
Journal of Loss Prevention in the Process Industries 85 (2023) 105176

Available online 19 September 2023
0950-4230/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Estimation of burst pressure of pipelines with interacting corrosion clusters 
based on machine learning models 

Abraham Mensah a,b, Srinivas Sriramula c,* 

a National Decommissioning Centre, School of Engineering, University of Aberdeen, Aberdeen, Scotland, UK 
b Ghana National Gas Company (GNGC), Accra, Ghana 
c School of Engineering, University of Aberdeen, Aberdeen, Scotland, UK   

A R T I C L E  I N F O   

Keywords: 
Pipeline burst pressure 
Interacting corrosion clusters 
Improved corrosion defect shapes 
Finite element methods 
Supervised machine learning 

A B S T R A C T   

Pipeline corrosion defects mostly appear in a colony such that they interact to reduce the failure pressure, which 
is not defined by features of a single corrosion defect. The huge amount of corrosion defects captured by in-line 
inspection tools including the variability of defect profile in pipelines and the dependence of the reliability 
assessment on such data pose significant research challenges in performance assurance. This highlights the need 
for computationally efficient modelling schemes to estimate the burst pressure of pipelines affected by both 
longitudinal and circumferential interacting corrosion defects. In the present paper, a novel approach is proposed 
for this purpose by combining supervised machine learning methods with 25 numerical models of corroded 
pipelines, validated with experimental results available from literature. Additionally, six improved composite 
defect shapes are proposed, resulting in 150 models to examine the non-linear behaviour of interacting corrosion 
defects by capturing the real the defect profiles captured by the In-line Inspection tools. The predicted failure 
pressures from the developed numerical models produced an absolute mean deviation of not exceeding 2.03% 
and 2.2% from the experimental burst pressure and the modified Mixed Type Interaction approach respectively, 
better than published results from the literature. Notably, the predicted failure pressures based on real pipeline 
data, infused with the generated artificial neural networks and non-linear regression models provide a total mean 
deviation of 3.1% and 7.3% respectively, thereby providing a path for effective maintenance planning.   

1. Introduction 

Carbon steel pipelines provide the safest and economic mode of 
transportation for hydrocarbon fluids. Nevertheless, these pipelines are 
susceptible to internal and external metal loss defects, which usually 
occur in a cluster. This results in reduction of the pipe wall thickness and 
the associated tensile and compressive strength capacity that can render 
it unfit for purpose at the corroded area due to stress concentration, 
resulting in loss of containment or rupture (ASME B31G, 2012; Benjamin 
et al., 2007). The pipeline incident statistics compiled by the European 
Gas Pipeline Incident Data Group covering a period from 1970 to 2019 
and similar information from the United States Department of Trans-
portation, Pipeline and Hazardous Materials Safety Administration, and 
the United Kingdom Onshore Pipelines Operators’ Association (UKOPA) 
depict corrosion as one of the major causes of pipeline incidents and 
accidents among other causes such as external interference, construction 
defects and ground movement (EGIG, 2020; U.S. Department of 

Transport PHMSA, 2020; Lyons et al., 1962). Hence, pipeline operators 
spend extensive resources on pipeline maintenance activities such as 
inspections, repairs, and replacement to minimize the consequences 
associated with product loss, installations, people, and environmental 
damage. These costs can be reduced as much as possible if decision 
makers accurately consider the pipeline status using in-line inspection 
(ILI) information and establish an effective pipeline integrity manage-
ment system (Amaya-Gó et al., 2016, 2019). Amaya et al. (Amaya-Gó 
et al., 2019) affirmed the need to accurately evaluate the deterioration 
effect of corrosion in pipelines to avert high operating costs relating to 
maintenance activities. The deterministic and probabilistic approaches 
for the structural integrity assessment of single corrosion defects in 
pipelines have been well researched in the literature, however, very 
limited research focused on developing a unified computationally effi-
cient modelling approach to evaluate interacting corrosion defects in 
pipelines. Multiple corrosion defects in a pipeline are said to be inter-
acting, if the presence of other defect is such that, it further reduces the 
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failure pressure of the pipeline and is not controlled by a single, metal 
loss defect feature (Det Norske Veritas, 2004). 

Current studies to consider these effects are mainly limited by the 
lack of experimentally validated and computationally efficient model-
ling schemes with high precision of burst pressure prediction. Battelle’s 
research work was limited to single corrosion flaws and did not consider 
any interacting effect of multiple corrosion defects on the pipeline 
strength. However, the American Society of Mechanical Engineers 
(ASME) B31G (ASME B31G, 2012) guidelines outlined minimum guid-
ance on interaction rules and assessment of multiple corrosion that are 
longitudinally or circumferentially spaced due to limited test data. These 
guidelines recommended that, all interacting flaws that are more than 
three multiplied by the pipe wall thickness (3t) should be treated as a 
single composite flaw. To improve on the effectiveness of ASME B31G 
general guidelines for interacting metal loss flaws, Det Norske Veritas 
(DNV) used deterministic and probabilistic approaches for the inter-
acting rules and pipeline failure pressure estimates subjected to only 
internal pressure loadings. DNV considered the maximum operating 
pressure of a pipeline section with an external diameter (D), treated as a 
single defect or a composite defect with an assumed rectangular defect 
shape (RDS) if the minimum corrosion cluster length is 5.0√Dt and the 
minimum overlap for the internal and external corrosion defects is 
2.5√Dt (Det Norske Veritas, 2004). However, these assessments are 
conservative in burst pressure prediction of interacting corrosion cluster 
defects. 

Over the past two decades, researchers have adopted finite element 
methods (FEM), machine learning (ML) and other techniques beyond 
the complex full-scale burst experiments to improve the understanding 
of the non-linear behaviour of interacting multiple metal loss defects in 
pipelines. Studies by Silva et al. (2007) used artificial neural networks 
(ANN) to improve the accuracy of interaction rules and estimation of 
reduced pipeline burst pressure beyond the DNV-Recommended Prac-
tice (RP)-F101 criteria. However, they could not validate their works 
with real burst test data due to limited information on interacting de-
fects and did not consider the variations relating to the defect profile 
(Silva et al., 2007). Furthermore, Huang et al. (2022) highlighted, 
among other contributing factors, the shape of the metal loss defect as a 
determinant in the accurate prediction of failure pressure for corroded 
pipelines with dent-corrosion defects. The configuration of longitudinal 
and circumferentially aligned metal loss flaws and geometry of defect 
considered were ideal and rectangular shaped respectively, which fail to 
mirror the practical irregular variations in pipeline corrosion profiles. 

Notably, the two sets of full-scale burst tests by Benjamin et al., 2007, 
2016a, 2016b under the Mixed Type Interaction (MTI) Joint Industry 
Project comprised of 30 pressure vessels containing single, multiple 
machined corrosion defects and corrosion free test samples. The devel-
opment of the MTI approach (Benjamin et al., 2007) used 12 test sam-
ples from the first set of experiments containing multiple machined 
corrosion defects instead of a pair of defects, as considered by earlier 
researchers. This improved the integrity assessment of interacting de-
fects with the same depth, giving rise to a mean deviation of about 3.7% 
to the experimental burst pressure. However, it is worth noting that the 
experimental sample size with identical depth of ideal RDS was not large 
enough to support a comprehensive framework for assessment of 
interacting corrosion. The application of Machine Learning (ML) ap-
proaches to pipeline integrity assessments offers an increase in predic-
tion accuracy and reduces the simulation time to discover the non-linear 
patterns. Mazumder et al. (2021) employed ML algorithms to investigate 
the deterministic and probabilistic failure pressure of a pipeline with 
corrosion growth rate for single defect and demonstrated the ability of 
ML for accurate and faster pipeline integrity assessment than a 
physics-based process. A decade after the research by Silva et al. (2007) 
which was not validated due to lack of full-scale test results, Xu et al. 
(2017) used numerical methods and ANN to predict pipeline failure 
pressure and interacting rules for a small sample size of multiple pipeline 
corrosion defects. It was observed that the results from the FEM with 

rectangular shaped metal loss defects were close to the considered 
experimental data of American Petroleum Institute (API) 5L ×80, but 
this study did not account for the variations in defect profile and the 
corrosion clusters had the same depth. However, the variability in defect 
geometry affects the integrity of corroded pipelines (Wang et al., 2023). 
In order to better understand the behaviour of corroded pipelines using 
machine learning models, Lu et al. (2022) effectively created a frame-
work to increase the prediction accuracy of the maximum metal loss 
depth of corroded pipelines throughout the operational time. The 
pipeline failure, however, may not only be influenced by the maximum 
pitting depth but also by the interacting corrosion cluster features, 
including the defect geometry, due to the non-linear behaviour of the 
interacting corrosion cluster defects in pipelines. A recent paper by Lo 
et al. (2021) confirms the low level of accuracy of existing approaches 
for burst pressure prediction of corroded pipelines with interacting 
corrosion cluster and the need for computationally efficient modelling 
schemes (CEMS). 

Considering the above limitations of existing research, this paper 
proposes numerical approach coupled with Non-Linear Regression 
models (NLRM) and ANN models incorporating the RDS and the 
improved corrosion defect shapes to develop computationally efficient 
models. The finite element analysis performed in this study offers the 
needed advantage of modelling and examining the burst pressure of 
corroded pipelines with the proposed improved corrosion defect shapes, 
which are not available in the literature. This is considered after an 
acceptable numerical model with rectangular-shaped interacting 
corrosion cluster has been achieved. The numerical model with a 
rectangular-shaped interacting corrosion cluster is validated with the 
experimental burst pressure data available in the published literature. 
Furthermore, the numerical models with the improved corrosion defect 
shapes are validated with the modified MTI burst pressures by incor-
porating the proposed defect shape factors. The present work considers 
experimental data (25 test samples) from MTI experimental database of 
interacting corrosion colonies, and uses trained ML weights and biases to 
improve the accuracy and reduce the computational time for integrity 
evaluation of interacting corrosion defects in pipelines subjected to in-
ternal pressure. as illustrated in Fig. 1. Additionally, the variability of 
the profile other than the RDS for the interacting corrosion colony 
captured by a typical magnetic flux leakage (MFL) ILI tool on real 
pipelines is explored by considering improved defect shapes to provide a 
pathway for rational decision making relating to maintenance planning 
and risk management. 

2. Modelling parameters based on experimental observations 
(from literature) and real inspection data 

The numerical models and supervised ML models are developed 
based on the published MTI full-scale burst pressure experiments and 
anonymized field ILI information. Numerical models of 25 different 
configurations of interacting corrosion clusters from the MTI full-scale 
burst test samples are developed and examined. The predicted burst 
pressure results from the numerical models including the essential pipe 
and metal loss defect geometric, and material properties are used to 
derive ML models which are applied on real ILI data to predict the burst 
pressure. 

MTI’s burst pressure database on interacting pipeline metal loss 
defects stems from two separate experiments to understand the behav-
iour of longitudinal and circumferential interacting corrosion defects in 
pipelines subjected to internal pressure loadings (Benjamin et al., 2007, 
2016b). The first test considered twelve test samples of longitudinal 
welded pipes made up of API 5L ×80 Carbon steel with three different 
material properties in terms of the yield and tensile strength capacity. 
The twelve samples comprised of one defect free pipe, two pipes with 
single metal loss defects and nine spool pieces containing interacting 
corrosion defect clusters. The corrosion clusters had varying configu-
ration of defect colonies from two to nine and had the same defect depth. 
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The pipe spool piece had a length from 1.7m to 1.9m with varying 
machined rectangular defects of defect depth to thickness ratio (d/t) 
between 0.460 and 0.665. The second set of tests were conducted with 
18 pipe test samples that contained two pipes with single defect, six 
pipes with single patch colonies and ten pipes with multiple patch col-
onies mimicking realistic interacting corrosion in pipelines. The API 5L 
×70 carbon steel pipe had five different material properties and the 
effective defect cluster depth to pipe thickness ratio (dc/t) varied 

between 0.390 and 0.630. The key geometric and material properties 
used in the finite element and machine learning modelling are shown in 
Table 1. 

A typical observation set from an anonymized MFL ILI data on a 110 
km pipeline, highlighting the distribution of internal and external 
corrosion defects including manufacturing defects as illustrated in Fig. 2 
is used to check the performance of the generated NLRM and ANN 
models. It is observed that the pipeline has sparsely distributed 
manufacturing defects, limited external corrosion defects but contains 
more internal corrosion defects, which are clustered especially in the 
first 30 km span. The ILI results provide the specification of the MFL 
tool, operating conditions of the intelligent pig and the allowable 
operating tolerances. The defect sizes in terms of defect length, depth, 
and width assuming an RDS as the worst case of metal degradation 
shape, circumferential location, and distance of anomalies to the nearest 
girth weld, including pitting and clustered metal loss defects detected by 
the MFL pig are also provided. For this research, 15 severe corrosion 
cluster defect areas (CCDA) are selected to assess the performance of the 
produced NLRM and ANN models. 

3. Improved corrosion defect shapes 

Advances in in-line inspection tools to capture the actual profile of 
corrosion defects as highlighted by Ma et al. (2021) is a step in the right 
direction to reduce the variations related to the defect shapes used in 
integrity and reliability assessment. Hence, there is a need to employ 

Fig. 1. Flowchart of CEMS for evaluating pipelines with interacting corrosion cluster defects.  

Table 1 
Geometric and material properties for FEM and ML Models (Benjamin et al., 
2007, 2016b).  

Geometric and Material Properties 
(Units) 

Values 

Pipe Diameter, D (mm) 457.0, 458.8, 459.4, 458.6 
Pipe wall thickness, t (mm) 7.93, 7.90, 7.91, 7.92, 8.01, 8.10 
Tensile strength, UTS (MPa) 684, 698, 728, 731, 732, 739, 748, 773 
Yield Strength, SMYS (MPa) 556, 580, 589, 601, 639, 652, 654, 662 
Modulus of elasticity, E (GPa) 210 
Poisson’s ratio, v 0.3 
Number of corrosion cluster per test 

sample 
2, 3, 4, 5, 6, 7, 8, 9, 10 

Effective defect depth to wall 
thickness ratio, dc/t 

0.39, 0.47, 0.48, 0.58, 0.60, 0.61, 0.62, 0.63, 
0.65, 0.66, 0.67, 0.69 

Absolute defect longitudinal 
spacing, SL (mm) 

9.50, 9.88, 10.00, 19.84, 19.98, 20, 20.06, 
20.40, 20.50, 30.00, 39.60 

Absolute defect circumferential 
spacing, SC (mm) 

9.60, 9.88, 9.99, 10.00, 10.01, 10.03, 19.84, 
20.00, 30.00, 31.90  
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improved metal loss defect shapes to cater for the uncertainties of the 
defect shapes captured by infield intelligent pigging tool to investigate 
the non-linear behavior of multiple interacting corrosion defects. In this 
paper, improved defect shapes beyond the RDS used by MTI and ILI 
information are considered to address the irregular nature of the profile 
of interacting corrosion cluster. A number of pipeline corrosion defect 
shapes have been considered to estimate the remaining static and dy-
namic strength of pipelines. The American Gas Association and the 
ASME used the V- notch and rectangular defect shapes to conduct 
pipeline burst experiments due to the ease of defect creation. The need 
to reduce the conservatism in integrity assessments resulted in the use of 
an effective area in the Remaining Strength of Corroded Pipe 
(RSTRENG) method, 66.67% of metal loss area in AMSE B31G assess-
ment, and 85% of metal loss area in modified B31G defect evaluation 
method. This was evidenced by the shape factors of 2/3 and 0.85 in the 
pipeline burst pressure formulae and parabolic defect geometry pro-
posed by O’Grady et al. (ASME B31G, 2012; Cosham et al., 2007; Grady 
et al., 1992a; Grady et al., 1992b). Table 2 highlights the different metal 
loss defect shapes considered by several researchers as highlighted in a 
recent review of pipeline defect assessment by Qin and Cheng (2021) to 
evaluate single and multiple defects. 

In this paper, improved defect shapes of constant volumetric or cross- 
sectional area ratio to the equivalent RDS are proposed to capture the 
real defect characteristics effectively. The existing defect shapes such as 
rectangular, parabolic (PS), and proposed defects shapes such as the 
semi-elliptical rectangular composite shapes (SERCS), nth-stair sym-
metric complex shape (EnSSC), Pent-symmetric complex shape (PSCS) 
shown in Fig. 3 are investigated to ascertain the quantum of effect on the 
pipeline burst pressure. The nth -stair symmetric complex defect shape 

for an equivalent RDS of length L and depth d, has a symmetric n number 
of steps with a rise of ‘d/(n+1)’ and a thread of ‘L/(2n)’as illustrated in 
Fig. 3. 

The constant defect shape factors (SF) for the considered defect 
profiles irrespective of the dimensions of the assumed RDS are shown in 
Table 3. The semi-circular rectangular composite shape (SCRCS) does 
not have a constant shape factor to an equivalent RDS and hence, could 
not be considered for this work. 

4. Numerical and machine learning methods 

The finite element burst models of 25 MTI test samples of API 5L ×80 
and API 5L ×70 steel pipeline with longitudinally and circumferentially 
interacting corrosion cluster defects are developed using the RDS and 
other six improved shapes highlighted in Fig. 3. The predicted failure 
pressures of the multiple interacting pipeline corrosion defects with RDS 
are validated with the MTI experimental burst pressures (Pb.EXP) and 
those with the proposed shapes are validated using modified MTI burst 
pressure (Pf.ModifiedMTI). The key properties relating to the pipe and 
corrosion geometry, material properties, loadings, and the estimated 
burst pressures from the finite element analysis (FEA) results are used to 
generate NLRM and ANN models for each corrosion defect shape, 
resulting in seven NLRM and seven ANN models. The performances of 
the 14 ML models are tested using normalized real ILI data as illustrated 
in Fig. 4 and explained in the following sections. 

4.1. Finite element methods 

The static non-linear finite element burst models of pipelines with 
interacting corrosion defects using the features of 25 MTI test samples 
are summarized in Table 1, incorporating the seven defect shapes from 
Fig. 3. These models are developed using ANSYS workbench 2020, 
resulting in a total of 175 FEA models. A pipe length of 6D greater than 
the minimum requirement of 5D by British Standards Institution (BSI) 
recommendation 7910 (British Standards Institution, 2005) is used to 
fully highlight the stress distribution and deformations in the pipeline 
sections. A quarter or half pipe is simulated for test samples (TS) with 
symmetric layout of metal loss defects in the cylindrical pipe to reduce 
model computational time, and a full pipe was modelled for those with 
unsymmetrical corrosion defect colony configuration as displayed in 
Fig. 5. These models utilized a SOLID187 element type, which is a 3 
dimensional tetrahedral structural solid with features to fully illustrate 
the plasticity effects of the pipe material (ANSYS Manual, 2009). The 
mesh densities at the corroded area are increased and convergence 

Fig. 2. Typical distribution of internal and external corrosion defects in a pipeline from an MFL inspection tool.  

Table 2 
Typical corrosion defect shapes.  

Defect Shape Defect Type Assessment Methods 

Parabolic Single defects ASME B31G, Chen et al. (Qin 
and Cheng, 2021) 

Rectangular Single defects DNV-RP-F101, API RP 579, 
BS 7910 

Elliptical Single defects Chen et al. (Qin and Cheng, 
2021) 

Rectangular Multiple defects MTI, Chen et al. (Qin and 
Cheng, 2021) 

Rectangular shallow patch 
with deep patch 

Complex or multiple 
defects 

Sun et al. (Sun et al., 2021) 

River bottom irregular 
shape 

Single, complex, or 
multiple defects 

RSTRENG, DNV-RP-F101  
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studies are performed to obtain the optimum mesh density. The stress 
concentration areas due to sharp ends or corners at the corroded areas 
are minimized by introducing a fillet with a radius of 0.05 mm in the 
model geometry. 

The pipeline properties are created using API 5L ×80 and API 5L ×70 
grade carbon steel pipeline. The isotropic elastic properties (i.e., 
Young’s modulus of elasticity and Poisson’s ratio), density, true stress- 
plastic strain properties derived from De Andrade et al. (de Andrade 
and Benjamin), Yanfei et al. (Chen et al., 2015), Lee et al. (2018), tensile 
strength properties from Table 1 and Ramberg-Osgood formulation to 
cater for multilinear hardening of the pipes are specified and assigned to 
the pipeline. The symmetric faces of corroded area are restrained from 
displacing in the longitudinal and circumferential direction to create 
plain strain settings. To prevent the pipeline from expanding and con-
tracting in the longitudinal direction, the end of the pipe away from the 
corroded area is restrained. The node at the pipe end farthest from the 
corroded section is fixed to prevent rigid body model of the model as 
illustrated in Fig. 6. The internal pressure is applied incrementally by 
means of the ANSYS ramped function in a ratio of 1 s to 1 MPa on the 
internal surface of cylindrical shaped pipe. 

The plastic failure pressures are identified by examining internal 

pressure at the timestep when the equivalent von Mises stress through 
the thickness of the corroded areas exceeds the elastic deformation re-
gion’s yield strength and reaches the true ultimate tensile strength at the 
corroded region of the pipe as shown in Fig. 7. 

4.2. Finite element method validation 

The FEM predicted failure pressures of the multiple interacting 
pipeline corrosion defects with RDS are validated with the MTI experi-
mental burst pressures (Pb.EXP) and those with the proposed shapes are 
validated using modified MTI burst pressure (Pf. ModifiedMTI). The modi-
fied MTI burst pressure is obtained by introducing the derived defect 
shape factor (SF) from Table 3 in equation (1) to account for the metal 
loss defect profile, in the absence of experiments for these shapes. 

Pf .ModifiedMTI =UTS×
(

2t
D − t

)

×

(
1 −

(
SF ×

dg
c
t

))

(
1 −

(
SF ×

dg
c
t

)
× 1

Mg
c

) (1)  

where UTS is the ultimate tensile strength, t is the pipeline wall thick-
ness, D is the outer diameter, dg

c is the effective corrosion cluster depth 

Fig. 3. Corrosion defect shapes.  

Table 3 
Corrosion defect shape factors.  

Defect Shape RDS PS SERCS E2SSC E3SSC E5SSC PSCS SCRCS 

Defect Shape Factor (SF) 1.00 0.67 0.89 0.75 0.67 0.60 0.88 [
0.5 +

( 1
16L

πd
)]

Fig. 4. Flow diagram of deterministic assessment of pipeline interacting corrosion defects.  
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and Mg
c is the bulging factor. The results from the validation of the RDS 

corrosion cluster are presented in Table 4. The total absolute mean de-
viation (TAMD) of the FEM predicted failure pressure from the experi-
mental burst pressure is 2.025%, indicating the acceptability of the FEM 

burst models. Notably, the TAMD of the predicted FEA failure pressure 
of the corroded pipe with the other shapes aside the RDS are less than 
2.152% from the estimated modified MTI burst pressure. 

Fig. 5. A typical configuration of longitudinally and circumferentially interacting corrosion defects in pipe test sample 27.  

Fig. 6. Boundary conditions and loadings on pipe burst model.  
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4.3. Supervised machine learning 

Machine Learning (ML) methods employ statistical processes to un-
cover patterns in pre-processed data to derive critical features. There are 
three types of machine learning approaches namely supervised ML, 
unsupervised ML, and reinforcement learning. Supervised machine 
learning methods are usually applied to well-defined problems with 
known input variables referred to as predictors and an estimated 

response variable. This can be a classification or regression problem 
depending on the nature of the predictor variables and target response 
variables. Unsupervised ML methods seek to discover relationships for a 
system with only known predictor variables and reinforcement learning 
tends to unearth patterns related to reward and punishment indicators 
(Mirjalili et al., 2020). 

Categorical ML methods such as NLRM and ANN methods can be 
used to further reduce the simulation computational time by deriving 
patterns from key features of interacting corrosion defects in pipelines 
and the estimated burst pressures to generate models for future appli-
cations (Fig. 8). These are achieved by training, testing, and validating 
the MATLAB learning algorithms on the developed dataset from the FEA 
comprising of key geometric and material properties as the predictors 
and the predicted FEA failure pressure as the target response variable. 

In this paper, the NLRM is used to derive a relationship between the 
physical properties and the target failure pressure due to the non-linear 
behaviour of the interacting corroded defects. The Hougen-Watson 
model requirement by Douglas et al. (Douglas and Bates, 2007) by uti-
lizing three predictors and three target variables is used to derive a 
simple but accurate correlation. Unlike the analyses by Silva et al. 
(2007) and Xu et al. (2017), this study incorporates the pipe material 
flow stress properties and defect shape factor that control the plastic 
deformation failure of carbon steel pipelines. Furthermore, the vari-
ability of corrosion defect profiles based on real inspection information 
is also implemented in developing the predictors. It is to be noted that 
the predictors in this analysis are constrained to three variables to pre-
vent the issue of dimensionality, which was identified by Lu et al. (2021) 
as a major challenge in developing data-driven ML models for failure 
pressure prediction of corroded pipelines. The essential properties 
captured as the predictors are a ratio of effective defect depth of metal 
loss to pipe wall thickness, the plastic flow stress that depends on the 
pipe material UTS, and a unitless parameter relating to pipe bulging 
factor, longitudinal and circumferential defect spacing as shown in 
equations (3)–(5). The predicted pipeline pressure by numerical 
methods (Pf.FEM) and two unity responses are set as the output targets. 
The SL of interacting corrosion can be investigated by setting SC to unity, 
and varying SL and vice-versa. The regression analysis is performed by 
changing the beta points till the root mean squared error (RMSE) and 

Fig. 7. Damaged FEA burst model.  

Table 4 
Comparison of FEM predicted failure pressure and experimental burst pressure- 
for RDS corrosion.  

No. Test 
Sample 

FEM Predicted 
Failure Pressure 
(MPa) 

Experimental Burst 
Pressure (MPa) (Benjamin 
et al., 2007, 2016b). 

Percentage 
difference (%) 

1 3 20.400 20.310 0.443 
2 4 21.600 21.140 2.176 
3 5 21.120 20.870 1.198 
4 6 19.000 18.660 1.822 
5 7 19.200 18.770 2.291 
6 9 23.400 23.060 1.474 
7 10 23.700 23.230 2.023 
8 11 21.670 21.260 1.929 
9 12 20.400 20.160 1.190 
10 15 23.917 24.000 − 0.346 
11 16 23.572 23.400 0.735 
12 17 21.423 21.200 1.052 
13 18 22.800 22.700 0.441 
14 19 23.500 23.300 0.858 
15 20 21.100 20.800 1.442 
16 21 22.778 22.600 0.788 
17 22 20.500 20.300 0.985 
18 23 21.800 21.500 1.395 
19 24 21.600 20.500 5.366 
20 25 21.400 19.900 7.538 
21 26 21.200 19.800 7.071 
22 27 22.500 21.300 5.634 
23 28 23.400 23.200 0.862 
24 29 23.600 23.400 0.855 
25 30 21.250 21.100 0.711 
Total Absolute Mean Deviation (TAMD)% 2.025  
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regression coefficient of determination, R-squared value is acceptable. 
The R-squared value quantifies the relationship between outputs and 
targets whiles the RMSE is the rate of the mean error measure between 
the initial outputs and predicted target values. An R-squared value of 
one indicates a good relationship, and zero shows a random relationship 
(Mirjalili et al., 2020). The derived model to predict the pipeline failure 
pressure for all the 8 shapes (Pf.NLRM) is shown in equation (2). 

Pf.NLRM = [(b1x2) − (x3 / b5)]
/
[1+(b2x1)+ (b3x2)+ (b4x3)] (2)  

where b1, b2, b3, b4 and b5 are the estimate coefficients from the non- 
linear regression results. 

x1 = SF •

(
d
t

)

(3)  

x2 =UTS •

(
2t

D − t

)

(4)  

x3 =

(
|sL

⃒
⃒

|sc
⃒
⃒
•

L2

Dt

)

(5) 

ANNs are feed forward classification networks as shown in Fig. 9 that 
use known predictors and expected outcomes to derive a relationship 
model by using synaptic weights and learning process (de Andrade and 
Benjamin). In this model, the NLRM predictors and targets defined 
above are also used for the ANN model. The neural network employs a 
three-layer feed-forward structure with ten neurons in the hidden layer 
(five neurons are shown in Fig. 9 for demonstrative purposes) to solve 
the generated input-target response data created in the matrix row. The 
datasets are trained using the Levenberg-Marquardt backpropagation 
algorithm, which uses a short processing time till regression’ R squared 
value and mean squared error (MSE) are acceptable. A good correlation 
is achieved by using 60% of the dataset for training, 20% for validation, 
and 20% for testing. Hence, a total of 175 datasets are used, resulting in 
105 data points for training, 35 datasets for validation, and 35 datasets 
for testing. 

The acceptable generated models are stored for future applications 

on the 15 severe corrosion clustered defect areas (CCDA) identified by 
ILI to estimate the pipeline failure pressure for the ANN and NLRM (Pf. 
ANN and Pf. NLRM) due to the corrosion cluster. The predictors from the 
normalized ILI information used for evaluating the developed ML 
methods are presented in Table 5. The predicted pipeline failure pres-
sures from the ANN (Pf. ANN) and NLRM (Pf. NLRM) are compared with the 
predicted pipeline failure pressure of existing assessment methods (such 
as the DNV (Pf.DNV) and MTI (Pf.MTI)) and the observations are discussed 
in section 5.2. 

5. Results and discussion 

5.1. Finite element models 

A sample size of 25 RDS burst models from the MTI’s full scale burst 

Fig. 8. Process flowchart of supervised ML.  

Fig. 9. Structure of the ANN method.  

Table 5 
Predictors from ILI data for performance testing of NLRM and ANN Models.  

Severe Corrosion Clustered 
Defect Areas (CCDA) 

1st Predictor 
Term 

2nd Predictor 
term 

3rd Predictor 
term 

SF •
( d

t

)

UTS •
( 2t
D − t

)
(|sL

⃒
⃒

|sc
⃒
⃒
•

L2

Dt

)

CCDA 1 0.4891 25.45 7.6005 
CCDA 2 0.6124 25.45 2.1708 
CCDA 3 0.4046 25.45 4.1226 
CCDA 4 0.4894 25.45 6.8615 
CCDA 5 0.4995 21.96 2.8546 
CCDA 6 0.5195 21.96 26.7999 
CCDA 7 0.3745 21.96 8.8956 
CCDA 8 0.4353 25.45 5.0375 
CCDA 9 0.5332 25.45 46.2016 
CCDA 10 0.4262 25.45 24.6484 
CCDA 11 0.3381 21.96 8.3227 
CCDA 12 0.2657 21.96 1.7954 
CCDA 13 0.3010 21.96 5.1634 
CCDA 14 0.2300 25.45 0.4131 
CCDA 15 0.2605 25.45 8.7491  
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test using the same features in terms of the configuration of longitudi-
nally and circumferentially interacting corrosion defects and material 
properties are numerically modelled. The estimated pipeline failure 
pressures from the finite element analysis are compared with the 
experimental burst pressures and relevant approaches in the literature 
for evaluating interacting corrosion defects, as illustrated in Fig. 10 and 
Table 6. In Fig. 10 and Tables 6 and it is worth noting that the burst 
pressure prediction by the finite element methods for the RDS samples 
yielded a slender margin of failure pressure overestimation with total 
absolute mean deviation of 2.025% from the experimental burst pres-
sures, standard deviation of 2.084% and pressure prediction percent 
range from +7.538% to − 3.460%. The existing approaches such as the 
DNV, MTI, Modified ASME B31G and the RSTRENG effective area pro-
vided conservative failure pressure estimation results that necessitate 
the need to improve the accuracy and model simulation time. A safety 
factor can be employed to transform or calibrate the predicted FEA re-
sults to underestimate the burst pressure to avoid unexpected pipeline 
failure during operations for all cases where the predicted pressure is 
more than experimental failure pressure. 

The DNV approach for interacting metal loss defects produced an 
underestimated failure pressure with trendlines beneath the MTI pre-
diction resulting in a total absolute mean deviation of 17.280% from the 
experimental burst pressures, standard deviation of 9.864% and pres-
sure prediction percent range from +2.5% to − 29.648%. The trendlines 
for the Modified ASME B31G and RSTRENG methods are further below 
the DNV predictions of the test samples considered, reechoing their 
conservatism with a total absolute mean deviation of 27.034% and 
24.004% respectively. 

To further investigate the effect of the variations in corrosion defect 
profile on the burst pressure of a corroded API 5L ×80 and ×70 pipe, an 
additional 150 FEA burst models are developed using the same inter-
acting corrosion cluster configurations, material properties and envi-
ronmental loadings but with the six improved corrosion defect shapes, 
resulting in 25 burst models per defect shape. The pipeline failure 
pressures from the FEA studies are compared with the proposed Modi-
fied MTI approach based on the defect shape factors as demonstrated in 
Fig. 11, Fig. 12, and Table 7. It is observed from predicted failure 
pressures that as the defect shape factor decreases and the volume of 
metal loss decreases, the pipeline fails at a higher pressure at the 
corrosion site by plastic deformation. The pipeline fails when maximum 
Von Mises equivalent stress reaches the flow stress of the pipeline 

material, which is located between the specified minimum yield 
strength and the ultimate tensile strength. Therefore, samples with same 
or approximately equal defect shape factor behave similarly as seen in 
the parabolic shaped (PS) sample and E3SSC with defect shape factor of 
0.67 as well as the SERCS and E5SSC models with a defect shape factor 
of about 0.9. 

In Figs. 11 and 12, the experimental burst pressure with RDS for 
almost all the test samples is the lowest, followed closely by the RDS 
numerical burst model with a total mean deviation of 2.025%. The total 
mean deviation percent and standard deviation for the FEM models with 
the improved defect shapes from the modified MTI do not exceed 
2.152% and 2.768 respectively as indicated in Table 7. 

Significantly, the total mean deviation of the finite element models of 
the corroded pipes with improved shapes SERCS, PSCS, E2SSC, E3SSC, 
PS and E5SSC from the full-scale burst tests using rectangular defect 
shapes are 4.272%, 4.882%, 6.603%, 8.269%, 8.874% and 9.891% 
respectively as presented in Table 8. 

These deviations from the RDS confirm the defect shape factor – 
predicted pipeline failure pressure relationship that contributes to the 
non-linear behaviour of interacting corrosion in pipelines. The pipeline 

Fig. 10. Predicted pipeline failure pressure of RDS test samples using FEA, experiment, and other existing methods.  

Table 6 
Total absolute mean error of the predicted burst pressure from the experiment 
test results for the RDS test samples.  

Burst Pressure 
Prediction 
method 

FEA MTI DNV Modified 
ASME 
B31G 

RSTRENG 
Effective 
Area 

Total absolute 
mean 
deviation 
(%) 

2.025 4.744 17.280 27.034 24.004 

Maximum and 
Minimum 
positive 
deviation 
(%) 

7.538, 
0.441 

6.200, 
0.400 

2.500 – – 

Maximum and 
Minimum 
negative 
deviation 
(%) 

− 0.346 − 16.406, 
− 2.660 

− 29.648, 
− 5.66 

− 42.180, 
− 1.100 

− 32.906, 
− 8.800 

Standard 
deviation 

2.084 6.283 9.864 11.644 5.638  

A. Mensah and S. Sriramula                                                                                                                                                                                                                 



Journal of Loss Prevention in the Process Industries 85 (2023) 105176

10

fails at a higher pressure as the defect shape factor decreases. 

5.2. Non-linear regression and artificial neural networks models 

The non-linear regression and ANN models are generated by 

training, testing, and validating with the predictors and validated FEA 
predicted failure pressure as described in section 3.3. The performance 
of the seven NLRM and seven ANN models are assessed with normalized 
real ILI data. In this paper, 15 severe clustered corrosion sites are 
selected from the ILI data and the results using the NLRM, and ANN 

Fig. 11. Predicted pipeline failure pressure of RDS, SERCS and PSCS test samples using FEA, experiment, and Modified MTI method.  

Fig. 12. Predicted pipeline failure pressure of E2SSC, E3SSC, E5SSC and PS test samples using FEA, and Modified MTI methods.  

Table 7 
Total absolute mean deviation of the FEM predicted burst pressure against the benchmark for all shapes.  

Burst Pressure prediction per defect shape profile Pfsercs Pfpscs Pfe2ssc Pfe3ssc Pfps Pfe5ssc 

Total absolute mean deviation (%) 2.152 2.004 1.817 1.884 2.032 2.093 
Maximum and Minimum positive deviation (%) 6.500, 

0.217 
6.647, 
0.230 

5.081, 
0.157 

5.921, 
0.196 

6.714, 
0.056 

5.181, 
0.270 

Maximum and Minimum negative deviation (%) − 5.749, 
− 0.018 

− 4.564, 
− 0.183 

− 5.529, 
− 0.405 

− 5.875, 
− 0.155 

− 5.659, 
− 0.126 

− 5.346, 
− 0.009 

Standard deviation 2.768 2.636 2.332 2.457 2.748 2.600  
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model are presented in Figs. 13–15. 
In Fig. 13, the predictions of the ANN model and NLRM follow 

closely to the MTI predictions for rectangular defect shaped corrosion 
for the 15 CCDA, yielding a total mean deviation of 1.479% and 6.502% 
respectively. The accurate prediction by the ANN model is evidenced by 
the R squared and the MSE of 0.9985 and 0.84235 respectively as shown 
in Table 9. 

However, the failure pressure predictions from the DNV approach 
are underestimated for all the corrosion clusters considered with a total 
mean deviation of 26.019% from the MTI pipeline failure pressure 
prediction as presented in Fig. 13 and Table 10. This is mainly due to the 
translation of the interacting corrosion defects to a longitudinal and 
circumferential imaginary axis to compute the effective composite 
defect length and depth, which usually fails to account for the remaining 
wall thickness between the interacting pitting corrosion sites. 

The trend relating to the defect shape factor and the predicted 
pipeline failure pressure as observed in the finite element results in 
Figs. 11 and 12 are also seen in Figs. 14 and 15. As the volumetric metal 
loss decreases, the pipeline fails at a higher pressure for a corroded 
pipeline with the same layout of interacting corrosion cluster defects. 
The trendline for the NLRM and ANN models for the ILI data follow 
closely to the predictions by the Modified MTI for the improved shapes. 
The ANN model for SERCS, PSCS and E2SSC defect shapes produces the 
best fit for the burst pressure for all the 15 corrosion cluster sites with a 
total absolute mean deviation of 1.8%, 2.4% and 3.1% from the modi-
fied MTI predictions respectively as seen in Fig. 14 and Table 10. The 
NLRM for the SERCS, PSCS and E2SSC defect shapes provide a TAMD 
not exceeding 7.3% from the Modified MTI. The trendline for the SERCS 
and PSCS samples with the defect shape factor of 0.89 and 0.88 
respectively are similar as seen in Fig. 14. Therefore, for a corrosion site 
on the pipeline, the failure happens at a much higher stress for defect 
shapes that are E2SSC, followed by PSCS and marginally followed by 
SERCS. 

Similarly, the trendline for the failure pressure prediction for the 

E3SSC and parabolic shaped defect sample by the NLRM and ANN Model 
exhibit same patterns due to the same defect shape factor of 0.67, 
providing a total absolute deviation not exceeding 7.3% and 2.87% 
respectively from their benchmark Modified MTI approach as shown in 
Fig. 15 and Table 10. The E5SSC with a defect shape factor of 0.6 has the 
smallest volumetric metal loss and the pipeline at the severe corrosion 
sites fails a much higher pressure than the other improved shapes, with a 
deviation of 3.1% and 7.1% from the Modified MTI predictions for the 
ANN model and NLRM respectively. 

6. Conclusions 

In an era of big data especially from intelligent pigging of long span 
pipelines, the need for computationally efficient modelling schemes to 
provide accurate and high precision burst pressure of pipelines with 
longitudinal and circumferential interacting corrosion cluster defects 
subjected to a net internal pressure has been established. This was 
accomplished by developing validated FEA models of API 5L ×70 and 
API 5L ×80 pipes with interacting metal loss defects combined with 
Artificial Neural Network and Non-Linear Regression Models. Further-
more, six improved metal loss defect shapes are proposed in the finite 
element models to investigate the non-linear performance of interacting 
corrosion defects, resulting in 150 FEA models to accommodate for the 
complex corrosion profiles captured by pipeline intelligent pigging tool. 

From the structural integrity assessment of pipeline corrosion cluster 
defects, the following inferences were noted. Firstly, although the FEA 
computations are generally time consuming, they can be used to 
generate the machine learning database appropriate to investigate the 
general patterns in interacting corrosion, with acceptable deviation 
from expensive experiments. In this study, the anticipated FEA pipeline 
failure pressure using twenty-five MTI test samples with ideal rectan-
gular defect shapes has a total absolute mean deviation of 2.03% from 
the experimental burst pressure. This mean deviation is lesser than the 
burst pressure prediction obtained from the conservative MTI, DNV, 

Table 8 
Corrosion defect shape and deviation from experimental burst pressure of pipe samples with RDS.  

Defect Shape RDS SERCS PSCS E2SSC E3SSC PS E5SSC 

Defect Shape Factor (SF) 1.00 0.89 0.88 0.75 0.67 0.67 0.60 
FEA model deviation from experimental burst pressure of pipe samples with RDS 2.025 4.272 4.882 6.603 8.269 8.874 9.891  

Fig. 13. Predicted pipeline failure pressure of normalized RDS ILI data using NLRM and ANN model.  
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RSTRENG Effective Area and ASME B31G semi-empirical formulations 
which produce a total mean deviation of 4.74%, 17.28%, 24.00% and 
27.03% respectively. Significantly, the total mean deviation percent for 
the FEA models with the improved defect shapes from the proposed 
Modified MTI formulations in equation (1) does not exceed 2.2%. 

The ANN models proved to be more efficient than the NLRM corre-
lation in the assessment of interacting corrosion defects in pipelines. The 
TAMD from the modified MTI approach for the neural network model 

and NLRM for the RDS samples from the real inspection information are 
1.5% and 6.5% respectively. Notably, the ANN Models and NLRM for the 
severe corrosion cluster defect data from the ILI data produce pipeline 
failure pressure predictions with TAMD not beyond 3.1% and 7.3%. It is 
worth noting that the results from FEM models and the predictions of the 
NLRM and ANN model show a common trend of the behaviour of 
corroded pipeline in relation to the defect shape factor, where for the 
same conditions, as the volume or cross-sectional area of corroded 

Fig. 14. Predicted pipeline failure pressure of normalized ILI data with improved metal loss defect shapes (SERCS, PSCS, E2SSC) using NLRM and ANN model.  

Fig. 15. Predicted pipeline failure pressure of normalized ILI data with improved metal loss defect shapes (E3SSC, PS, E5SSC) using NLRM and ANN model.  

Table 9 
Performance of ANN model.  

ANN Model RDS SERCS PSCS E2SSC E3SSC PS E5SSC 

Coefficient of determination, R 0.9985 0.9991 0.99913 0.99944 0.99953 0.99925 0.99934 
Mean Squared Error, MSE 0.84235 0.51697 0.31046 0.25699 0.029515 0.097489 0.22258  

A. Mensah and S. Sriramula                                                                                                                                                                                                                 



Journal of Loss Prevention in the Process Industries 85 (2023) 105176

13

materials increases, the pipeline failure pressure reduces. Given an 
established corrosion defect shape by an In-line Inspection tool, the 
proposed composite shapes give the option to select an appropriate 
defect shape factor for performance assessment purposes. For example, 
if the corroded area is 75% of an equivalent rectangular shape defined 
by the maximum defect length and depth, the composite shape E2SSC is 
the best shape for assessment. Hence, the outcomes from this assessment 
with different shapes afford an opportunity to critically examine 
corrosion colonies in a pipeline to provide reliable estimates associated 
with the actual defect profiles of ILI tools to make informed reliability 
and integrity decisions in the areas of maintenance, operations, and 
decommissioning planning. In this paper, the uncertainties relating to 
geometric and material properties, corrosion growth rate and loading 
conditions are not considered and will be investigated in the next stage 
of this research. Also, only discrete defect shape factors are considered 
but a continuous defect shape function will be explored in the future to 
account for the defect profile variability. 
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