—is projected
to reach USD 139 billion in 2028 [2]. Current trends in OTT
media broadcasting indicate the migration of all workflows to
the cloud, from production and packaging to delivery [3]. The
OTT model, however, poses some significant challenges from
a security standpoint. Media content is received and displayed
by devices that are under the full control of customers, i.e. mo-
bile phones and tablets. Cloud-based content providers, such
as Netflix and Disney+, rely on DRM to prevent copyright
infringements and unauthorised consumption of content. A
DRM system restricts content usage by delivering encrypted
content to authorised devices and controlling its decryption;
legitimate users are thus potential adversaries in a typical
DRM threat model.

The current DRM landscape consists of proprietary solu-
tions causing a fragmentation in the industry; content providers
are thereby compelled to implement multiple DRM systems
to support multiple platforms. Today’s mobile platforms are
shipped with proprietary DRM systems, which are integrated

into the application or operating system itself, such as An-
droid (Widevine), iOS (FairPlay), and Microsoft Windows
(PlayReady). Android and iOS have a global OS market share
of 72.11% and 27.22% respectively for mobiles; 47.54% and
52.38% respectively for tablets; and Windows OS is used on
76.31% of desktops [4]. Widevine, for instance, is available
on 5 billion devices worldwide [5].

A. Contributions

Since 1998, the Digital Millennium Copyright Act (DMCA)
has hindered security researchers from analysing DRM sys-
tems. Recent literature describes a number of exploits, reverse
engineering of code obfuscation techniques used for protecting
low quality content, and analysis of OTT apps that rely on
DRM protection. As a result, despite their widespread use, the
understanding of various DRM technologies remains highly
fragmented. This paper aims to bridge this gap. We system-
atically evaluate the security of mainstream DRM systems
using an approach and criteria that analyses such systems
holistically. Such an evaluation remains forthcoming in the
existing literature. Our contributions can thus be summarised
as follows:

• To the best of our knowledge, we present the first domain-
specific security evaluation of mobile-based DRM sys-
tems, considering the security of both the content and
user devices.

• Based on a comprehensive analysis of public domain
material, we identify probable attack vectors and present a
comparative security analysis (§V) of Widevine, FairPlay
and PlayReady DRM systems.

• We discuss mitigations (§VI) for security vulnerabilities
discovered during our analysis and suggest future direc-
tions of research (§VII).

B. Scope

A DRM system can be deployed on user platforms as a
separate application, as a part of the web browser, or as
a part of the OS, with optional hardware protection. From
a deployment perspective, DRM solutions may be found in
the form of an obfuscated library (see Widevine L3 [6]) or,
increasingly, within a trusted execution environment (TEE)
that prevents kernel-mode adversaries from accessing relevant

ar
X

iv
:2

30
8.

00
43

7v
3 

 [
cs

.C
R

] 
 3

 A
ug

 2
02

3



assets, such as content decryption keys. Broadly speaking,
the most sophisticated DRM implementations are integrated
into the OS, leveraging kernel-level security mechanisms, and
hardware-assisted protections offered by TEEs.

The scope of this security analysis is limited to DRM
deployments implemented as a part of the OS and using
TEEs for hardware-level protection. In this work, we focus on
DRM systems implemented on mobile platforms, comprising
smartphones, tablets, and laptop devices possessed by viewers
of media content (i.e. the general public). DRM solutions are
notoriously closed-source in nature, which restricts a complete
understanding of their characteristics. To conduct this study,
we thus rely on publicly available materials pertaining to
Widevine, FairPlay and PlayReady to analyse their security.
We take a security-oriented approach to this work; issues
relating to privacy and content watermarking are demeed
outside the scope of this work.

II. BACKGROUND & RELATED WORK

The DMCA was signed in to the United States law in
1998 to discourage content piracy, and amended as Title
17 §1201 [7] prohibiting the circumvention measures for
protecting copyrighted material. Although piracy continued to
be conducted, the DMCA restricted security researchers from
analysing DRM systems [8]. In the 2000s, DMCA takedowns
were used against security researchers who identified issues
with the High Bandwidth Digital Content Protection (HDCP)
scheme developed by the Intel Corporation [9], [10]. By
2016, the DMCA anti-circumvention claims had been raised
in nearly 50 reported cases in the United States federal
courts [11]. The exemptions to DMCA were expanded by the
Copyright office and the Library of Congress in 2018, allowing
security researchers greater freedom to analyse DRM systems.

In recent years (>2012), the growth of OTT mobile stream-
ing has led to new generation of DRM systems, prompting
researchers to analyse their claimed security assurances. The
MITRE CVE database lists 53 CVE records covering different
security issues in Widevine and PlayReady since 2014.1 In
2013, Wang et al. [14] introduced an automated technique to
remove DRM protection from content protected by PlayReady.
This technique tracks the flow of content between memory
buffers in real-time during playback, identifies where the
content is decrypted, and copies the decrypted content, which
is then reconstructed into a new media file without any DRM
protection. The authors demonstrated its effectiveness against
Amazon Instant Video, Hulu, Netflix, and Spotify.

D’Orazio and Choo [15] proposed a DRM adversary model
in 2016 to formalise potential attackers’ capabilities and to
evaluate DRM protection on iOS devices. They highlighted
vulnerabilities resulting from a lack of public-key pinning and
server-side verification. Since 2013, a technique known as
“FairPlay MITM (Man-In-The-Middle)” [12] exploited vul-
nerabilities in FairPlay to propagate pirate iOS apps. In 2016,

1There are no CVE records for FairPlay, although work has identified some
significant security weaknesses [12], [13].

Xiao [16] reported how FairPlay MITM could be used to
spread malware on iOS devices.

Against Widevine, a vulnerability [17] was discovered in
2016 that allowed access to a local cache containing decrypted
version of protected content. This vulnerability was tested
against Amazon Prime and Netflix, although other DRM
systems may also be vulnerable. In 2018, Chau et al. [13]
analysed 141 content delivery apps on the Android platform
and discovered vulnerabilities that not only compromised the
DRM-protected content but also put users’ security and privacy
at risk. The vulnerabilities were caused by insecure policy
delivery and bootstrapping, client-side policy enforcement, and
reusing encryption keys; the whole Amazon Music collection
of 40 million songs was found to be encrypted with the same
key. The work evaluated the apps that use DRM systems for
content protection, but not the DRM systems themselves.

In 2019, Buchanan [18] used differential fault analysis to
recover keys for protected content using Widevine level 3
(L3) [19] (see §III-A). Most GitHub repositories containing
this proof of concept code were removed by Google’s DMCA
take-down [20] in 2020. More recently, Zhao [21] broke in
to the Widevine L1 security level on the Qualcomm TEE,
an Android TrustZone implementation. The L1 is the most
secure implementation of Widevine, which uses TEEs on user
devices to protect content and encryption keys, and to securely
decrypt content. Zhao recovered the Widevine keybox from
the trusted storage of QTEE by breaking the ASLR (Address
Space Layout Randomization).

Based on an analysis of OTT apps including Netflix, Hulu
and Showtime, Patat et al. [22] revealed that most apps use
the same cryptographic keys for a particular media item across
all users. Moreover, these apps support vulnerable legacy
devices, which can be exploited to compromise the crypto-
graphic keys. In 2022, they used a vulnerable legacy device
to recover the Widevine L3 root of trust (CVE-2021-0639) by
bypassing the obfuscation used to conceal cryptographic keys
in software [23]. The authors exploited design decisions for
supporting legacy devices; however, they only compromised
low-quality content made available by Widevine L3. Patat et
al. [22] raised privacy concerns over the device identifiers in
the Widevine protocol, which can be used for third-party user
tracking. Interestingly, their responsible disclosure revealed
that Netflix was unaware that it does not protect audio tracks.
The work investigated OTT apps and their compliance with
Widevine guidelines on Android devices; it did not directly
analyse the security of Widevine.

III. SECURITY DESIGN OF DRM SYSTEMS

A. Security Architecture of Google Widevine

Widevine is the primary DRM implementation for Android
devices, which is deployed as a part of the operating system
and it can also be deployed as a browser- or application-based
implementation. It is used by various content providers, in-
cluding Google Play, Amazon Prime, Netflix, YouTube, BBC,
Hulu, Disney+ and Spotify [24], [25]. Its main components
comprise the Shaka packager, the Widevine license server, a



Fig. 1. Widevine DRM architecture [6].

supported media player, the Content Decryption Module and
the OEMCrypto module [6]. Figures 1 and 2 demonstrate
how the components interact together to deliver, decrypt, and
playback content on user devices. We describe each component
as follows.

1) Security Levels: Widevine uses three different security
levels: L1 to L3. L1 is deemed the most secure and uses the
TEE for both cryptography and media processing. The L2
security level uses the TEE for cryptography but not media
processing, returning decrypted content to video decoder in the
non-secure world for display. The L3 security level is the least
secure and uses only software-based protection on devices that
do not have a TEE [6]. All Widevine security levels require
signed system images to be loaded on devices by a secure
bootloader. The L1 and L2 security levels require the Widevine
components implemented in the TEE to be included in the
bootloader chain of trust; L1 also requires the components
used for the secure video path to be included [26]. The L1
and L2 security levels also require the Widevine Keybox and
the OEMCrypto API to be implemented on the device for key
management and content decryption. The Keybox is encrypted
with a unique factory-provisioned and device-specific key [26].

2) Shaka Packager: This is Widevine’s open-source pack-
ager that uses the Dynamic Adaptive Streaming over HTTP
(DASH) protocol [6], [27] for optimised streaming over a
dynamic bandwidth; HTTP Live Streaming (HLS) [28] is
also supported. The DASH protocol converts content into
fragmented MP4 files containing multiple versions of segments
with the same length but different resolutions and bitrates.
A media presentation description (MPD), or a manifest file,
describes the different resolutions and bitrates for the content.
The media player can use the manifest to request segments of
different resolutions depending on the available bandwidth.

3) Widevine Encryption: The Shaka packager encrypts
the media segments during packaging. Widevine supports
the CENC (Common Encryption) [29] and recommends the
ISOBMFF (ISO Base Media File Format) standard; FairPlay
Streaming encryption [30] and the WEBM format are also
supported. Widevine uses the Encrypted Media Extensions
(EME) [31] and Media Source Extensions (MSE) [32] to allow

Fig. 2. Widevine playback security model [6].

playback of encrypted media.
4) License Server: Widevine provides a cloud-based license

server that uses a request-response protocol over HTTPS to
issue content licenses to the Content Decryption Module.

5) Content Decryption Module (CDM): This is a propri-
etary component of Widevine on user devices, which creates
encrypted license requests that are relayed to the license server
by the media player application. The CDM receives encrypted
license responses from the license server, through the media
player, and uses the OEMCrypto module to decrypt them.

6) OEMCrypto Module: Decrypts the license responses to
extract the encryption keys, which are used to decrypt the
encrypted media content within the TEE of the user’s device.
OEMCrypto is implemented by the system-on-chip vendor for
Widevine L1, or by Widevine (Google, Inc.) for L3.

7) Widevine Playback Security: The Shaka packager pro-
duces encrypted media segments and a corresponding mani-
fest. The encryption keys are sent to the license server and the
encrypted media segments are streamed to the media player
on user devices through the Content Delivery Network (CDN).
The application receives a manifest and encrypted content
from the CDN, extracts the initialisation data (InitData), and
sends it to the media player. The media player forwards the
InitData to the CDM to create a license request; the player
sends the (encrypted) licence request produced by the CDM
to the license server, which returns an (encrypted) license
response back to the CDM. The license server authenticates
the media player before responding to any requests. Next, the
CDM sends the license response and media to the OEMCrypto
module in the TEE to decrypt the content; OEMCrypto sends
the decrypted content to the video stack for display.

B. Security Architecture of Apple FairPlay

Apple FairPlay, implemented in Apple iOS and tvOS, is
based on the FairPlay Streaming (FPS) specification [30].
FPS provides secure delivery of encryption keys to devices
and allows secure playback of encrypted content, which is



Fig. 3. Interactions between FPS and content provider’s servers [33].

provided using the HTTP Live Streaming (HLS) protocol [28].
We note that the Safari browser implementation on macOS
uses FPS with an EME interface [33].

FPS requires content providers to implement their own con-
tent server, key (license) server and a player application; these
must meet FPS requirements to be compatible with the FPS
framework [33]. The content providers also need a public key
infrastructure and public key certificates for RSA keys that are
used to encrypt the license requests [33]. FPS authenticates the
key server but requires content providers to source their own
mechanisms for the player application to be authenticated by
the key server [33]. FPS does not include content encryption
and packaging mechanisms. Content providers are required to
use the HLS streaming protocol for content delivery, and AES-
128 CBC mode for encryption; video content is encrypted on
a per frame basis, using a unique initialization vector (IV) for
each encryption, and the audio content is fully encrypted on
a per sample basis. Content providers handle the encryption
keys and the IVs, as well as their associations with the content
[33]. Figure 3 shows interactions between FPS on user devices
and the content provider’s key and content servers. FPS is
integrated into the device OS and creates a server playback
context (SPC) to request content encryption keys from the key
server. The key server responds with the content key context
(CKC). FPS extracts the encryption keys from the CKC and
decrypts the content for display [33].

1) FairPlay Playback Security: Figure 4 shows the se-
quence of data flow during content playback. The player
application sends a playback request to FPS on the device,
which refers to the content manifest playlist on the content
server and obtains the encrypted content. The FPS requests
the player application for the encryption key, which responds
with a request to create the SPC. FPS verifies the content
provider’s public key certificate and encrypts the SPC with the
provider’s RSA public key. FPS also uses a challenge-response
mechanism and an undisclosed “symmetric algorithm” [33] to
authenticate the key server. The player application creates a
session with the key server and sends the encrypted SPC along
with the content ID to the key server.

The key server decrypts the SPC using its RSA private
key and creates a CKC. The CKC contains the IV, the
encryption key and its expiration time, which is based on the
player application’s time reference instead of the server’s time
location. The key server encrypts the CKC with the session

Fig. 4. Sequence of data flow in FPS [33].

key contained in the SPC and sends it to the FPS on the device
through the player application [33].

The FPS creates a play context and uses the iOS kernel to
decrypt the CKC using the session key. The content encryption
key and the IV are extracted from the CKC, and content is
decrypted on a per frame basis. The decrypted content is sent
directly to the decoder by the FPS and HDCP is enforced to
display the decoded content on device display [33].

2) Server Playback Context (SPC): The SPC created by
FPS contains various security elements, including:

• A random AES-128 session key for single SPC use; a
new session key is required even if another SPC contains
the same content ID.

• An anti-replay seed to prevent replay of key server
responses.

• A secure version of the content ID for server verification.
• Optional integrity verification to protect session key ex-

change.
• Player application certificate and a unique and anony-

mous device identifier; these are used by the key server
to restrict the number of simultaneous playbacks for a
user account.

• Player application’s time reference, which is used by the
key server to manage expiration of the encryption keys.

• Versions of security mechanisms on the key server that
are supported by the player application.

3) Key Expiration: FPS uses two modes of key expiration:
video rental and secure lease, which can be used together or
independently. FPS does not decrypt the content and declines
playback if the encryption key has expired for a video rental.
For a mid-playback expiration, the current playback is allowed
to continue and the expiration is enforced for the next playback
session. The key server restricts the number of simultaneous
playbacks by a single user account for a secure lease. The
key server uses the anonymous device identifier to allocate a
slot to the device; if the lease is not renewed by the player
application before its expiration then the slot is deallocated



Fig. 5. Interactions between PlayReady client and servers [34].

and FPS stops content playback on the device.
4) Offline Playback: The key server allows offline playback

by indicating the persistent nature of the encryption key in the
CKC. As such, FPS creates a persistent play context that is
linked to the iOS device, which is stored in the device’s file
system with the expiration time of the encryption key.

5) Rollback Prevention: The SPC includes the key server
versions supported by the player application. FPS uses the
latest compatible version of security mechanisms available
on the platform to protect encryption keys. An undisclosed
“protection mechanism” [33] is used to prevent roll-back
attacks to an older version of the security mechanisms.

6) AirPlay Streaming: AirPlay streaming from an iOS
device to Apple TV uses a streamer context that supports
secure streaming of encrypted content and CKC over AirPlay.
According to Apple’s documentation [33], FPS over AirPlay
uses the same level of protection as FPS on iOS devices for
the delivery of encryption keys and IVs.

C. Security Architecture of Microsoft PlayReady

PlayReady is widely deployed on Windows-based plat-
forms, such as workstations and laptops, first developed in
2007 and currently integrated into Windows 10. PlayReady
clients can be integrated into the OS or in the hardware. They
can be implemented in media players on desktops, and as
applications on mobile devices and other consumer devices,
including smart TVs, set-top boxes and network receivers [34].
PlayReady serves more as an end-to-end framework than the
DRM solutions discussed hitherto, which provide more rigid
requirements. Indeed, it does not provide any mechanisms for
content encryption, user authentication, and key management;
content providers are required to implement these features.
However, it does employ a key seed, a random 30-byte value
that content providers can use to derive encryption keys or
they can use their own key management system. PlayReady
supports MPEG-DASH, HLS and Microsoft Smooth Stream-
ing protocols, and CENC Common Encryption using either
AES-CBC or AES-CTR modes of operation [35]. Content
providers can use the PlayReady Server Software Development
Kit (SDK) to build various servers that are compatible with
PlayReady clients under a flexible model. These servers in-
clude content packaging servers, web servers, license servers,
metering servers, and domain controllers.

Fig. 6. Acquiring a PlayReady license [34].

1) PlayReady Playback Security: Interactions between
PlayReady-enabled clients and servers are illustrated in Figure
5. Here, encrypted content is distributed through a CDN for
streaming to clients. The packaging server includes the KeyID
for the content encryption key in the content header, according
to the PlayReady header specification.

The client streams the selected content from the CDN after
browsing through the user interface. The client extracts the
KeyID from the content header and obtains an authentication
token from the authentication server. Figure 6 details the
process flow to obtain a license from the license server. The
client sends a license request to the license server including
the KeyID and the authentication token. The license server
verifies the authentication token with the authentication ser-
vice; retrieves the encryption key from the key management
system; creates a license containing the encryption key and
content usage rights and restrictions; encrypts the license
using the client’s public key or the client domain public key;
digitally signs the license with its own private signing key;
and sends the signed license to the client. Multiple licenses
and encryption keys can be sent in a single transaction and a
license can also be granted for a domain instead of a single
client [34], [36].

The PlayReady client verifies the License server’s digital
signature and certificate expiration, and then decrypts the
license using its own private key [36]. The client decrypts
the content using the encryption keys from the license and it
enforces the license policy. PlayReady client implementations
are expected to follow PlayReady’s compliance and robustness
rules, which govern how clients decrypt the content and re-
quire the clients to correctly process and apply the restrictions
in the license [34].

2) Offline Playback: The license server can specify a
particular license to be persistent or non-persistent. Persistent
licenses are stored in non-volatile memory, such as the hard
drive, and non-persistent licenses are stored in volatile memory
so they are discarded when the current session ends [34], [37].
The HDS (Hashed Data Store), shown in figure 6, is a client-
side license store provided by PlayReady.

3) PlayReady Security Levels: The security level of a
PlayReady client is included in the client certificate that is
embedded in the client during manufacturing [38]. A copy



of the client certificate in included in the license request
and the license server can select suitable licenses and license
properties depending on the client security level. Moreover,
the license server sets a minimum required security level for
each license; the security level of a client must exceed this
threshold to be able to use the license. The PlayReady SL150
security level is the least secure and it is only meant to be
used for development and testing of clients as the content
and encryption keys are not protected. The SL2000 security
level is for commercial client implementations in hardened
devices and applications, which use software-based protection
mechanisms. The SL3000 security level offers the highest
security and it is designed for commercial implementations on
hardened devices that use hardware-based protection mecha-
nisms, utilising the TEE for core functionalities.

D. Discussion

In Table I, we summarise the features provided by Widevine,
FairPlay and PlayReady. We observe that none of these tech-
nologies provide all of the stated features based on publicly
available information, placing an onus on content providers to
implement any shortcomings. For instance, we note that no
solution provides user authentication, while metering facilities
are provided only by PlayReady. Conversely, all three DRM
systems provide creation of license requests, license encryp-
tion, content decryption in the TEE of the device, and secure
key storage for offline playback. License request encryption
and a secure display are provided by Widevine and FairPlay,
but not PlayReady. Player application, license server and
content packaging are provided by Widevine and PlayReady
but not FairPlay; PlayReady does not provide the actual
mechanisms, it has the client compliance and robustness rules
for player applications, and a server SDK to develop packaging
and license servers. Content encryption is only provided by
Widevine using the Shaka packager. Only FairPlay authenti-
cates the license server and anonymously limits simultaneous
playback sessions. Features unique to PlayReady include a
key seed for key generation, and server SDK to develop web
servers, domain-based license servers and metering servers.

IV. DRM EVALUATION METHODOLOGY AND CRITERIA

In this section, we distil the features and security properties
of cloud-based DRM systems for mobile devices.2

A. DRM Security Features

Based on the previous sections, we propose a general feature
set for classifying OTT DRM systems for cloud-based content
delivery to mobile devices. The set assumes an end-to-end
workflow of security processes and types of vulnerabilities
specific to cloud-based mobile DRM systems, comprising 21

2We note that one possible approach is to employ a threat modelling
methodology, such as STRIDE [39] or NIST SP 800-154 [40]. These
approaches identify vulnerabilities and potential threats using data flow
diagrams and attack trees; threats are then ranked and appropriate mitigations
are determined. Generic threat modelling methodologies, however, do not
specifically cover the features necessary for constructing secure DRM systems,
thereby warranting a domain-specific evaluation.

TABLE I
FEATURE FULFILMENT OF WIDEVINE, FAIRPLAY, AND PLAYREADY.

Feature Widevine FairPlay PlayReady
Key generation — — Key seed
Packaging Shaka packager — PlayReady

server SDK
Encryption Shaka packager — —
User authentica-
tion

— — —

License server au-
thentication

— RSA-based
protocol

—

Create license re-
quest

Widevine CDM FPS framework PlayReady
client

License request
encryption

Encrypted Encrypted with
key server’s
RSA public key

—

License server Widevine
license server

— Server SDK

License
encryption

Encrypted Session key and
anti-replay

Client/domain
public key,
digitally
signed

Content manage-
ment

— — —

Content storage — — PlayReady
server SDK

Player
application

Widevine
media player

— Client com-
pliance rules

TEE component OEMCrypto
module

FPS framework PlayReady
client

Display EME/MSE HDCP enforced —
Offline playback Widevine key-

box
iOS file system HDS

(Hashed
Data Store)

Limit playback
sessions

— Anonymous de-
vice ID

—

Domain license — — Server SDK
Metering — — Server SDK

—: Specific measures not known from publicly available documentation.

key security aspects listed under the following categories (also
given in Table II). The following sections describe the various
security aspects, numbered [SP1]–[SP21].

1) Key management: In mobile DRM systems, crypto-
graphic keys and IVs must be generated securely, and keys
must also be protected in transit (to the packaging and license
servers) and storage (in a key database). The packaging server
uses the keys to encrypt content, while the license server
embeds the keys in an encrypted license which is transported
to the TEE, where it is used to support content decryption.
[SP1] Key generation: a secure random number generator

(RNG), or a key seed, is required to provide un-
predictable values for generating keys and IVs with
sufficient entropy.

[SP2] Pre-license key transit: secure channels are required
to transfer keys to the packaging and license servers.

[SP3] License transit: keys are securely embedded in an
encrypted and authenticated license.

[SP4] Key database: keys are securely held in a key database
before encryption by the license server.

[SP5] On-device key storage: keys should be stored in TEE-
reserved memory regions on user devices.

[SP6] Key disposal: keys should be disposed securely to
avoid content decryption once the license has expired.



TABLE II
SECURITY PROPERTIES OF CLOUD-BASED MOBILE DRM SYSTEMS.

Category Subcategories Property

Key
management

Key generation [SP1]

Key in transit Pre-encryption [SP2]
Post-encryption [SP3]

Key storage [SP4]
[SP5]

Key disposal [SP6]

Data
encryption

Content encryption Standardisation [SP7]
Re-keying [SP8]

Key encryption Session security [SP9]
Public-key crypto. [SP10]

Content
management

Content storage Pre-encryption [SP11]
Post-encryption [SP12]

Content in
transit

Pre-encryption [SP13]
Post-encryption [SP14]
Post-decryption [SP15]

Manifest security [SP16]

Authentication User authentication [SP17]
Server authentication [SP18]

DDoS DDoS mitigations [SP19]
TEE Secure TEE usage [SP20]
Quantum
security

Post-quantum mitigations [SP21]

2) Encryption: DRM systems commonly employ symmet-
ric keys for content encryption, which are protected using
key encryption keys. Public key cryptography is used for
license encryption, containing content encryption keys, and
for exchanging (symmetric) session keys.
[SP7] Suitable encryption algorithms: Standard symmetric

algorithms are required for secure and efficient content
encryption, e.g. 128-bit AES.

[SP8] Content re-keying: refers to encrypting different parts
of the content with different keys to limit the impact of
a key compromise, and to allow different license rules
to be applied to each part.

[SP9] Session key management: session keys must be gen-
erated, exchanged, and stored securely.

[SP10] Public key management: public-key pairs must be
generated and managed securely using appropriate stan-
dards and modules, e.g. NIST FIPS 140-3.

3) Content management: Content and the manifest files
require secure storage and transit. Content is transferred from
the content database to the packaging server to be encrypted
before it is stored in a content server and cached by the CDN.
The encrypted content is streamed to user devices, decrypted
in the TEE, and sent to the device display for viewing.
[SP11] Pre-packaged content storage: Content requires se-

cure storage in the content database to prevent at-
tackers from obtaining plaintext content before DRM
protection is applied.

[SP12] Packaged content storage: Packaging servers gener-
ally apply encryption during content packaging.

[SP13] Pre-packaged content transit: content requires se-
cure transfer from the content database to the pack-
aging server where it is encrypted.

[SP14] Packaged content transit: Packaged content is en-
crypted for transit.

[SP15] Secure video path: decrypted content is displayed
directly from the TEE to the display device over a
trusted path, e.g. to thwart screen scraping attacks.

[SP16] Secure manifest: manifest files, containing URLs
for different content segments, must be transmitted
securely. A MITM attack, where the license server or
CDN is impersonated, could potentially replace these
URLs with malicious ones.

4) Authentication: Mutual authentication between users
and the servers is required to ensure only authorised users can
access the content, and to prevent false server attacks, where
an attacker-controlled server impersonates a legitimate server
to launch attacks on user devices.
[SP17] User authentication: users should be authenticated

by the CDN and the license server.
[SP18] Server authentication: CDN and license servers

should be authenticated by user devices.
5) DDoS: Compromise the availability of DRM-protected

content by consuming server and network resources.
[SP19] DDoS vulnerabilities: CDN and license servers could

potentially be vulnerable to DDoS attacks.
6) TEEs: DRM protection relies on the security provided

by TEEs on user devices. Vulnerabilities in TEEs could be
leveraged to compromise DRM-protected content.
[SP20] TEE attack resistance: TEEs share hardware re-

sources, such as the processor and memory, with the
native OS on user devices. A TEE must be able to
thwart relevant attacks, such as side-channel and fault
injection attacks.

7) Quantum security: Suitable post-quantum algorithms
must be used to maintain the security of DRM systems
against quantum adversaries, which can undermine public- and
symmetric-key cryptographic algorithms.
[SP21] Post-quantum security: the outcomes of NIST’s

Post-quantum Cryptography (PQC) standardisation
process must be implemented.

V. SECURITY ANALYSIS OF DRM TECHNOLOGIES

In this section, we consider the highest security levels of
Widevine, FairPlay and PlayReady, e.g. Widevine L1 and
PlayReady SL3000 levels, which utilise hardware-assisted
mechanisms for content protection. Widevine, FairPlay and
PlayReady provide a subset of the security features (§III-D) re-
quired for a complete DRM implementation; content providers
must implement the remaining features securely (§VI-B) for
the DRM protection to be effective. We analyse each technol-
ogy in turn below, and compare them in Table III.

Widevine. We observe that Widevine poses security risks
due to the way in which manifest files could be used as an
attack vector. Content encryption keys in Widevine are at a
low risk during license transit, as the license is encrypted
and sent over HTTPS. Risks to the encryption algorithm and
packaged content, both in storage and in transit, are low as the
Shaka packager uses CENC encryption to encrypt the content.
The risk level of TEE-related vulnerabilities is low due to the



specialist equipment and skills required for these attacks. The
risk from post-quantum attacks is present, albeit low given the
absence of large-scale quantum computers. New post-quantum
public key algorithms will be required to replace the current
ones, and the current symmetric key lengths will not offer
sufficient protection from quantum attacks.

FairPlay. Like Widevine, FairPlay poses a high risk to
user devices due to insecure manifest files. FairPlay requires
the license to be encrypted with a unique AES-128 session
key; generated by the FairPlay client; protected by the license
server’s public key; and also protected from replay attacks by
an anti-replay seed. Therefore, the security risk to the license
during its transit is low. Content providers are required to
encrypt the packaged content using AES-128 CBC mode and
a unique IV for each encryption. Unlike other TEEs, Apple’s
Secure Enclave Processor (SEP) [41] does not share hardware
resources with host OS on the device and protects against
some side-channel attacks, including attacks based on cache-
timing differences. It is unclear whether the SEP is used by
FairPlay, although we recommend that it should be used for
additional hardware-assisted protection. We note that FairPlay
is also vulnerable to quantum adversaries.

PlayReady. The PlayReady manifest files also pose a
high risk to user devices. The license is encrypted with the
PlayReady client public key or the client domain public key,
and it is digitally signed by the license server; hence, the
license in transit has a low risk level. The PlayReady client
verifies the digital signatures and decrypts the license using
its private key; the level of risk to the public-private key pairs
is low. PlayReady supports CENC Common Encryption with
AES-CBC and AES-CTR for content encryption, resulting in
a low risk to packaged content in storage and in transit. There
is a risk to PlayReady from TEE and quantum adversaries.

VI. MITIGATIONS

Following the previous analysis, this section proposes mit-
igations for the identified issues.

A. Malicious Manifest Attacks

There is a high risk of potential attacks on user devices
from malicious manifest files used in Widevine, FairPlay
and PlayReady. The manifest file is sent as plaintext, and it
contains DRM client initialization data, KeyIDs, and download
locations of content segments for a content stream. Manifest
files are sent as plaintext to allow DRM clients to stream
relevant content segments defined in the manifest, and to
initialize a license request using the KeyIDs contained in the
manifest. Moreover, an encrypted manifest can be replaced
with a malicious one by an attacker without requiring decryp-
tion. Data origin authentication of the manifest, as opposed to
confidentiality, is required to mitigate these attacks. Content
providers do not share long-term secrets with DRM clients
to allow symmetric cryptography, such as MACs (Message
Authentication Codes), to be used. Instead, content providers
can digitally sign the manifest using a private signing key
to provide non-repudiation, a stronger notion of data origin

TABLE III
SECURITY COMPARISON OF WIDEVINE, FAIRPLAY, AND PLAYREADY.

Security Property Technology
Widevine FairPlay PlayReady

[SP1] Key generation ❋ ❋ ❋
[SP2] Pre-license key transit ❋ ❋ ❋
[SP3] License transit ✓,▼ ✓,▼ ✓,▼
[SP4] Key database ✣ ✣ ✣
[SP5] Key storage on device ❋ ❋ ❋
[SP6] Key disposal ✣ ❋ ❋
[SP7] Suitable encryption algorithms ✓,▼ ✓,❋ ✓❋
[SP8] Content re-keying ✣ ✣ ✣
[SP9] Session key management ❋ ✓,▼ ✣
[SP10] Public key management ❋ ✣ ✓,▼
[SP11] Pre-packaged content storage ✣ ✣ ✣
[SP12] Packaged content storage ✓,▼ ✓,▼ ✓,▼
[SP13] Pre-packaged content transit ✣ ✣ ✣
[SP14] Packaged content transit ✓,▼ ✓,▼ ✓,▼
[SP15] Secure video path ✩ ❋ ❋
[SP16] Secure manifest ✩,▲ ✩,▲ ✩,▲
[SP17] User authentication ✣ ✣ ✣
[SP18] Server authentication ✣ ❋ ✣
[SP19] DDoS security ❋ ✣ ✣
[SP20] TEE security ✓,▼ ❋ ✓,▼
[SP21] Quantum security ✩,▲ ✩,▲ ✩,▲

✓: Provided natively. ✣: Not provided. ✩: Somewhat provided. ❋: In-
sufficient information available. ▼: Contains security weaknesses of low
concern. ▲: Weaknesses of high concern.

authentication, which may be accompanied by mutual authen-
tication and TEE-based attestation (e.g. see [42]); DRM clients
can use the content provider’s public verification key to verify
the digital signatures before processing the manifest.

B. Secure Configuration

The overall security of a DRM system depends on its com-
plete configuration; Widevine, FairPlay and PlayReady provide
a subset of the features required for DRM protection (§V),
leaving the remaining features to be implemented by content
providers. An insecure implementation of these features could
potentially introduce vulnerabilities in a DRM system. DRM
systems use encryption to protect content and the content
encryption keys. A secure implementation of standards-based
encryption with correct key management should be used to
ensure confidentiality of the content and the keys.

C. Authenticated Encryption

Similar to the malicious-manifest attacks (§VI-A), the en-
crypted content segments and licenses can be replaced by
malicious payloads or malware in a MITM attack. Data
origin authentication of the content segments and licenses is
required to prevent these attacks. Confidentiality of content
segments and licenses is already provided by the packaging
and license servers, which can be combined with data origin
authentication protocols. There are several modes of operation
for authenticated encryption that securely combine data origin
authentication and confidentiality into a single primitive, such
as CCM mode, EAX mode, OCB mode and GCM mode.
Encryption of content segments by the packaging server,
and licenses by the license server, should be replaced with
authenticated encryption to protect the content and licenses



in transit, and to protect user devices from MITM attacks
described above.

D. Trusted Execution Environments

DRM systems use TEEs in user devices to securely decrypt
and store content, and to manage cryptographic keys. In
recent years, TEEs have been subjected to a myriad of side-
channel attacks, particularly micro-architectural ones, as well
as physical fault injection attacks. Some side-channel attacks,
such as attacks based on cache-timing differences, are caused
by hardware (processor and memory) sharing between the
TEE and the host OS on user devices; these can be mitigated
by using an isolated processor that is not shared with the
main OS. Using an isolated processor for TEE could prevent
cache-based and transient execution attacks that exploit cache
memory sharing between the ‘normal’ and the ‘secure’ worlds
to leak sensitive TEE data [43]. However, it does not prevent
fault injection and other physical attacks, like those based on
electromagnetic and power analysis. For this, tamper-resistant
packaging is a widely suggested countermeasure [41].

E. Post-quantum Mitigations

Quantum computers are known to fatally undermine tradi-
tional public key algorithms, e.g. RSA and ECDSA, which has
prompted the NIST PQC standardisation competition [44]. To
make DRM systems resistant to post-quantum attacks, TEEs
should be adapted to the new PQC standards. The various
security services provided by TEEs, such as authenticated
boot, remote attestation and key management, lack widespread
resistance to quantum adversaries, as do the supporting proto-
cols for license distribution in existing DRM systems. As such,
we strongly urge developers to expedite the transition to post-
quantum algorithms for license distribution and authentication
in particular.

F. DRM Standardisation

The fragmentation in the current DRM landscape and lack
of standardisation is a source of potential vulnerabilities in
DRM systems. The DRM systems analysed in this work use
different formats, protocols and APIs. The complexity of the
ecosystem, with different implementations using numerous
components, may inadvertently lead to insecure configurations.
Additionally, various standardised formats and APIs for DRM
systems have been developed, including CENC [29], CMAF
(Common Media Application Format) [45], CPIX (Content
Protection Information Exchange) [46] and EME APIs [31].
This paper has shown that some of these standards are not
used by any of the DRM systems, such as the CPIX, a key
exchange data format for confidential and authenticated key
delivery in DRM systems. Further DRM standardisation could
potentially improve interoperability, reduce fragmentation and
complexity, and minimise vulnerabilities.

VII. FUTURE DIRECTIONS

The centralised servers in cloud-based DRM can be a
single point of failure and vulnerable to attacks. In a cen-
tralised DRM model, content owners do not have direct access

to consumers and must sell their content to large content
providers and media platforms. Furthermore, the copyright
and license transaction information in current DRM systems
lacks transparency, and authentication is inefficient, requiring
multiple interactions. To overcome these challenges, Zhang
and Zhao [47] have proposed a decentralised DRM model with
collective maintenance using a blockchain-based license struc-
ture. Licenses are issued automatically using smart contracts,
offering reliability of license transactions, and the license
transaction information is recorded on the blockchain to make
it transparent and secure. The authorisation of licenses is
scalable and does not need interactive communication between
content owners and consumers. Content owners can set flexible
pricing rules for content usage and deliver DRM-protected
content directly to the consumers.

Rana and Mishra [48] have proposed an authenticated
key distribution framework for IoT enabled DRM systems,
allowing authorised users to consume content through smart
devices. The framework uses biometric data and three-factor
authentication to verify users; allows secure and anonymous
communication; but does not preserve the secrecy of consumer
preferences. Data centres consume a vast amount of power
to meet consumer demand for low-latency access to content.
Rana et al. [49] have discussed the security of authenticated
DRM key distribution frameworks, which support efficient
communication, computing and mutual authentication to con-
serve energy consumption. Lastly, we draw attention to Li
et al. [50], who explored using federated cloud and edge
computing for cost-efficient streaming, and developing load
distribution mechanisms to reduce latency.

VIII. CONCLUSION

In this paper, we presented the first security evaluation of
three major DRM systems under the OTT content delivery
model with respect to mobile devices. The security analysis
identified attack vectors in all aspects of key management,
content management, encryption and access control in each of
the DRM systems, drawing from parallel advancements in the
state of the art (e.g. TEE micro-architectural vulnerabilities).
We showed how all three DRM systems are vulnerable to post-
quantum attacks, and issues pertaining to manifest security.
Moreover, TEEs are vulnerable to a range of side-channel and
physical fault injection attacks that could compromise DRM-
protected content. However, it is worth being cognisant of the
high levels of expertise and specialist equipment needed to
mount such attacks successfully. Another source of potential
vulnerabilities is the complexity and fragmentation in the
DRM landscape, which could be remedied by appropriate
standardisation efforts to reduce the fragmentation and com-
plexity of the ecosystem. Some of the current trends and
future directions of research relevant to cloud-based DRM
include a decentralised DRM model based on blockchain
technology; IoT-enabled DRM systems; improving the power
and computational efficiency of DRM data centres; and using
federated cloud and edge computing with load distribution
mechanisms for cost-efficient and low latency streaming.



REFERENCES

[1] “The Global Internet Phenomena Report,” Sandvine – Phenomena, 2022,
https://www.sandvine.com/phenomena.

[2] “Over The Top (OTT) Service Market Size,” Fortune Business Insights,
August 2022, https://www.fortunebusinessinsights.com/industry-reports
/over-the-top-services-market-100506.

[3] M. Fachot, “Cyber security -– a priority for broadcasters and media
companies,” IEC (International Electrotechnical Commission) e-tech,
2019, https://etech.iec.ch/issue/2019-01/cyber-security-a-priority-f
or-broadcasters-and-media-companies.

[4] “Operating System Market Share Worldwide,” StatCounter Global Stats,
2022, https://gs.statcounter.com/os-market-share.

[5] Google, Inc., “Widevine,” https://www.widevine.com.
[6] ——, “Widevine DRM Architecture Overview - version 1.2,” 2017, ht

tps://www.whymatematica.com/wp-content/uploads/2018/08/Widevine
DRM Architecture Overview.pdf.

[7] “17 U.S. Code sec. 1201 - Circumvention of copyright protection
systems,” Legal Information Institute (LII), 1999, https://www.law.corn
ell.edu/uscode/text/17/1201.

[8] “Digital Millennium Copyright Act (DMCA),” Electronic Frontier Foun-
dation, https://www.eff.org/issues/dmca.

[9] N. Ferguson, “Censorship in action: Why I don’t publish my HDCP
results,” 2001, https://web.archive.org/web/20120220014712/http:
//www.macfergus.com/niels/dmca/cia.html.

[10] S. Crosby, I. Goldberg, R. Johnson, D. Song, and D. Wagner, “A Crypt-
analysis of the High-Bandwidth Digital Content Protection System,” in
Security and Privacy in Digital Rights Management. Springer, 2002.

[11] “List of 1201 threats,” Electronic Frontier Foundation, 2016, https://ww
w.eff.org/document/list-1201-threats.

[12] “Chinese app store offers pirated iOS apps without the need to jailbreak,”
ExtremeTech, 2013, https://www.extremetech.com/mobile/153849-chi
nese-app-store-offers-pirated-ios-apps-without-the-need-to-jailbreak.

[13] S. Y. Chau, B. Wang, J. Wang, O. Chowdhury, A. Kate, and N. Li, “Why
Johnny Can’t Make Money With His Contents: Pitfalls of Designing
and Implementing Content Delivery Apps,” in 34th Annual Computer
Security Applications Conference. ACM, 2018, pp. 236–251.

[14] R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Steal this movie:
Automatically bypassing DRM protection in streaming media services.”
in USENIX Security Symposium, 2013, pp. 687–702.

[15] C. D’Orazio and K.-K. R. Choo, “An adversary model to evaluate DRM
protection of video contents on iOS devices,” Computers & Security,
vol. 56, pp. 94–110, 2016.

[16] C. Xiao, “AceDeceiver: First iOS Trojan Exploiting Apple DRM Design
Flaws to Infect Any iOS Device,” Unit 42, 2016, https://unit42.paloalt
onetworks.com/acedeceiver-first-ios-trojan-exploiting-apple-drm-desig
n-flaws-to-infect-any-ios-device/.

[17] R. Chirgwin, “Google’s Widevine DRM doesn’t quite manage,” The
Register, 2016, https://www.theregister.com/2016/06/28/google widev
ine drm/.

[18] D. Buchanan, “Breaking Widevine L3 DRM,” Twitter, https://twitter.co
m/David3141593/status/1080606827384131590.

[19] “Google’s Widevine L3 DRM cracked by a security researcher,” Cyware
Labs, 2019, https://cyware.com/news/googles-widevine-l3-drm-cracked
-by-a-security-researcher-eaed58ca.

[20] “DMCA, Widevine L3 decryptor,” GitHub, 2020, https://github.com/git
hub/dmca/blob/7f665a41abb77dae9927cdc62c09edcec822d4cc/2020/11
/2020-11-09-Google.md.

[21] Q. Zhao, “Wideshears: Investigating and Breaking Widevine on QTEE,”
https://i.blackhat.com/asia-21/Thursday-Handouts/as-21-Zhao-Wideshe
ars-Investigating-And-Breaking-Widevine-On-QTEE-wp.pdf.

[22] G. Patat, M. Sabt, and P.-A. Fouque, “WideLeak: How Over-the-
Top Platforms Fail in Android,” in 52nd IEEE/IFIP Int’l Conf. on
Dependable Systems and Networks, 2022, pp. 501–508.

[23] ——, “Exploring Widevine for Fun and Profit.” [Online]. Available:
http://arxiv.org/abs/2204.09298

[24] “Google Widevine Digital Rights Management,” Google Developers,
2021, https://developers.google.com/widevine/drm/overview.

[25] D. Kim, “What is Google Widevine DRM and How It Works,” PallyCon,
2019, https://pallycon.com/blog/what-is-google-widevine-drm-and-how
-does-it-work/.

[26] A. Lee, “Widevine DRM on devices - Getting started - version 1.5,”
2018, https://web.archive.org/web/20190504082905/https:/storage.googl
eapis.com/wvdocs/Widevine DRM Getting Started Devices.pdf.

[27] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP - Design
Principles and Standards,” 2010, https://www.w3.org/2010/11/web-and
-tv/papers/webtv2 submission 64.pdf.

[28] “HTTP Live Streaming,” Apple Developer Documentation, https://deve
loper.apple.com/documentation/http live streaming.

[29] “ISO/IEC 23001-7:2016 - Information technology - MPEG systems
technologies - Part 7: Common encryption in ISO base media file format
files,” 2016, https://www.iso.org/standard/68042.html.

[30] “FairPlay Streaming - HTTP Live Streaming,” Apple Developer, https:
//developer.apple.com/streaming/fps/.

[31] D. Dorwin, J. Smith, M. Watson, and A. Bateman, “Encrypted Media
Extensions,” W3C Recommendation, 2017.

[32] M. Wolenetz and M. Watson, “Media Source Extensions™,” W3C
Working Draft, https://www.w3.org/TR/media-source/.

[33] “FairPlay Streaming Overview,” 2016, https://developer.apple.com/stre
aming/fps/FairPlayStreamingOverview.pdf.

[34] M. Sasouvanh and R. L. Franc, “PlayReady Overview: Simple End to
End System,” Microsoft Documentation. [Online]. Available: https://do
cs.microsoft.com/en-us/playready/overview/simple-end-to-end-system

[35] K. R. Vijayanagar, “What is Microsoft PlayReady DRM and How Does
It Work?” OTTVerse, 2020, https://ottverse.com/microsoft-playready-h
ow-does-it-work/.

[36] M. Sasouvanh and D. Klopfenstein, “PlayReady Overview: License
Acquisition,” Microsoft Documentation, 2018, https://docs.microsoft
.com/en-us/playready/overview/license-acquisition.

[37] ——, “PlayReady Overview: License Persistence,” Microsoft Documen-
tation, 2018, https://docs.microsoft.com/en-us/playready/overview/licen
se-persistence.

[38] ——, “PlayReady Overview: Security Level,” Microsoft Documentation,
https://docs.microsoft.com/en-us/playready/overview/security-level.

[39] “The STRIDE Threat Model,” Microsoft documentation, 2009, https:
//learn.microsoft.com/en-us/previous-versions/commerce-server/ee8238
78(v=cs.20).

[40] M. Souppaya and K. Scarfone, “Draft NIST Special Publication 800-
154: Guide to Data-Centric System Threat Modeling,” https://csrc.nist.
gov/files/pubs/sp/800/154/ipd/docs/sp800 154 draft.pdf.

[41] C. Shepherd, K. Markantonakis, N. van Heijningen, D. Aboulkassimi,
C. Gaine, T. Heckmann, and D. Naccache, “Physical fault injection
and side-channel attacks on mobile devices: A comprehensive analysis,”
Computers & Security, vol. 111, p. 102471, 2021.

[42] C. Shepherd, R. N. Akram, and K. Markantonakis, “Remote credential
management with mutual attestation for trusted execution environments,”
in 12th IFIP International Conference on Information Security Theory
and Practice. Springer, 2019, pp. 157–173.

[43] W. Xiong and J. Szefer, “Survey of transient execution attacks and their
mitigations,” ACM Computing Surveys, vol. 54, no. 3, pp. 1–36, 2021.

[44] “Post-Quantum Cryptography Standardization,” NIST CSRC - Post-
Quantum Cryptography (PQC), https://csrc.nist.gov/Projects/post-q
uantum-cryptography/post-quantum-cryptography-standardization.

[45] “ISO/IEC 23000-19:2020 - Information technology - Multimedia appli-
cation format (MPEG-A) - Part 19: Common media application format
(CMAF) for segmented media.”

[46] “DASH-IF Implementation Guidelines: Content Protection Information
Exchange Format (CPIX),” DASH Industry Forum, https://dashif.org/d
ocs/CPIX2.1/HTML/Index.html.

[47] Z. Zhang and L. Zhao, “A Design of Digital Rights Management
Mechanism Based on Blockchain Technology,” in 1st Int’l Conf. on
Blockchain. Springer-Verlag, pp. 32–46.

[48] S. Rana and D. Mishra, “Secure and ubiquitous authenticated content
distribution framework for IoT enabled DRM system,” Multimedia Tools
and Applications, vol. 79, no. 27, pp. 20 319–20 341, 2020.

[49] S. Rana, M. Obaidat, D. Mishra, S. Mukhopadhyay, and B. Sadoun,
“Computational Efficient Authenticated Digital Content Distribution
Frameworks for DRM Systems: Review and Outlook,” IEEE Systems
Journal, 2020.

[50] X. Li, M. Darwich, M. Bayoumi, and M. A. Salehi, “Cloud-Based Video
Streaming Services: A Survey,” arXiv preprint arXiv:2011.14976, 2020,
http://arxiv.org/abs/2011.14976.

https://www.sandvine.com/phenomena
https://www.fortunebusinessinsights.com/industry-reports/over-the-top-services-market-100506
https://www.fortunebusinessinsights.com/industry-reports/over-the-top-services-market-100506
https://etech.iec.ch/issue/2019-01/cyber-security-a-priority-for-broadcasters-and-media-companies
https://etech.iec.ch/issue/2019-01/cyber-security-a-priority-for-broadcasters-and-media-companies
https://gs.statcounter.com/os-market-share
https://www.widevine.com
https://www.whymatematica.com/wp-content/uploads/2018/08/Widevine_DRM_Architecture_Overview.pdf
https://www.whymatematica.com/wp-content/uploads/2018/08/Widevine_DRM_Architecture_Overview.pdf
https://www.whymatematica.com/wp-content/uploads/2018/08/Widevine_DRM_Architecture_Overview.pdf
https://www.law.cornell.edu/uscode/text/17/1201
https://www.law.cornell.edu/uscode/text/17/1201
https://www.eff.org/issues/dmca
https://web.archive.org/web/20120220014712/http://www.macfergus.com/niels/dmca/cia.html
https://web.archive.org/web/20120220014712/http://www.macfergus.com/niels/dmca/cia.html
https://www.eff.org/document/list-1201-threats
https://www.eff.org/document/list-1201-threats
https://www.extremetech.com/mobile/153849-chinese-app-store-offers-pirated-ios-apps-without-the-need-to-jailbreak
https://www.extremetech.com/mobile/153849-chinese-app-store-offers-pirated-ios-apps-without-the-need-to-jailbreak
https://unit42.paloaltonetworks.com/acedeceiver-first-ios-trojan-exploiting-apple-drm-design-flaws-to-infect-any-ios-device/
https://unit42.paloaltonetworks.com/acedeceiver-first-ios-trojan-exploiting-apple-drm-design-flaws-to-infect-any-ios-device/
https://unit42.paloaltonetworks.com/acedeceiver-first-ios-trojan-exploiting-apple-drm-design-flaws-to-infect-any-ios-device/
https://www.theregister.com/2016/06/28/google_widevine_drm/
https://www.theregister.com/2016/06/28/google_widevine_drm/
https://twitter.com/David3141593/status/1080606827384131590
https://twitter.com/David3141593/status/1080606827384131590
https://cyware.com/news/googles-widevine-l3-drm-cracked-by-a-security-researcher-eaed58ca
https://cyware.com/news/googles-widevine-l3-drm-cracked-by-a-security-researcher-eaed58ca
https://github.com/github/dmca/blob/7f665a41abb77dae9927cdc62c09edcec822d4cc/2020/11/2020-11-09-Google.md
https://github.com/github/dmca/blob/7f665a41abb77dae9927cdc62c09edcec822d4cc/2020/11/2020-11-09-Google.md
https://github.com/github/dmca/blob/7f665a41abb77dae9927cdc62c09edcec822d4cc/2020/11/2020-11-09-Google.md
https://i.blackhat.com/asia-21/Thursday-Handouts/as-21-Zhao-Wideshears-Investigating-And-Breaking-Widevine-On-QTEE-wp.pdf
https://i.blackhat.com/asia-21/Thursday-Handouts/as-21-Zhao-Wideshears-Investigating-And-Breaking-Widevine-On-QTEE-wp.pdf
http://arxiv.org/abs/2204.09298
https://developers.google.com/widevine/drm/overview
https://pallycon.com/blog/what-is-google-widevine-drm-and-how-does-it-work/
https://pallycon.com/blog/what-is-google-widevine-drm-and-how-does-it-work/
https://web.archive.org/web/20190504082905/https:/storage.googleapis.com/wvdocs/Widevine_DRM_Getting_Started_Devices.pdf
https://web.archive.org/web/20190504082905/https:/storage.googleapis.com/wvdocs/Widevine_DRM_Getting_Started_Devices.pdf
https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://developer.apple.com/documentation/http_live_streaming
https://developer.apple.com/documentation/http_live_streaming
https://www.iso.org/standard/68042.html
https://developer.apple.com/streaming/fps/
https://developer.apple.com/streaming/fps/
https://www.w3.org/TR/media-source/
https://developer.apple.com/streaming/fps/FairPlayStreamingOverview.pdf
https://developer.apple.com/streaming/fps/FairPlayStreamingOverview.pdf
https://docs.microsoft.com/en-us/playready/overview/simple-end-to-end-system
https://docs.microsoft.com/en-us/playready/overview/simple-end-to-end-system
https://ottverse.com/microsoft-playready-how-does-it-work/
https://ottverse.com/microsoft-playready-how-does-it-work/
https://docs.microsoft.com/en-us/playready/overview/license-acquisition
https://docs.microsoft.com/en-us/playready/overview/license-acquisition
https://docs.microsoft.com/en-us/playready/overview/license-persistence
https://docs.microsoft.com/en-us/playready/overview/license-persistence
https://docs.microsoft.com/en-us/playready/overview/security-level
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://csrc.nist.gov/files/pubs/sp/800/154/ipd/docs/sp800_154_draft.pdf
https://csrc.nist.gov/files/pubs/sp/800/154/ipd/docs/sp800_154_draft.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://dashif.org/docs/CPIX2.1/HTML/Index.html
https://dashif.org/docs/CPIX2.1/HTML/Index.html
http://arxiv.org/abs/2011.14976

	Introduction
	Contributions
	Scope

	Background & Related Work
	Security Design of DRM Systems
	Security Architecture of Google Widevine
	Security Levels
	Shaka Packager
	Widevine Encryption
	License Server
	Content Decryption Module (CDM)
	OEMCrypto Module
	Widevine Playback Security

	Security Architecture of Apple FairPlay
	FairPlay Playback Security
	Server Playback Context (SPC)
	Key Expiration
	Offline Playback
	Rollback Prevention
	AirPlay Streaming

	Security Architecture of Microsoft PlayReady
	PlayReady Playback Security
	Offline Playback
	PlayReady Security Levels

	Discussion

	DRM evaluation methodology and criteria
	DRM Security Features
	Key management
	Encryption
	Content management
	Authentication
	DDoS
	TEEs
	Quantum security


	Security Analysis of DRM Technologies
	Mitigations
	Malicious Manifest Attacks
	Secure Configuration
	Authenticated Encryption
	Trusted Execution Environments
	Post-quantum Mitigations
	DRM Standardisation

	Future Directions
	Conclusion
	References

