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Abstract— Biomedical image segmentation plays an im-
portant role in Diabetic Retinopathy (DR)-related biomarker
detection. DR is an ocular disease that affects the retina in
people with diabetes and could lead to visual impairment if
management measures are not taken in a timely manner.
In DR screening programs, the presence and severity of
DR are identified and classified based on various microvas-
cular lesions detected by qualified ophthalmic screeners.
Such a detection process is time-consuming and error-
prone, given the small size of the microvascular lesions
and the volume of images, especially with the increasing
prevalence of diabetes. Automated image processing us-
ing deep learning methods is recognized as a promising
approach to support diabetic retinopathy screening. In this
paper, we propose a novel compound scaling encoder-
decoder network architecture to improve the accuracy and
running efficiency of microvascular lesion segmentation. In
the encoder phase, we develop a lightweight encoder to
speed up the training process, where the encoder network
is scaled up in depth, width, and resolution dimensions. In
the decoder phase, an attention mechanism is introduced
to yield higher accuracy. Specifically, we employ Concur-
rent Spatial and Channel Squeeze and Channel Excitation
(scSE) blocks to fully utilise both spatial and channel-
wise information. Additionally, a compound loss function
is incorporated with transfer learning to handle the prob-
lem of imbalanced data and further improve performance.
To assess performance, our method is evaluated on two
large-scale lesion segmentation datasets: DDR and FGADR
datasets. Experimental results demonstrate the superiority
of our method compared to other competent methods. Our
codes are available at https://github.com/DeweiYi/CoSED-
Net.

Index Terms— diabetic retinopathy, fundus image, lesion
segmentation, retinal screening, compound scaling, atten-
tion mechanism.

I. INTRODUCTION

The anomalous changes in retina serve as a bio-marker for
identification of Diabetic Retinopathy (DR) [1]. For patients
with type 1 and type 2 diabetes, DR could lead to irreversible
visual impairment in later stages if disease is not identified
early and treatments are not instituted in a timely manner [2].
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Fig. 1: Comparison of two photographic retinal images. Left
retina is with four distinct microvascular lesions (HE, EX, SE,
MA) of DR and right retina is a normal retina.

According to the international protocol [3, 4, 5], the severity of
DR is graded into 5 different stages (0-4): No Retinopathy (0),
Mild Non-Proliferative DR (NPDR) (1), Moderate NPDR (2),
Severe NPDR (3) and Proliferative DR (4). This grading scale
is identified based on anatomical features of the retina and
microvascular lesions, which can be photographically detected
by ophthalmologists [6]. Biomedical image segmentation can
visualise these lesions, extract quantitative clinical measure-
ments, and aid in the treatment planning, which can improve
the interpretability of DR severity made by machine learning
models [7]. There are four common microvascular lesions
types, which are Hard Exudates (EX), Soft Exudates (SE)
also known as Cotton-Wool Spots, Microaneurysms (MA) and
Haemorrhages (HE) [8]. These lesions play a critical role in
identifying the severity of DR. Given that MA is the first
clinically visible evidence of diabetic retinopathy [9], it is
an important feature that needs to be identified during DR
screening. In the Moderate NPDR (2) stage DR, other features
of DR (EX and/or HE) can be observed as presented in
Fig. 1. Trained human graders working under the supervision
of ophthalmologists are responsible for the identification of
different microvascular lesions types and the severity of DR
according to their local screening guidelines. Patients who
have disease of severity that needs further assessment are
referred for appropriate medical and ophthalmic treatments.

Established screening programmes around the world in-
creasingly use digital fundus photography as take one or
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more images of each eye with or without routine pupillary
dilation [10]. Because microvascular lesions and proportion
of those screened with referable disease are small, manual
DR identification has a higher risk of misdiagnosis, and to
determine the most optimal treatment, the examinations can
be time-consuming and labour-intensive [11]. In addition,
the localization and type identification of different lesions
are challenging tasks because other objects within retinal
fundus images may have similar appearances as lesions, such
as red dots and blood vessels [12]. Thus, the development
of automatic detection systems for DR classification and
detection has been area of growing interest to help ease the
workload and deliver timely screening to the growing number
of people with diabetes worldwide. With the consideration
of powerful feature extraction ability, deep learning (DL)-
based approaches have attracted great attention from other
areas of medical image analysis [13]. Therefore, DL is also
recognised as a promising solution for lesion segmentation of
diabetic retinopathy [14]. As pointed in [14], since 2015, there
is a sharp increasing amount of research output of various
DL models proposed for DR domain. As one of the most
well-known DL approaches, convolutional Neural Networks
(CNNs) transform inputs by convolution filters, and allow
weights being shared spatially among the different layers of
a given neural network model [14]. As proposed in [15], U-
Net is modified to segment different retinal microvascular le-
sions. Although these conventional proposals have proved the
feasibility of detecting retinal microvascular lesions through
CNNs, achieving accurate localisation and type identification
of lesions in an automatic and efficient manner is still a
challenging task.

With the affect of global epidemics, remote healthcare moni-
toring has attracted great attention due to urgent requirement of
accelerating deployment to practical applications [16]. How-
ever, it is challenging to make remote healthcare services more
affordable, accessible, and effective. Most of deep learning
models of medical image applications are large-size models
which need to be deployed in high cost computer. Moreover,
large-size models are normally deployed in high-performance
centre server which brings the challenge of accessibility. Once
centre server is attacked, it may lead to service outage for
all patients so it is hard to guarantee the sufficient quality of
healthcare services [17]. Motivated by the above observations,
we propose a novel compound scaling encoder-decoder net-
work for the lesion segmentation of DR, especially in segment
small and sparse microvascular lesions. Specifically, the pro-
posed method carries out subtle innovations in the encoder and
decoder phases. In the encoder phase, we develop a lightweight
encoder architecture utilising a compound scaling coefficient.
In the decoder phase, an attention mechanism is introduced,
which is realised by using spatial and excitation blocks to
improve performance. Moreover, transfer learning is applied to
further improve performance when there are insufficient data
available. The main contributions of this paper are summarised
as below.

• A novel compound scaling encoder-decoder architec-
ture is proposed for microvascular lesion segmentation,

which consists of a lightweight encoder and attention-
based decoder. The lightweight encoder introduces a
compound scaling coefficient, and the attention-based
decoder incorporates with Squeeze and Excitation block.

• We introduce a compound loss, which combines dice
loss with cross entropy to deal with the class imbalance
issue. Moreover, to further improve segmentation perfor-
mance, transfer learning is applied to alleviate the effect
of insufficient data.

• To manifest the superiority of our proposed method, a
comprehensive experimental comparison is conducted
against other state-of-the-art methods. All of methods
are evaluated on two lesion segmentation datasets, in-
cluding the DDR dataset and the FGADR Dataset. An
ablation study is provided to identify the contributions
of each innovative component in our proposed method.

• A real-world case study is conducted, where our pro-
posed model is incorporated into a real-time, web-
based application that provides information on both
lesion segmentation and DR severity classification. The
application is based on a server-client architecture, and
deployed on a low-cost embedded unit, Jeston NX1.
With the real-time and low-cost features, our proposed
model can assist the screening and assessment of dia-
betic retinopathy, with the potential to reduce the burden
and improve conventional screening efficiency.

II. RELATED WORK

A. Diabetic Retinopathy and Lesion Segmentation
The severity of diabetic retinopathy is assessed on the basis

of features on a retinal fundus image. The detection process
takes the image as the input, and produces the corresponding
severity grade according to the ETDRS protocol [3]. The ap-
proach proposed in [18] highlights the most important features
by Gradient-weighted Class Activation Mapping (Grad-CAM).
More specifically, Grad-CAM produces a coarse localization
map. Based on this approach, [19] develops a explainable
neural network model to visualise how the DR is located and
classified with a given retinal fundus image.

In DR detection, lesion segmentation plays a vital role in
determining the severity grade. Some studies are carried out
to push the field of semantic segmentation for microvascular
lesions, which can assign pixel-wise prediction labels of
various microvascular lesions, including HE, EX, SE, MA.
They are all characteristics or signs associated with DR,
a complication of diabetes that affects the eyes. DR is a
condition that damages the blood vessels in the retina, the
light-sensitive tissue at the back of the eye. In [15], a modified
U-Net architecture is proposed to segment the different types
of lesions in retinal images. The modifications are made in
both encoder and decoder phases of the U-Net architecture.
In the encoder phase, the convolutional layers are changed to
3×3 ResNet convolutional blocks followed by leaky Rectified
Linear Unit (ReLU) and batch normalisation layers. In the
decoder phase, a deconvolution layer is adopted to replace the

1Jeston-NX-https://developer.nvidia.com/embedded/
jetson-xavier-nx-devkit
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normal U-Net upscaling convolutional operation. With the help
of these modifications, Dice scores can be improved in HE and
EX segmentation. In [5], DeepLabV3+ architecture is adopted
to segment four types of microvascular lesions as illustrated
in Fig. 1. Similar to U-Net architecture, DeepLabV3+ is also
based on an encoder-decoder structure. Different from U-
Net, DeepLabV3+ utilises the Atrous convolution layer which
enables a further control of over the resolution of the produced
feature map. To capture generalised multi-scale information,
Atrous convolution layer can also adjust the field-of-view of
the filter [20]. However, DeepLabV3+ is struggling to segment
Hard Exudates because of the small size of lesions [5]. In-
spired by [21], [4] develops the 2-D Dense U-Net architectures
for lesions segmentation, which utilises the DenseNet-161
architecture [22] as the encoder of the U-Net for extracting
more useful features.

In this paper, all the aforementioned methods, including
DeepLabV3, Dense U-Net, U-Net and U-Net++, are imple-
mented and compared with our proposed method on the task
of microvascular lesion segmentation.

B. Encoder-Decoder Architectures

Building upon the breakthroughs made by FCNs [23, 24],
a U-Net structure is proposed in [25], which attracts great
attention on biomedical image segmentation. In biomedical
image segmentation, there are lower data availability and
pixel-wise prediction is demanded to locate different classes
within a biochemical image rather than only classifying an
image. The U-Net proposes an encoder-decoder architecture
to replace the FCN architecture for enhancing segmentation
performance. In U-Net, the network architecture includes a
contracting path (i.e., encoder) and a symmetric expanding
path (i.e., decoder). The encoder is to extract the most relevant
features from an image. The final output of this path is a
rich feature map but it is vastly smaller than the original
image given that the input has been passed through multiple
pooling layers. Once the final layer from the contracting path
is reached, the features map is passed to the decoder. The
decoder is to process upsampling the learned features. Such
a symmetrical architecture matches the total number of layers
in both contracting and expanding paths and therefore forms
a distinctive U-shape structure. To address the issues of losing
important feature information when upsampling a feature map,
Ronneberger et al. [25] concatenates the feature map of each
layer within the contracting path with its respective symmetric
counterpart within the expanding path. This process is also
known as a skip connection [26]. As a result, such a design
preserves both higher and lower resolution features so that
better pixel-wise prediction and better localization of different
classes can be obtained for an input image.

Inspired by U-Net architecture, [27] proposes a improved
version of U-Net to minimise the semantic gap of the encoder
and decoder feature map. This is achieved by redesigning the
aforementioned skip connections and introducing a series of
nested, dense skip pathways that further improve the semantic
segmentation outcomes for medical images. The improved
U-Net architecture is called U-Net++ [27]. With the help

of the modified skip pathways, U-Net++ is able to capture
more fine-grained details from an input image, where high-
resolution feature maps from the encoder path are gradually
enriched prior to fusion with the corresponding feature maps
from the decoder path. By learning from interconnected nature
of the DenseNet architecture [22], the skip pathways are
also introduced in U-Net++, where all layers are connected
with each other. Each layer obtains additional inputs from
all preceding layers and passes its own feature-maps to all
subsequent layers. Specifically, [27] improves skip pathways
by concatenating the features extracted from the subsequent
layers within the encoder path with the previous layers by
up-sampling them.

To further improve the segmentation performance and
model efficiency, lightweight encoder and attention-based de-
coder are proposed and integrated into our method.

C. Model Scaling for Deep Neural Network

As clarified in [28, 29], they find that the performance
of network can increase along with scaling up its model,
where a network can be scaled up by scaling its depth, width,
and resolution. The depth can be scaled up by increasing
the number of its layers. The width can be scaled up by
growing neurons for each layer. The resolution can be scaled
up by enlarging the dimensional size of an input image.
Although larger and more complex models can yield better
performance, it also significantly increases the number of
trainable parameters and lead to higher cost of computational
resource. Balancing the scaling of network width, depth, and
resolution can achieve better accuracy and efficiency. Such a
design enables to easily scale up a baseline model to any target
resource constraints so it maximises the running efficiency in
deployed devices. That is, it is adaptive strategy to deploy
models. Therefore, when the model is deployed in a low-
cost device, the design can optimise the use of computational
resource. To achieve this, [29] propose a Compound Scaling
method. This method efficiently scales up a model by using a
compound coefficient ϕ. The compound coefficient is regarded
as a hyperparameter and it is used to determine how many
more resources are available for model scaling. Moreover,
[29] transforms the numerical values associated with the
aforementioned depth, width and image size into variables.
These variables are assigned as α for depth, β for width
and γ for image size. The compound coefficient ϕ is applied
to these variables as their power terms. This can efficiently
balance depth, wight, resolution of a network by scaling each
of them with a constant ratio. Therefore, [29] propose a neural
network architecture that takes advantage of this compound co-
efficient and it is called EfficientNet. This network architecture
builds upon MnasNet [30]. Its fundamental building block is
a mobile-inverted bottleneck convolutional layer (MBConv)
that has been adapted from the neural network architecture
proposed in [31], where the normal convolutional layers are
changed to a depth-wise spatial convolutions with the addition
of inverted residual bottleneck layers. Moreover, [29] add a
squeeze-and-excitation operation [32]. The pooling and fully-
connected layers of network are the same as a traditional CNN
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architecture. All these modifications have been utilised in the
creation of the baseline model called EfficientNet-b0 and the
subsequent EfficientNet-b1 to b7 [29] have been proposed
based on changes made to the compound coefficient ϕ and the
variables α, β, γ. The number of parameters of EfficientNet-b0
to EfficientNet-b7 is ranging from 5.3M to 66M.

To further improve the efficiency, [33] proposes an improve
version of EfficientNet. This neural network model improves
on its predecessors with faster training and 6.4 times fewer
number of trainable parameters. To achieve this, [33] identifies
three problems associated with their previous architecture and
they are as follows. The first problem is related to the resolu-
tion (size) of the input image. It finds that larger input sizes
considerably decelerates the training process of the network.
They have identified that smaller input size leads to fewer
computational operations and enables larger batch sizes to be
applied in the training process, thus improvements are made
on the training speed by up to 2.2 times. The second problem
is associated to the aforementioned depth-wise convolutional
layers. It finds that these types of convolutional layers con-
siderably slow down the training process of the model in the
early stages but are regarded as relatively effective in later
stages of training. To address this problem, a Fused-MBConv
is proposed which is modified MBConv Layer [33]. Such a
design combines the depth-wise convolutional layer with a
normal 3x3 convolutional layer. The third problem is related
to uniformity of scaling the aforementioned variables α, β, γ
with the compound coefficient ϕ. It is more efficient to scale
this parameter in a non-uniform strategy meaning that not all
variables would be changed at the same time. Furthermore,
[33] restricts the resolution variable(γ) to a smaller numeric
value to combat the first encountered problem of input size.
These modifications derives EfficientNetV2. This architecture
is composed of both Fused-MBConv and normal MBconvs
layers. Fused-MBConv layers have been utilised in the early
stages of the model and MBconvs have been applied in later
stages so as to deliver better performance.

Taking into the strengths of EfficientNet and its variants, we
introduce compound scaling scheme into the encoder of our
method so as to develop a lightweight encoder.

D. Attention Mechanism in Deep Neural Networks

Attention mechanisms are helpful to capture the fine-grained
features in the diabetic retinopathy detection. In [34], a Cat-
egory Attention Block is proposed which can significantly
improve the performance of diabetic retinopathy grading. In
addition, [32] proposes a channel-wise attention mechanism,
where a “Squeeze-and-Excitation” (SE) block is introduced
into network. The SE block adaptively re-calibrates channel-
wise feature responses by explicitly assigning additional
weights for the different input image channels. Such a design
can provide more attention and prioritise one channel over
the other. To combat the locally learned features and further
improve the model’s performance, the Squeeze-and-Excitation
block first squeezes the global spatial information represented
by the dimensions H×W×C (H-height, W-width, C-channels)
into a channel-wise vector with a size of 1×1×C (C is the total

number of channels). This is achieved through an aggregation
strategy, where global average pooling produces a 1×1×C
vector, which is the average numerical value for every channel.
Then, the vector is excited by being passed through two
fully connected layers with ReLU as activation function. The
first fully connected layer is to reduce the dimensionality of
the vector by the parameter r. The output of the first fully
connected layer is passed through the ReLU operation and
then to the second fully connected layer which increases the
dimensionality of the vector to its original size. After that, the
vector is passed to a sigmoid activation operation to normalise
values within the vector between 0 and 1 [32]. Finally, the
vector is multiplied with the initial H×W×C feature map.

Inspired by [32], a improved version of SE block is pro-
posed in [35], which introducing an additional convolutional
operation with a 1×1 filter creating an additional feature
map. The produced feature map is passed through a sigmoid
activation operation like SE block for further adding weights
to the different spatial regions within the input image and
so is called Spatial Squeeze and Excitation Block (sSE).
Moreover, sSE block is further re-calibrated and concatenated
with the output of the conventional channel-wise SE (cSE)
block to form scSE Block, which is called Spatial and Channel
“Squeeze and Excitation” Block.

To fully use spatial information along with channels, our
method introduces Spatial and Channel Squeeze & Excitation
Block into the decoder part to recalibrate feature maps both
channel-wise and spatially so as to enhance the segmentation
performance.

III. COMPOUND SCALING ENCODER-DECODER
NETWORK (COSED-NET)

A. Architecture of CoSED-Net

This section provides a comprehensive and detailed explana-
tion of our proposed neural network architecture, its building
blocks, layers and further modifications. The overview of the
proposed network architecture is provided in Fig. 2, where an
encoder-decoder structure is adopted in lesion segmentation.
More specifically, a lightweight encoder is proposed to relieve
the problem of insufficient data. This achieves by introducing
model scaling, where a compound scaling scheme is adopted
in the encoder. In addition, an attention-based decoder is
adopted to extract both spatial and channel information in a
more efficient way, which is realised by introducing spatial
and channel SE block. Moreover, a compound loss function is
proposed to tackle the data imbalance problem. Furthermore,
Transfer Learning is also used in our method to further
enhance the performance.

In Fig. 2, it provides the flow of processing a retina image
throughout our proposed architecture. The input image is
with size of H×W×C, which is resized to 512×512×3 after
data preprocessing. Then, the first convolutional layer lowers
the feature map by the stride factor of 1 and the rest of
following convolutional layers are to lower the feature map
by the stride factor of 2. The number of channels is increased
with passing more convolutional layers. The size of the final
feature map is 16×16×256. For the attention-based decoder,
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Fig. 2: The overview of the our CoSED-Net architecture. On the left-hand side, the Lightweight Encoder accepts the input
image and on the right-hand side the attention-based decoder architecture is shown and outputs the given segmentation mask.

the dimensions of the feature map are up-scaled by a factor
of 2 and concatenated with the feature from the scSE blocks
on different levels as seen in Figure 2. With the execution
of the first deconvolution layer and final encoder layer, the
feature map is upscaled by a factor of 4. The final output
of the encoder-decoder architecture has the dimensions of
512×512×1 to provide pixel-wise prediction in a mask.

B. Lightweight Encoder

Inspired by [25, 27], there is also an encoder in our network.
Different from [25, 27], a lightweight encoder is proposed
into our network, which is achieved by introducing compound
scaling scheme and mobile inverted bottleneck Convolutional
(MBConv) network. The lightweight encoder composite of
MBConv, Conv, and dropout layers. To achieve better effi-
ciency and accuracy, we carry out compounding scaling for
network. Different from previous studies which mainly focuses
a single dimension to scale up network, all three dimensions of
our encoder network are scaled up, including depth, width, and
resolution. Scaling the depth of encoder is to extract richer and
more complex feature so as to generalise well on new tasks.
Scaling the width of encoder is to obtain more fine-grained
features, which also make train network easier. Scaling the
resolution of encoder is to capture more fine-grained patterns.
Following [29], our lightweight encoder can be defined as:

N(d,w, r) =
⊙

i=1,...,s

F d·Li
i (X<r·Hi,r·Wi,w·Ci>)

d = αϕ, w = βϕ, r = γϕ

(1)

where FLi
i represents that the layer of Fi is duplicated Li

times with i-th stage and
⊙

represents repeated product. <
Hi,Wi, Ci > is the input size of X for i-th layer. w, d, r
are coefficients for scaling the width, depth, and resolution,
respectively. Specifically, to scale up the width, depth, and
resolution of network in an homogeneous way, our method
conducts compound scaling as follows.

∀ αϕ, βϕ, γϕ ∋ α · β2 · γ2 ≈ 2

where α ≥ 1, β ≥ 1, γ ≥ 1
(2)

where the depth, width, and resolution are presented by αϕ,
βϕ, and γϕ, respectively. The α, β, and γ are constants that
can be determined by a small grid search and ϕ is a user-
specified coefficient. ∋ is the symbol standing for “subject to”.
Intuitively, ϕ controls how many more resources are available
for model scaling and α, β, γ specify how to assign these
extra resources to the depth, depth, and resolution of network.

In addition, MBConv [29] is adopted to composite our
lightweight encoder. The operation of MBConv can be ex-
pressed as a composition of three operators as follow.

F (x) = [A ◦N ◦B]x

A : Rs×s×k → Rs×s×n

N : Rs×s×n → Rs
′
×s

′
×n

B : Rs
′
×s

′
×n → Rs

′
×s

′
×k

′

(3)

where A and B are linear transformations. N is a channel-
based non-linear transformation.
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Such a design can significantly decrease the number of
network parameters which also help address the issues of
deploying the architecture in a limited resource environment
such as a mobile or server platform [33]. As seen in Fig.
2, the feature map from the different intermediate layers of
the lightweight encoder is highlighted by the arrow symbol
and applied in the encoder. Additionally, the encoder is con-
catenated with an additional dropout layer to avoid overfitting
and improve generalisation error, where neuron outputs are
dropped out randomly. After every convolutional layer, ReLU
activation is applied with Batch-Normalization to rescale and
standardise the output of a layer by maintaining the mean of
a batch close to 0 and its standard deviation close to 1, which
can avoid to get stuck in local minima. Once the input is
passed though all the convolutional layers of our lightweight
encoder, feature map is passed to decoder.

C. Attention-based Decoder
In the decoder, feature map is upscaled and the intermediate

features of the skip pathways are concatenated until the final
convolutional layer is reached. In the final covolutional layer,
there is a 1x1 filter preforming pixel-wise classification on the
final feature maps so as to create the final binary segmenta-
tion mask. In our method, an attention-based mechanism is
adopted, where skip pathways are modified by introducing
the Spatial and Channel “Squeeze and Excitation” (scSE)
Block [35]. Such a block can provide the model with an addi-
tional attention mechanism, which prioritises different spatial
regions alongside different channels. As mentioned in [35],
scSE block can substantially increase network performance
by only a slight increase of model complexity. scSE block
is consisted of cSE block and sSE block. Here, the input
feature map combines channels together, which is denoted as
F = [f1, f2, . . . , fC ] and fi ∈ RH×W . In cSE block, spatial
squeeze is performed by a global average pooling layer to
produce below vector z of k-th element.

zk =

∑H
i

∑W
j Fk(i, j)

H ×W
(4)

where uk is a feature map and (i, j) is a spatial location for
a channel. The H and W are its the height and width of the
feature map. This operation is to attain spatial features glob-
ally. With z ∈ R1×1×C , the vector zk can be changed to ẑ by
W1(δ(W

z
2 )) and W1 ∈ RC×C

b represents the weights between
fully-connected layers The operator of ReLU is denoted as
δ(·). The bottleneck of channel excitation is determined by b
to encode the dependencies of channels. Referring to [35], r is
set to 2. The value of the activation of ẑ dynamically changes
within [0, 1] with using a sigmoid layer σ(ẑ). To recalibrate
or excite U , the resultant vector in Eq. (5) is used.

F̂cSE = [σ(ẑ1)f1, σ(ẑ2)f2, . . . , σ(ẑC)fC ] (5)

where the importance of the i-th channel are specified by the
activation σ(ẑi), which is adaptively tuned to pay attention
more important channels.

In sSE block, the feature map F is squeezed along the
channels and excites spatially. This is achieved by introducing

the channel squeeze and spatial excitation block. The spatial
squeeze operation is significant for fine-grained lesion segmen-
tation. The slicing of feature map F is denoted as follows.

F = [f1,1, f1,2, . . . , f i,j , . . . , fH,W ] (6)

where f i,j is the feature of the spatial location (i, j) and f i,j ∈
R1×1×C . The spatial squeeze operation is achieved through a
convolution

q = Wsq ∗ F, Wsq ∈ R1×1×C×1 (7)

where Wsq is the weight of spatial squeeze. q is a project
tensor generated by sSE block, which belongs to RH×W . The
projection qi,j is a linear combination of all channels C with
regard to the spatial location of (i, j). A sigmoid layer σ(·) is
used to generate the projection so as to recalibrate or excite
F spatially within the range of [0, 1] as below.

F̂sSE = [σ(q1,1)f
1,1, . . . , σ(qi,j)f

i,j , . . . , σ(qH,W )fH,W ]
(8)

where the relative importance of a spatial information is
denoted by σ(qi,j). (i, j) represents the location of feature
map. Such type SE block ensures that more attentions are
paid to relevant spatial location.

In addition, we adopt the concatenation aggregation to
concatenate both outputs from the Spatial SE and channel SE
layers to further enhance segmentation performance, where the
two outputs are concatenated along with the channel index.
The operation of concatenation aggregation can be defined by

F̂scSE = concat(F̂cSE , F̂sSE) (9)

where F̂cSE represents spatial squeeze and channel excitation
block and F̂sSE represents channel squeeze and spatial excita-
tion block. Such an aggregation strategy can avoid information
loss. As clarified in [27], we find that dense skip pathways
bring the intermediate feature maps of both encoder and
decoder paths on different layers to be semantically similar.
Therefore, we also adopt dense skip pathways to simplify
network optimisation and strengthening prediction accuracy.

D. Loss Functions
To optimise the network weights, Dice loss and cross

entropy loss (CE) are two commonly used loss in medical
image due to its compelling performance in image segmen-
tation. For Dice loss function [36], it is based on the Dice
score coefficient. This metric calculates overlapping between
predictions with the ground truth. Dice loss shows a great
performance on medial MRI image datasets while it has the
nature of non-convex. In a non-convex problem, it is easy to
be stuck at locally optimisation.

Taking this into account, CE loss is introduced into lesion
segmentation as well [4]. When Cross-Entropy Loss is applied
in the pixel-wise classification of an image, each pixel is
classified based on a given ground truth segmentation mask.
In lesion segmentation, Cross-Entropy Loss calculates error
between the pixel-wise predictions made from the model with
the pixel-level ground truth masks. However, CE Loss cannot
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perform well when data has a higher class imbalance [37].
In lesion segmentation, there are much less foreground data
(i.e.,the specific lesion outlines) compared to background data.
Therefore, a compound loss function is introduced, which
combines both Dice loss and CE loss for achieving a synergy
effect. The compound loss is defined as follows.

LDCE = LDL(y, p) + LCE(y, p)

= 1− 2yp+ 1

y + p+ 1
− (y log(p) + (1− y) log(1− p))

(10)
where the variable y represents the pixel-wise targets and p
represents the predicted values produced by the neural network
with the addition of log operations that further contributes
to the final error calculations. The difference comes with
the addition of the number 1 in both the numerator and
denominator of the division to mitigate the edge case of zero
division. To achieve a harmonic effect of DL and CE, the
weights of these losses are identical and both are set to 1.

E. Transfer Learning
Transfer learning is used in our method to further address

the low data availability problem in DR lesion segmentation.
As clarified in [38], transfer learning is able to provide
tremendous improvements in diabetic retinopathy detection.
Different from conventional transfer learning which transfer
the knowledge of different datasets but on the same task,
our transfer learning is to transfer the knowledge between
different tasks, i.e., from image classification to semantic
segmentation. Specifically, we transfer a pre-trained Efficient-
Net model, which is trained on the ImageNet [39, 40] of
image classification, to the task of DR lesion segmentation.
Following [4], transfer learning is conducted by removing the
last classification layer from the pre-trained models so that
only the fine-grained feature maps are extracted and the final
feature map from the EfficientNet structure is passed to the
attention-based decoder.

IV. EXPERIMENTAL EVALUATION

This section conducts experiments for lesion segmentation.
The experiments are evaluated by two large-scale diabetic
retinopathy data: DDR dataset and FGADR dataset. These
two datasets are used to train, validate and test our pro-
posed network architecture and other compared methods. The
details of these two datasets are described in Section IV-
A. The evaluation metrics are presented in Section IV-B.
The implementation details are discussed in Section IV-C,
where the settings of our network are provided along with the
explanation of platforms and configurations. To quantitatively
and qualitatively evaluate lesion segmentation performance,
our CosedNet method is compared against other methods with
regard to IoU, Dice Score, and mIoU in Section IV-D.

A. Datasets
1) DDR Dataset: In DDR dataset [5], the image data were

collected from 147 hospitals between the period of 2016 to

2018. These images are provided by 9598 patients whose ages
ranged from 1 to 100, with an average age of 54.13 with a rel-
atively equal split between male and female contribution. The
dataset provides pixel-level lesion annotations and bounding-
box annotations of lesion segmentation. We utilises the images
and their relative pixel-level annotation masks for the task of
lesion segmentation.

For lesion segmentation of DDR dataset, there are 757
fundus images with their annotated masks that represented
the four different lesions such as EX, SE, MA and HE. Six
annotators perform pixel-level annotations for the four lesions,
using annotation software and an additional annotation tool has
been used to automatically identify the lesions. Furthermore,
the annotators manually annotate lesions that are not identified
by the annotation tool and verify if the different lesions
are correctly outlined by removing false positives. The DDR
dataset is randomly split into training, validation and testing
set in the ratio of 5:2:3 respectively.

2) FGADR Dataset: FGADR dataset [4] is another dataset
for DR lesion segmentation to evaluate the models’ perfor-
mance. In the FGADR dataset, it consists of 1842 images with
their corresponding pixel-level annotation masks. The range
of lesions includes EX, SE, MA, HE but also intra-retinal
microvascular abnormalities (IRMA) and neovascularization
(NV). With considering uniformity and consistency, we focus
on the four aforementioned lesions (EX, SE, MA, HE). This
dataset focuses on higher quality images with a goal of
building a diverse range of lesion representation. Thus, three
board-certified ophthalmologists with intra-rater consistency
manually annotated above images with strict quality control.

Following the settings of DDR dataset, we also split the
FGADR dataset into a ratio of 5:2:3. That is, there are
50%, 20%, and 30% of randomly split into the training set,
validation set, and test set.

B. Evaluation Metrics
In this section, various metrics are used to assess the perfor-

mance of lesion segmentation, including Accuracy, Precision,
Recall, Dice Score, and Intersection over Union (IoU). The
IoU is also called Jaccard Index, which is defined as the area of
intersection between the predicted segmentation mask and the
ground truth mask, divided by the area of the union between
the two maps [41]. The range of this metrics is between 0 and
1. Dice Score is defined as twice the number of overlapping
area of the predicted and ground-truth maps divided by the
total number of pixels [41].

The additional used metrics are accuracy, precision and
recall. The precision metric indicates what fraction of the
total prediction made by the model are correct, and the recall
metrics quantifies the number of correct positive predictions
made out of all positive predictions [12]. The following
formulas show how these fractions are used to calculate the
metrics, note that for the task of lesion segmentation, Dice
Score can be expressed via Precision and Recall, which is
defined as follows.

Dice− score =
2|A ∩B|
|A|+ |B|

= 2 ∗ Precision ∗Recall

Precision+Recall
(11)
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TABLE I: The performance of lesion segmentation on validation set of DDR dataset with regard to IoU, Dice Score, and mIoU.

Model Name Hard Exudates (EX) Haemorrhages (HE) Microaneurysms (MA) Soft Exudates (SE) mIoUIoU Dice Score IoU Dice Score IoU Dice Score IoU Dice Score
Cosed-Net (Ours) 45.56 62.60 40.31 57.46 13.98 24.53 30.10 46.28 32.49
Dense U-Net [21] 38.39 55.49 19.33 32.40 6.16 11.60 24.79 39.73 22.17

U-Net++ [27] 32.69 49.27 17.81 30.24 3.85 7.42 22.56 36.81 19.98
U-Net [25] 29.70 45.80 13.02 23.04 4.36 8.36 24.29 39.08 17.84

DeepLabV3+ [20] 29.10 - 28.19 - 4.29 - 28.19 - 22.29
HED [5] 9.48 - 21.83 - 2.04 - 21.83 - 9.29

TABLE II: The performance of lesion segmentation on test set of DDR dataset with regard to IoU, Dice Score, and mIoU.

Model Name Hard Exudates (EX) Haemorrhages (HE) Microaneurysms (MA) Soft Exudates (SE) mIoUIoU Dice Score IoU Dice Score IoU Dice Score IoU Dice Score
Cosed-Net (Ours) 39.87 57.01 24.10 38.84 10.34 18.74 20.88 34.54 23.80
Dense U-Net [21] 35.67 52.58 13.03 23.05 6.84 12.8 20.68 34.27 19.06

U-Net++ [27] 27.58 43.23 11.93 21.32 3.85 7.42 14.88 25.90 14.56
U-Net [25] 29.90 46.03 13.39 23.61 3.53 6.82 14.59 25.47 14.60

DeepLabV3+ [20] 31.18 - 14.25 - 3.25 - 22.95 - 17.91
HED [5] 18.74 - 5.24 - 1.10 - 7.82 - 8.83

Fig. 3: Qualitative Comparison between our proposed method and other advanced methods on the test set of DDR dataset.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(12)

IoU = Jaccard(A,B) =
area(A ∩B)

area(A ∪B)
(13)

where TP represents true positives, TN represents true nega-
tives, FP represents false positives, and FN represents false
negatives. A is predicted segmentation mask and B is the
ground truth mask.

C. Implementation Details

In this section, we cover the different aspects of implement-
ing the different experiments such as different frameworks,
libraries, dependencies and further hardware specifications.
Additionally, we demonstrate the different stages, including
the training, validation and testing stages alongside the data
pipeline, data pre-processing and further augmentations. All

models are implemented under PyTorch Lightning2, which is
an open-sourced machine learning framework. The framework
improves the PyTorch framework by providing additional
scalability, optimisation and better development of different
neural network architectures by abstracting and organising
a majority of the boilerplate code related to the PyTorch
framework. Furthermore, it provides further utilities and better
organisation of the training, validation and testing loops.

In the experiments, data augmentation is carried out before
training lesion segmentation model. As suggested in [11],
various pre-processing techniques on the fundus retinal images
are evaluated for combating the problem of non-uniformed
data collection based on the use of different equipment for
the screening process of diabetic retinopathy. These techniques
can reduce noise by applying adaptive noise removing filters,
illustrate correction via homomorphic filtering, and techniques
for contrast enhancement. As clarified in [11], contrast limited
adaptive histogram equalization (CLAHE), which is a contrast

2PyTorch Lightning-https://www.pytorchlightning.ai/

https://www.pytorchlightning.ai/
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enhancement technique, can significantly improve models’
performance on the task of vessel segmentation. After pre-
processing data, image augmentation is conducted where we
applied CLAHE [11] to augment raw image data with con-
sidering the balance between training speed and performance.
After this, the data is trained in batches and training batch
size is set to 8. The network predicts the segmentation masks.
The loss function calculates the error between the predicted
masks and the ground truth masks. Such a error is passed
to optimizer for updating the network weights. To have a
fair comparison among different networks, we configure the
same hyperparameters for all the neural networks when they
are trained on the DDR and FGADR datasets. Following [4],
ADAM is used to optimise the network and initial learning rate
is set to 0.001. Moreover, ReduceLROnPlateau is used as
learning rate scheduler to dynamically adjust the learning rate.
When model performance stop improving or plateaus for a
certain number of epochs during training, the learning rate is
reduced by a factor. This reduction helps the model to fine-
tune its parameters more delicately and potentially escape local
minima. In this paper, all schedulers are set to monitor the
training loss and for every 1 epoch by setting corresponding
the patience parameter. The decreasing factor of learning rate
is set to 0.1. The minimum learning rate for every model is set
to 8e-05. The probability of dropout within the dropout layer
has been set to 0.5. The maximum epoch number is set to
300 for training DDR and FGADR datasets. Transfer learning
is also performed by applying a pre-trained EfficientNet, that
have been previously trained on the ImageNet dataset [39].

D. Comparisons With the State-of-The-Art Methods

To evaluate the performance, our method is compared with
other advanced methods on a segmentation task. Specifically,
four advanced methods are compared, including DeepLabV3
[20], U-Net [25], U-Net++ [27], and Dense U-Net [21]. These
methods are evaluated on both DDR and FGADR datasets on
four the lesions segmentation tasks, i.e., EX, HE, MA, and
SE. Then, experimental results on DDR and FGADR datasets
and their corresponding observations is provided as follows.

For the performance of lesion segmentation on the DDR
dataset, the result of our method is significantly better than
other methods. The qualitative results of lesion segmentation
are illustrated in Fig. 3 and the quantitative comparison is
summarised in Table. I and II. From Table I, Table II, and
Fig. 3, the following observations can be drawn:

• Our proposed method can achieve the best performance
with regard to mIoU. where its mIoU can reach 32.49%
and 23.80% for validation set and test set, respectively.

• For the lesion segmentation tasks of EX, HE, MA, and
SE, our proposed method almost provides the best results
for each of them in terms of Dice score and IoU on both
the validation set and test set of DDR dataset.

• For the lesion segmentation results of test set, we find
that our method significantly outperforms other advanced
methods in terms of IoU and Dice Score. Our method
can achieve 39.87% of IoU and 57.01% of Dice Score
for EX, 24.10% of IoU and 38.84% of Dice Score for

HE, 10.34% of IoU and 18.74% of Dice Score for MA,
and 20.88% of IoU and 34.54% of Dice Score for SE.

To have a comprehensive comparison, the experiments on
the FGADR dataset are also carried out. For the following
experiments, our method is compared to other four advanced
methods on the FGADR dataset. All of the four lesion seg-
mentation tasks are considered to evaluate the performance on
diabetic retinopathy, including EX, HE, MA, and SE. As seen
in Table III, Table IV, and Fig. 4, the following observations
can be drawn:

• Our proposed method also outperforms other methods in
terms of mIoU. Specifically, its mIoU of EX, HE, MA,
and SE can achieve 23.36% and 24.81% for validation
and test sets, significantly better than other methods.

• For the lesion segmentation tasks of EX, HE, MA, and
SE, our proposed method provides the best results for
each them in terms of Dice score and IoU on both
validation set and test set of FGADR dataset.

• For the much more challenging segmentation task of MA
and SE, our method can perform much better compared
to the other methods, where the IoU of MA and SE can
reach 2.84% and 22.21%, and the Dice score of MA and
SE can reach 5.52% and 36.35% on FGADR test set.

E. Ablation Study
In the ablation study, we analyse the contributions of each

innovative components in our proposed method. Since FDADR
dataset twice larger than DDR dataset, Extensive experiments
are conducted on FDADR dataset to resolve the how much
does each design component contribute on the improvement
of overall performance. The experiments for ablation study
are focused on Hard Exudates for the sake of brevity. By
adopting one more components at each stage, the improvement
of IoU and Dice Score (Dice) is presented in Table V, where
the network structure of encoder-decoder is denoted as ED,
lightweight encoder is denoted as LE, the compound loss
of dice loss and cross entropy is denoted by DCE, transfer
learning is denoted by TL, and Attention-based Decoder is
denoted as AD.

According to Table III and IV, we can find that U-Net++
provided better results than U-Net and DeepLabV3+. There-
fore, the encoder-decoder structure of the U-Net++ network is
adopted as baseline model. To derive a lightweight encoder,
the encoder phase of the U-Net++ architecture is modified by
introducing compound scaling scheme. Specifically, MBconv
layers are integrated into encoder. We observe significant
increase in both IoU and Dice score, where the performance
gain of IoU and Dice score are 1.71% and 2.07%.

Moreover, a compound loss function DCE is adopted to
optimise the network weights which combines Dice loss and
cross entropy to achieve a synergy effect. Specifically, such
a design can solve the issue of imbalance class, alleviate to
be trapped into local optimization, and further enhance the
segmentation performance. The performance gain of adopting
DCE is 2.04% and 2.41% for IoU and Dice, respectively. Then,
Transfer Learning is used to accelerate the training time and
overcome the issue of insufficient data. It yields a significant
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TABLE III: Lesion segmentation performance on validation set of FGADR dataset with regard to IoU, Dice Score, and mIoU.

Model Name Hard Exudates (EX) Haemorrhages (HE) Microaneurysms (MA) Soft Exudates (SE) mIoUIoU Dice Score IoU Dice Score IoU Dice Score IoU Dice Score
Cosed-Net (Ours) 36.73 53.72 36.97 53.99 1.79 3.52 17.94 30.43 23.36
Dense U-Net [21] 28.57 44.44 28.21 44.01 0.76 1.51 12.08 21.55 17.42

U-Net++ [27] 26.58 41.99 28.74 44.64 0.72 1.44 12.70 22.54 17.15
U-Net [25] 29.25 45.26 25.63 40.81 0.37 0.74 11.13 20.03 16.60

DeepLabV3+ [20] 32.32 48.85 24.90 39.88 0.09 0.18 11.01 19.83 17.08

TABLE IV: Lesion segmentation performance on test set of FGADR dataset with regard to IoU, Dice Score, and mIoU.

Model Name Hard Exudates (EX) Haemorrhages (HE) Microaneurysms (MA) Soft Exudates (SE) mIoUIoU Dice Score IoU Dice Score IoU Dice Score IoU Dice Score
Cosed-Net (Ours) 39.55 56.68 34.62 51.43 2.84 5.52 22.21 36.35 24.81
Dense U-Net [21] 34.19 50.96 26.49 41.89 1.38 2.72 15.83 27.33 19.47

U-Net++ [27] 27.66 43.33 27.75 43.44 1.98 3.89 17.94 30.42 18.83
U-Net [25] 29.09 45.07 24.79 39.73 1.39 2.75 16.47 28.28 17.94

DeepLabV3+ [20] 31.25 47.62 25.06 40.07 0.79 1.58 14.42 25.2 17.88

Fig. 4: Qualitative Comparison between our proposed method and other advanced methods on the test set of FGADR dataset.

improvement with using TL, where the performance gains of
IoU and Dice score are 5.27% and 5.86%, respectively.

Furthermore, attention-based decoder (AD) is proposed to
further enhance the performance by introducing spatial and
channel Squeeze-and-Excitation (scSE) Attention Mechanism.
More specifically, the skip connection within the U-Net++ is
modified by integrating the scSE layers in the decoder. Such
a modification can provide a further performance gain and the
gains of IoU and Dice score are 2.87% and 3.01%.

TABLE V: Ablation Study of Hard Exudates based U-Net++
Network Backbone on FGADR Dataset (ED: encoder-decoder,
LE: lightweight encoder, DCE: the compound loss of dice loss
and cross entropy, TL: transfer learning, and AD: Attention-
based Decoder).

Method ED LE DCE TL AD IoU Dice
baseline ✓ 27.66 43.33
+LE ✓ ✓ 29.37 45.40
+DCE ✓ ✓ ✓ 31.41 47.81
+TL ✓ ✓ ✓ ✓ 36.68 53.67
+AD ✓ ✓ ✓ ✓ ✓ 39.55 56.68

Overall, our method can improve the performance of IoU
from 27.66% to 39.55% and the performance of Dice score of
43.33% to 56.68%, which significantly outperforms baseline.

V. CASE STUDY: A WEB-BASED APPLICATION

Recent technological advances made smartphone-based
biomedical imaging systems make it possible to capture retina
images at home and enforce small-sized, low-powered, and
affordable DR screening in diverse environment. DR detection
is a time-consuming task and requires an intensive effort
because lesions are small-sized and is short of contrast. In
this section, a web-based prototype is conducted, where our
model is deployed in a low-cost device to support screening
programmes with particularly in resource constrained settings.
Such a service can help reduce the risk of misclassification.
To achieve the digitalisation of healthcare systems, it is impor-
tant to deploy healthcare services in IoT (internet of things)
devices, which are located closer to the end users [42]. A
server-client architecture is adopted to realise digitalisation.
By adopting this architecture, the system has the benefits of
availability, scalability and cost efficiency. Furthermore, by ad-
dressing the complex evaluation process that ophthalmologists
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need to go through to reach a concrete detection, we only keep
the graphical user interface on client-side and also migrate
the additional inference operations of the neural networks to
the server-side. More implementation details of our web-based
application are provided as follows.

Fig. 5: Actions are taken within the client and server sides
of the web-based application. Numerical representation and
arrow symbols are for flow and clarity. The Jetson XAVIER
NX is 384-core GPU with 48 Tensor Cores and 8GB memory.

Once a retina image is uploaded and sent to the server-
side, FastAPI handles the request and further decryption of
the Base64 images is performed. After the decryption is
finished, the retinal image is passed to our networks for
lesion segmentation and diabetic retinopathy grading. For
the task of lesion segmentation, our method segments four
types of lesions within the retinal image, including EX, HE,
MA and SE. The predicted segmentation masks for four
lesions are highlighted in the original image so that the
ophthalmologist can identify the different lesions much easier.
For the task of diabetic retinopathy grading, the network
architecture of EfficientNetV2-S [33] is chosen to classify
the image with considering its high running efficiency and

limited computation resource available in an IoT device. The
inferred severity labels is combined with the four segmented
and coloured images under the form of a JSON object and it
is sent to the client-side where it is handled by the different
React components within the Results page. Further detailed
visualisation of the processes within this web-based automatic
detection system is shown in Fig. 5. Our web-based application
is launched and available at our CosedNet Website 3.

VI. CONCLUSION AND FUTURE WORK

Biological features can be efficiently extracted from
biomedical images by semantic segmentation. This paper
proposes a novel compound scaling encoder-decoder network
architecture for biomedical image segmentation to detect bio-
markers of diabetic retinopathy. Such a network architecture
includes the encoder and decoder phases. In the encoder phase,
a lightweight encoder is developed by introducing a compound
scaling network architecture. In the decoder phase, the skip
pathway is realised by introducing scSE Blocks, which is an
attention mechanism that prioritises different spatial regions
of the given image. To further improve the performance, a
compound loss function is proposed to optimise the network,
along with the utilisation of transfer learning technique to
tackle the class imbalance issue.

Our proposed method is assessed on both DDR and FGADR
datasets. For the segmentation tasks, all four types of lesions
are evaluated, including EX, HE, MA, and SE. The exper-
imental result shows that our proposed method outperforms
other competing methods on lesion segmentation both in
IoU and Dice Score. We also conduct an ablation study to
investigate how each innovative component in our proposed
method contributed to the improvement in performance.

In the future, a multi-scale based compound loss function
will be developed to optimise network so as to thoroughly
solve the class imbalance issue. We will further evaluate our
model in local collected data, such as, the data collected
from the Scottish national screening programme, to explore
the generalisability of the proposed models. For example, the
features learned from the domain of diabetic retinopathy are
expected to be transferred to the wider field of other ocular
diseases, such as glaucoma or cataracts.
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